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Abstract: In the ocean, the prokaryote respiration rates dominate the oxidation of organics, but
the measurements may be biased due to pre-incubation size filtration and long incubation times.
To overcome these difficulties, proxies for microbial respiration rates have been proposed, such as
the in vitro and in vivo estimation of electron transport system rates (ETS) based on the reduction
of tetrazolium salts. INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) is
the most commonly applied tetrazolium salt, although it is toxic on time scales of less than 1 h
for prokaryotes. This toxicity invalidates the interpretation of the rate of in vivo INT reduction to
formazan as a proxy for oxygen consumption rates. We found that with aquatic bacteria, the amount
of reduced INT (F; µmol/L formazan) showed excellent relation with the respiration rates prior
to INT addition (R; O2 µmol/L/hr), using samples of natural marine microbial communities and
cultures of bacteria (V. harveyi) in batch and continuous cultures. We are here relating a physiological
rate with the reductive potential of the poisoned cell with units of concentration. The respiration rate
in cultures is well related to the cellular potential of microbial cells to reduce INT, despite the state
of intoxication.
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1. Introduction

Respiration is the main energy acquisition mechanism by which all living creatures transform
organic matter to CO2. Planktonic organisms in the pelagic ocean respire a large portion of all
the organic matter produced; the heterotrophic bacterioplankton alone contribute about 40% to all
plankton respiration in the ocean [1]. The measurement of bacterial respiration is still problematic,
and it is currently considered a significant obstacle to produce accurate budgets for the carbon cycle
in the ocean [1,2]. The two most common techniques used to measure plankton respiration in the
ocean, are the oxygen consumption in the dark by the whole or fractionated plankton communities,
or the measurement of the electron transport system (ETS) either in vitro (ETSvitro) [3]; or in vivo
(ETSvivo) [4]. To measure the prokaryote respiration monitoring oxygen consumption in the dark, the
prokaryotes in the sample have to be separated before the incubation, typically through size filtration.
It has been reported that pre-incubation size filtration changes the predatory pressure [1], releases
organic compounds [5] and can induce changes in community structure [6,7]. These alterations lead
to changes of bacterial respiration in aquatic samples, particularly in marine samples that typically
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need long incubation periods. Aranguren-Gassiz et al. (2012) [8] argued that these limitations lead
to the overestimation of microbial respiration rates. The ETSvitro method [3] allows us to evaluate
the potential plankton respiration with high sensitivity [9], but suffers the drawback that when it
is applied to prokaryotes, the ratio of ETSvitro to oxygen respiration depends on the physiological
state of the prokaryotes [10,11]. ETS has also been measured in vivo in microbial oceanography [4].
ETSvivo involves incubating marine plankton with INT without the addition of enzymatic substrates,
arguing that the reactions are occurring at natural substrate levels. The sensitivity of ETSvitro was
reported to approach the ETSvitro method. It has recently been found that the toxic effect of INT
would not allow for the estimation of the plankton respiration rate with the ETSvivo method [12].
The toxicity in marine prokaryote cultures led to a decrease in respiration rates with an increase in
INT concentrations (0.05 to 1 mmol/L), showing that the initial rapid INT reduction rate to formazan
rapidly decreased and terminated after about 1 h [12]. For eukaryotes, the oxygen consumption by
respiration and the INT reduction to formazan is also decreased, but this decrease occurs over a longer
period of time than for prokaryotes [12]. In prokaryotes, the respiratory electron transport system is
located in the cell membrane [13,14] in Gram negative [15] and Gram positive bacteria [16] facilitating
the INT reduction. We always find the toxic effect of INT on microbial respiration, as shown below
in one previously unpublished example. In eukaryotes, the extracellular INT has to diffuse to the
mitochondria to be reduced by the ETS. This restricts the potential reduction and the toxic effect of
INT, complicating the interpretation of in vivo INT reduction. Martínez-García et al. (2009) [4] showed
that in eukaryotes, the formazan production is only stopped after several hours, indicating a delayed
toxic effect. The ETSvivo method as it has been applied up to this day as a rate measurement [4,17–19]
presents several potential problems: INT is toxic because it interferes with the respiration chain in
prokaryotes and eukaryotes, the kinetics of poisoning for prokaryotes and eukaryotes have very
different time scales, but in mixed natural populations they occur simultaneously in the same sample,
and apart from the respiratory chain other cell components might also reduce INT [20,21].

