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Antibodies and T cell receptors (TCRs) are the fundamental building blocks of adaptive
immunity. Repertoire-scale functionality derives from their epitope-binding properties, just
as macroscopic properties like temperature derive from microscopic molecular properties.
However, most approaches to repertoire-scale measurement, including sequence diversity
and entropy, are not based on antibody or TCR function in this way. Thus, they poten-
tially overlook key features of immunological function. Here we present a framework that
describes repertoires in terms of the epitope-binding properties of their constituent anti-
bodies and TCRs, based on analysis of thousands of antibody–antigen and TCR–peptide–
major-histocompatibility-complex binding interactions and over 400 high-throughput rep-
ertoires. We show that repertoires consist of loose overlapping classes of antibodies and
TCRs with similar binding properties. We demonstrate the potential of this framework to
distinguish specific responses vs. bystander activation in influenza vaccinees, stratify cyto-
megalovirus (CMV)-infected cohorts, and identify potential immunological “super-agers.”
Classes add a valuable dimension to the assessment of immune function.
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Repertoires are routinely characterized according to the number and frequency of unique
V(D)J-recombined antibody and T cell receptor (TCR) gene sequences they contain
(henceforth “genes;” Fig. 1A). This is known as sequence diversity and is measured using
a variety of sequence-based diversity indices, including (species) richness, Shannon entropy
(1, 2), and others related to Hill’s qD-number framework (Fig. 1B) (3). Sequence-based
diversity indices (henceforth “sequence diversity”) have shown promise as biomarkers, for
example, as predictors of response to cancer immunotherapy (4) and as correlates of
healthy aging (5–7). However, sequence diversity overlooks fundamental features of reper-
toire function. For example, sequence diversity cannot indicate whether a repertoire with
a given number of different genes contains epitope-binding capacity (8) for many different
epitopes or for only a few (Fig. 1 C and D), or how well antibodies or TCRs from a sec-
ond repertoire might also bind a given set of epitopes (Fig. 1E). The reason for this short-
coming is that sequence diversity measures only the number of different antibodies or
TCRs, but not their basic function: epitope binding.
Epitope binding—of antibody to antigen or of TCR to peptide–major histocompatibil-

ity complex (pMHC)—is routinely measured using dissociation constants (Kd), for exam-
ple, to determine which of several antibodies has the highest affinity for a given epitope
(9, 10). (Another common measure is the half maximal inhibitory concentration [IC50],
used in inhibition experiments.) Kd is related to the Gibbs free energy of binding (ΔG) by
the equation ΔG = �RT ln(Kd), where R is the gas constant and T is the temperature,
illustrating the relationship between Kd and thermodynamic first principles. In immunol-
ogy, it is widely understood that antibodies or TCRs with similar gene sequences often
have similar Kd for a given set of antigens or pMHCs (11–13), even as targeted substitu-
tions of amino acids can change Kd enough to effectively abolish binding (14, 15) [bind-
ing is “error-tolerant but attack-prone” (16)]. Binding similarity among antibodies or
TCRs (Fig. 1C) is the basis of phenomena fundamental to adaptive immunity, including
polyspecificity/cross-reactivity and degeneracy/redundancy (17, 18). These phenomena are
what allow so-called natural antibodies (IgM) to recognize many different antigens despite
relatively low sequence diversity, with large numbers of antibodies of similar specificity
compensating for individually weak Kds (19, 20). Thus, in a qualitative sense, the idea
that binding similarities between antibodies or TCRs can, in the aggregate, have impor-
tant repertoire-scale effects is well established (Fig. 1 D and E) (21). We sought to develop
this idea quantitatively, by developing quantitative repertoire-scale measures based on the
binding properties of repertoires’ constituent antibodies and TCRs.