Given the limitation of the ETSvivo method, we tried a different approach in marine prokaryote
samples, where we empirically relate the total amount of INT reduced into formazan (F, µmol/L) to the
oxygen respiration rate prior to the INT addition. We propose that during short term incubations (1 h),
the ETS activity and reducing metabolites present in the cell membrane of prokaryotes are reducing
the INT to formazan crystals until this reduction potential is exhausted. The amount of INT reduction
during this short period is proportional to the pre-incubation ETS activity that set the rate of oxygen
respiration. In other terms, the amount of the reduced poison allows us to estimate a physiological
rate before poisoning.

In this study, we measured the short term INT-formazan production and oxygen respiration in
marine bacteria cultures within a wide range of growth rates and different temperatures. The results
of the formazan production during short term incubations yielded a statistical significant relationship
that can be used as a proxy for bacterial respiration in aquatic environments.

2. Results

2.1. The Respiration (R) to In Vivo Formazan Production (F) Relationship.

R (µmol O2/L/hr) and F (µmol formazan/L) were measured using continuous cultures of marine
bacteria assemblages and batch cultures of V. harveyi. They showed a clear pattern of exponential
increase with increasing specific growth rate and temperature (Figure 1). R versus F was compared in
Figure 1, resulting in:

Continuous line; R = 0.20 F2.15 r2 = 0.93; p < 0.05 (1)
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The data showed a similar general pattern, but for the V.harveyi data less change of oxygen
respiration rate in relation to formazan formation than expected was found. The data can be found in
the Supplementary Table S1.

2.2. Oxygen Consumption and Formazan Production Relationship with Specific Growth Rate and Temperature

Marine bacterial communities growing in organic substrate limited continuous cultures at specific
growth rate from 0.004 to 0.034 1/hr and in V. harveyi batch cultures from 1.57 to 7.49 1/hr showed a
significant positive relationship between specific growth rate and oxygen consumption rate per cell
(r2 = 0.87 p≤ 0.05) and formazan per cell production (r2 = 0.69, p≤ 0.05) (Figure 3A). Also for the batch
cultures of V. harveyi growing at different temperatures (from 10 to 28 ◦C) the formazan production
increased with higher temperatures and specific growth rates at variance with an oxygen consumption
rate that increased exponentially with temperature (Figure 3B):
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Figure 3A,B show marine prokaryotes populations growing under different degrees of nutrient
limitation at 18 ◦C, and the marine bacterium V. harveyi during the exponential growth phase in
batch cultures within a temperature range from 10 to 28 ◦C (Supplementary Table S1). The different
temperatures led to a range of physiological adaptations where R could be compared with F using 1 h
incubations with 0.5 mmol INT/L.

2.3. Formazan Production and the Rate of Formazan Production in V. Harveyi Batch Cultures.

The V. harveyi batch cultures amended with INT show a steady increase in the formazan
production rate, achieving the maximum at 1.3 h of incubation. In contrast, the formazan production
decreases rapidly within the first 30 min approaching zero at 1.76 h of incubation (Figure 4).
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3. Discussion

3.1. Toxicity of INT

The toxicity of tetrazolium salts has been reported for both eukaryotic and prokaryotic Gram
positive and Gram negative cells. For instance for prokaryotic cells, May et al. (1960) [22] demonstrated
that growth of some bacteria (E. coli, Sal. typhimurium, P. vulgaris and Sh. sonnei) is inhibited by
tetrazolium salts, and more effectively by ditetrazolium salts than monotetrazolium salts like INT.
As discussed in (Villegas-Mendoza [12] and literature therein), bacterial production, growth and
glucose uptake is inhibited by tetrazolium salts. The interference of INT with cellular respiration
could be through different mechanisms like substrate competition with oxygen, permanent blocking
of enzyme acceptor sites or lack of cellular energy equivalents. In Figure 1, we show the direct effect
of INT on respiration rate for the marine bacteria V. harveyi. The time when oxygen concentration
approached 1/e of the initial concentration was 1.57 h for INT and 0.95 h for formaldehyde treated
V. harveyi cultures. The mechanisms of reduction of the tetrazolium salts like INT and CTC by
E. coli have been studied by Smith and McFeters (1997) [21]. The authors demonstrated that the
reduction of the tetrazolium salts INT and CTC by aerobic dehydrogenases prior to ubiquinone in the
respiratory chain of E. coli. INT, was also reduced also by ubiquinone and conceivably by cytochromes
b555, b556 within the ETS. Using E. coli anaerobic cultures, they also found significant reduction of
INT. Our epifluorescence and transmission light microscope observations (not shown) and previous
observations [12] confirmed the position of the formazan crystals at the cell wall where the ETS system
is placed; see also [23]. Because the INT reduction by prokaryotic cells takes place close to the ETS
location, we would like to argue that the formazan production gradually depletes the electron sources
within the ETS.