Materials and Methods

Overview (Fig. 2A). The 391 immunoglobulin heavy chain (IGH) and TCR β chain (TRB) repertoires were
obtained from 202 human subjects, as will be described (High-Throughput Repertoires). The ratio of
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dissociation constants was used as the definition of binding similarity (Definition
of Binding Similarity), which is a simple log transformation of ΔΔG. Linear and
nonlinear models estimating this ratio, using edit distance and/or amino acid
biophysical properties as components, were fit to the experimental ΔΔG values
in the Structural Kinetic and Energetic database of Mutant Protein Interactions
(SKEMPI) 2.0 database (Experimental Binding Data and jΔΔGj Distribution
below), with a mean model being chosen for further analysis (Model Selection).
(Note the difference between using an input, e.g., edit distance, as the output,
y = x, and using a model fit on data as the output, y = f(e); Fig. 2E.) The qD and
qDS values were calculated as previously described, with

qD values corrected for
sampling using the Recon software package (Diversity Measures). The qDS values
were tested for robustness to sampling using metarepertoires constructed by
pooling individual repertoires and subsampling (Robustness to Sampling (Fig.
3A–C)) and, separately, by measuring the extent to which relative qDS of a pair of
repertoires is preserved upon sampling (Robustness of Relative Ordering of qDS
as a Function of Sample Size). Validity was established using in silico repertoires
(In Silico Repertoires (Fig. 3 D–G)).

High-Throughput Repertoires. The 391 quantitative high-throughput IGH
and TRB repertoires were obtained from 202 human subjects. These included IgH
from naïve and memory B cells from DNA (n = 3 individuals) (22); TRB chains
from DNA from healthy subjects known to be serologically negative for cytomega-
lovirus (CMV) (n = 69 individuals) (23) and from healthy subjects whose CMV
serostatus was unknown (n = 41 individuals) (5); pooled barcoded IGG and IGM
heavy chains from messenger RNA (mRNA) from healthy subjects before and 7 d
after administration of one of two influenza vaccines (n = 28 individuals) (24);
quantitative pooled TRB chains from DNA for subjects who were otherwise healthy
but serologically CMV positive (n = 51 individuals) (23) (a batch processing effect
was discovered in which singletons were removed from the other ∼400 reper-
toires in this dataset, obstructing comparison and limiting us to 69 + 51 = 120
repertoires from this dataset); and IGH chains (all isotypes) from DNA for subjects
enrolled in the Multi-Ethnic study of Atherosclerosis (MESA; n = 41 individuals)
(25). The third complementarity-determining region (CDR3) annotation was per-
formed using our in-house pipeline as previously reported (26) and standard
tools [e.g., the ImMunoGeneTics information system [IMGT] (27)]. Details for
obtaining these datasets are available from the references.

Definition of Binding Similarity. The ratio of dissociation constants was used
as the definition of binding similarity (see A Quantitative Definition of Binding
Similarity between Two Antibodies or TCRs for motivation). This ratio is related to
ΔΔG by exponentiation: Kd1/Kd2 = eΔΔG/RT. A model estimating this ratio was
fit to the experimental ΔΔG values in the SKEMPI 2.0 database (11) as
described below.