3.2. The ETS In Vitro and In Vivo Methods to Evaluate Respiration Rate

The INT salt reduction rate in vitro has a long history to use as a respiration rate
proxy [3,9,10,24,25]. This in vitro method (ETSvitro) used to estimate the oxygen consumption of
plankton is attractive due to its high sensitivity, and therefore might help to overcome the limitations
of monitoring oxygen consumption. But only few publications have applied ETSvitro to marine
prokaryotes [10,11]. These studies found a variable ETSvitro activity to oxygen respiration rate ratio
depending on the physiological state of the prokaryotes. For instance, they found variation in R/ETS
among five different bacterial species, but a relatively constant R/ETS among the same species if
senescent or growing populations were considered separately. The R/ETS ratio is used to indicate
electron flow per mole of formazan produced (mol O2 equivalent vs mol formazan equivalent) in
the cells.

The in vivo tetrazolium reduction rate method has been used for several decades in other fields
of microbiology, e.g., soil microbiology [17]. Martínez-García et al. 2009 and Martínez-García et al.
2013 [4,26] proposed that the in vivo ETS evaluation method using the tetrazolium salt INT in which
no substrate is added to the sample and the formazan produced by cell levels of NADH, is collected
on a filter after incubation. Formazan production rate (µmol/L/hr) is estimated from the incubation
time, which would increase experimentally as the metabolic activity decreases. This apparently
simple rate method [4] has been used in an oceanic basin scale comparison of microbial allometry [27].
But considering that the timescales of poisoning by INT are different for prokaryotes and eukaryotes
with consequences in the interpretation of formazan production rates, and that the differences in
timescales will most likely then be related to cell size, we conclude that the rate method can easily lead
to misinterpretations.

3.3. The INT Reduction Potential Method

We suggest that the method developed here is based on a different principle; namely on the
total amount of formazan produced on the membranes of the bacterial cells (µmol oxygen/L/hr vs
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µmol formazan/L) and empirically related to the oxygen consumption rate of bacterial cultures. We
have previously shown that INT is toxic to prokaryotes and that the respiration rate decreases with
incubation time [12]. Moreover, the oxygen consumption rates decrease on similar time scales with
either formaldehyde or INT additions (Figure 1). Because the respiration rates rapidly decrease with
time in all samples, it would be difficult to define a representative rate of INT reduction, which has been
the approach in previous publication using INT reduction in vivo [4,8]. Also, regarding the proposed
method, there is no conceptual basis for an interpretation of the stoichiometric relationship between
reduced INT and the rate of oxygen consumption (R/ETS) as applied in the ETSvitro method [10,11].
Our method is based on the concept that the formazan produced (F) represents the potential cell
capacity to reduce INT in the prokaryote cells membrane, and is responsible for reducing the INT on
time scales of 1 h. We propose that the potential cell capacity to reduce INT can be used as a proxy for
the respiration rate (Equation (1)). Figure 4 shows that in a bacterial culture 85% of the total formazan
is produced within 1 h. Although in continuous cultures with natural bacteria inoculum the rate of
change was sometimes slower, still after 1 h the great majority of the total formazan had been produced.
We explicitly suggest to use this method only for the estimation of prokaryotes, because the internal
cell organization of eukaryotes complicates the interpretation of INT reduction results.

When all our data of R vs. F (µmol oxygen/L/hr vs µmol formazan/L) are graphed (Figure 2) a
consistent trend is found (Equation (1) and Figure S1):

The formazan concentration produced (F, µmol/L) during a short period (1 h) is related to the
oxygen respiration rate before the exposure of the cells to INT. The per cell respiration rate plotted on
Figure 2, shows a similar pattern as Figure 1, suggesting that the obtained relationship is not forced by
cell abundance.

The R to F relationship holds for marine bacterial assemblages growing at different growth rates
in continuous cultures (Figure 3A) and for V. harveyi batch cultures growing at different growth rates
and temperatures (Figure 3B). R and F increased with growth rate and temperatures as expected. In
both types of cultures, the oxygen consumption rate increased in proportion more than the formazan
formation. In fact, the kinetics of F shows a linear increase with specific growth rate and temperature
(Figure 3A,B) different from the exponential pattern for R (Figure 3B). However, we believe that the
linear relationship for F in the bacterial cultures receiving the INT additions is probably related to
the initial INT reduction capacity of the bacterial cell at the onset of the experiment, which would be
related to the different ETS size of the bacteria at different growing rates and physiological conditions.
The chemostat experiments (Figure 3A) covered limiting growth conditions, the range of growth rates
(0.004 to 0.033 1/hr, Figure 3A) were similar to oceanic rates. Our bacterial continuous cultures are not
monospecific cultures, but included different marine bacteria communities with different diversities. In
both batch and continuous cultures, the cell densities were similar and close to oceanic concentrations
(Supplementary Table S1). Our data covers a wide range of respiration rate, the batch cultures of
the marine bacteria V. harveyi showed much higher respiration rates than the marine prokaryotes
assemblages growing in substrate limited chemostats, demonstrating that our method is applicable to
very different sample types.

Above we mentioned problems associated with pre-incubation size filtration in the measurement
of the respiration of microbes in the ocean using oxygen consumption. Ward (1984) [5] had already
demonstrated how impacting pre-incubation size filtration can be to the plankton physiology during
incubation and Aranguren-Gassis et al. (2012) and Martínez-García et al. (2013) [8,26] had also
demonstrated an overestimation of oxygen consumption for pre-incubated filter size fractionation.
Our proposed protocol allows us to separate prokaryotes and eukaryotes in the samples after
incubating for 1 h with INT without perturbing the state of the sample during incubation. A potential
source of error of our method might be the loss of formazan crystals when the sample is filtered
through 0.2-µm filter at the end of the incubation, but Villegas-Mendoza et al. (2015) [12] found that
after incubation <4% of the formazan went through the 0.2 µm polycarbonate filter.
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In summary, we have developed a protocol to estimate prokaryote respiration rate based on the
total amount of formazan produced (F µmol/L) from the INT reduction at the surface of prokaryote
cells after 1 h of incubation. F is empirically related to R (µmol O2/L) resulting in a useful relationship
that would allow the use of F as a proxy for respiration rate in aquatic environments during short
incubations time reducing potential artifacts from prolonged incubations. The method is attractive
because it avoids long incubation times reducing potential artifacts from prolonged incubations.

4. Materials and Methods

4.1. Sample Collection

The marine bacteria inoculum was obtained fresh for each batch culture and continuous cultures
experiments by collecting 250 mL of surface coastal seawater in polycarbonate bottles. Sample location
was Bahía Todos Santos (31◦ 51 N, 116◦ 40 W) between June 2011 and July 2014. The samples were
gently filtered (<34.5 kpa) through 0.8 polycarbonate filters (Poretics Corporation, Livermore, CA,
USA) and the filtrate was used as inoculum.

4.2. Continuous Culture Preparation

The continuous cultures were prepared following Cajal-Medrano and Maske (2005) [28]. 20 L of
culture media was prepared each time using aged seawater, filtered through GF/F filters, bubbled
with an ozone stream for 24 h at 160 mL/min. The amount of ozone used was not quantified, but
the gas leaving the culture medium had a very strong smell of ozone. Afterward 0.8 g/L of activated
charcoal (cat. 05105) from Sigma-Aldrich (St. Louis., MO, USA) was added for 24 h and removed
subsequently by filtration using 47 mm GF/F filters at 101.3 kPa. Inorganic nutrients and glucose as
organic carbon source were then added (NH4Cl 30 µmol/L, KH3PO4 5 µmol/L, FeCl3 0.4 µmol/L
and 20 µmol/L of glucose). Subsequently, the culture media was acidified by bubbling with CO2,
autoclaved for 1 h at 15 psi, cooled down to room temperature and bubbled with sterile air to replenish
O2 back to saturation. All containers and tubing used for the chemostat apparatus were teflon or
silicon [28]. The continuous cultures were aseptically inoculated in sterile 2-L chemostat-growing
chamber. The inoculated culture was left for 24 h, and then diluted at different specific dilution
rates (0.004 to 0.033 1/hr). All cultures were stirred and run in the dark at the same temperature
(18 ◦C). Sample collection for bacterial abundance, O2 concentration and formazan production in the
chemostats was done when a steady state was reached. A steady state was defined by a constant
bacterial abundance varying approximately 20% in cell abundance.

4.3. Batch Cultures of V. harveyi

The marine bacterium V. harveyi (from Dr. D. Bartlett, Scripps Institute of Oceanography,
San Diego, CA, USA) growing in ZoBell liquid media was used to measure formazan production and
oxygen consumption.

4.4. Bacterial Abundance

20 mL samples from chemostats or batch cultures were fixed with buffered formaldehyde
(2% final solution) and a 0.2 to 0.5 mL sample volume was incubated with DAPI and filtered
immediately on 0.2 µm black polycarbonate filters (Poretics). For each sample, a total of 10 fields were
counted for a total of >300 cells [29] using an epifluorescence microscope (Carl Zeiss, Jena, Germany)
equipped with a X100 objective and a 175W xenon lamp (Lambda LS, Sutter, Novato, CA, USA)
connected through a liquid light guide.

4.5. Oxygen Consumption Determination

Because small water volumes from continuous cultures are needed, the Winkler
spectrophotometric method as described by Roland et al. (1999) [30] was used for oxygen
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measurements taken from the culture vessel and the growing media. 20 mL samples were collected
from the culture and medium vessels through Teflon tubing into scintillation vials with conical shaped
plastic liners (Catalog No. 03-337-7 Fisher), allowing to close the lids without oxygen introduction,
and minimizing the sample volume for spectrophotometric Winkler analysis. Immediately after
overflowing three times the sample volume, the samples were fixed adding 1 mL of Winkler A and
B solutions, prepared following JGOFS protocol (1996) [31]. When applied to 20 mL samples in
scintillation vials, the Winkler spectrophotometric method has a coefficient of variation of 0.87 to 2.7%.
The rate of oxygen consumption was calculated at culture steady state from the difference between the
oxygen concentration in the media, and in the culture and multiplied by the dilution rate. The Winkler
spectrophotometric method was also applied to batch cultures samples growing at high rates. For the
INT toxicity experiments, the oxygen consumption rate was measured using Planar Oxygen-Sensitive
Spots, SP-PSt3-NAU-YOP along with the Fibox 4 system (PreSens, Regensburg, Germany) or sensitive
optode [32,33] using an oxygen-dipping probe (DP-PSt3-YOP).

4.6. The In Vivo Formazan Formation Measurement

The ETS in vivo method was used as described in Villegas-Mendoza et al. (2015) [12]. Briefly,
samples from continuous and batch cultures of 20 to 100 mL were incubated with INT (0.5 mmol/L
final concentration) with incubation periods of less than 1 h. Samples were then filtered through 0.2 µm
polycarbonate filters to collect the cells and the formazan crystals. These filters were immediately
preserved (-20 Celsius, <2 days) or immediately extracted with 1.5 mL propanol with a homogenizer
(Beadbeater, Cole-Parmer, Vernon Hills, IL, USA, 600 s at 5000 rpm). Blanks were prepared by killing
samples with a 2% final solution of formaldehyde about 1 h before INT addition. Triplicate blanks and
samples were run at constant temperature range from 10 to 28 ◦C for bacterial batch cultures and 18 ◦C
with bacterial continuous cultures. The blanks were subtracted from the sample value. Formazan
concentration was measured at 485 nm in a double beam spectrophotometer (Perkin Elmer Lambda 40,
Waltham, MA, USA). Formazan concentration was quantified based on calibration curves that were
prepared using 1-(4-Iodophenyl)-5-(4-nitrophenyl)-3-phenylformazan from Sigma-Aldrich (cat. 17375).

5. Conclusions

We are here relating a physiological rate with the reductive potential of the poisoned cell. When we
tried to use this method to estimate the respiration rates in natural samples, we found that the reduced
INT was greater than expected. We conclude that in principle the cellular potential to reduce INT is
well related to the current respiration rate.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
782/s1.
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