Experimental Binding Data. Each SKEMPI entry included a Protein Data Bank
(PDB) identifier (28), the type of structural region (29) that contains the substitu-
tion(s), one or more PDB coordinates, and, in nearly all cases, the dissociation
constant (Kd) of each member of the pair (referred to in the database and Fig. 2E
as “wild type” and “mutant”). The Structural Antibody Database (30) and the
Structural TCR Database (31) were used for assigning species. SKEMPI entries
were extracted for all single amino acid substitutions for which Kd for both wild
type and mutant were recorded and jΔΔGj was calculated.
jΔΔGj Distribution. Only entries that involved binding between antibody
and antigen (n = 797) or TCR and pMHC (n = 531) were considered (total
n = 1,328). Following earlier observations about the heterogeneity of effects of
amino acid substitutions depending on their structural position within the binding
interface [“core” vs. “noncore” (29)], entries were split into core (n = 584) and
noncore (n = 744) groups. Distributions for these were confirmed to differ sub-
stantially from each other (Mann–Whitney U [MWU] P value 2.0 × 10�33), with
substitution of core residues having a 13-fold (geometric) mean effect on binding
(32) and noncore residues having a fourfold effect. Both distributions were long
tailed (Fig. 2F) and reasonably well described by exponentials (i.e., equations of
the form ke�kx, with the value of k depending on the specific distribution). Distri-
butions for antibody–antigen (n = 352) and TCR–pMHC (n = 232) core residues
were statistically indistinguishable from each other (MWU P = 0.21), as were dis-
tributions for antibody–antigen vs. TCR–pMHC noncore residues (n = 445 for
antibody–antigen and 229 for TCR–pMHC; MWU P = 0.13). However, core dif-
fered from noncore distributions(MWU P = 1.12 × 10�6 to 7.37 × 10�9). These
results held separately for human and nonhuman proteins (nearly all of which
were from mouse, Mus musculus). Detailed manual review of nine structures con-
taining substitutions in human IgH or TCRβ CDR3s (1BD2, 1OGA, 473 3BN9,
3QDJ, 3SE8, 3SE9, 4I77, 5C6T, and 5E9D) using PyMol v2.2 (33) revealed fairly
constant proportions of core vs. noncore residues, consistent with the general fea-
tures of immunoglobulin receptor superfamily interactions—specifically, 0.15 ± 0.05
CDR3 amino acids consisted of core residues vs. 0.85 ± 0.05 noncore, with no obvi-
ous difference between chain types—and so core and noncore distributions were
combined with a weighting of 0.15:0.85. The resulting distribution of jΔΔGj values
was, again, long tailed and was fit well by an exponential until ∼3.2 kcal/mol, after
which mutations with extreme effects on binding were modestly but clearly overrep-
resented relative to the exponential model. A review of sources cited by SKEMPI
suggested ascertainment bias as the explanation: targeted/selective experimentation
on amino acid substitutions with unusually strong effects (e.g., ref. 34). To counter
this bias, these extreme values (beyond 3.2 kcal/mol) were removed. As a sensitivity
analysis, different cutoffs were tested; all reported results were robust to extreme-
value cutoffs from 3.0 kcal/mol to 3.4 kcal/mol.
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Fig. 1. Sequence diversity vs. class diversity. Each circle represents a B or
T cell; each color represents a unique antibody or TCR sequence. Similar colors
encode antibodies or TCRs with similar epitope binding properties. Two reper-
toires, for example, repertoires 1 and 2 (A), that have the same total number
of cells (A) and identical sequence frequency distributions (B), have identical
sequence diversity (for all qD); Insets give the effective number versions (3, 50,
58) of entropy and BPI, 1D = eShannon entropy and ∞D = 1/BPI. Lower pairwise
binding similarities in repertoire 2 (C) give repertoire 2 higher class diversity
than repertoire 1; repertoire 2 can recognize more different epitopes (D). Color
coding reflects optimal binding (e.g., red sequence, red epitope). The colors of
the bars in E indicate the contributions of the antibody or TCR encoded by the
sequence of that color. Similar colors bind better than different colors. Higher
frequencies (B) can partially compensate for weaker binding.
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Fig. 2. Large-scale experimental ΔKd for single-amino acid substitutions on binding. (A) Overview. In this study, the experimental Kd binding data are from
SKEMPI. (B–D) Class diversity ≠ edit distance: the nonuniqueness of edit distance–based diversity. We use a particular form of class diversity based on bind-
ing similarity; the similarity function we fit to the binding data in SKEMPI (Kd) is what yields this form. However, every form of class similarity differs from
edit distance in that class diversity is uniquely determined by its similarity function, whereas diversity measures based on edit distance alone—that is, ones
that are not based on a fit to any external data but are solely based on the number of clusters that result from a particular edit distance cutoff—are not
unique in this way. B shows the simplest “repertoire” that illustrates this point. Each node represents a sequence. Edges connect sequences that differ at
just a single amino acid position. If we cluster by edit distance with a clustering threshold of one amino acid difference, there are three different possible
clusterings (C). In contrast, Eq. 1, which defines class diversity, gives a unique solution. In edit distance–only measures, the clustering threshold need not be
one amino acid; it can be two, or three, or, indeed, any arbitrary number. In contrast, the 0.3 in Zij = 0.3m in the specific form of class diversity that we
explore in this study is not chosen arbitrarily: It is the value determined by a fit to SKEMPI binding data. (D) Example of multiple different possible pure edit
distance–based diversity measures for a 50-sequence connected cluster from the day 7 post-influenza-vaccination sample in Fig. 4C. Each node is a unique
sequence. Each pair of nodes is connected by an edge if they differ at a single amino acid position. Here, “diversity” means number of clusters at the indi-
cated edit distance threshold, beginning with the highest-degree node (the sequence with the most connections; same approach as in C, diversity = 1). Clus-
ters with more than one sequence are identified by a gray background. None of the shown thresholds convey that there are three related clusters. While
some other edit distance–based threshold or strategy could be used based on network topology, class diversity is not ad hoc or post hoc in this way, as it is
based on independent data: binding data. (E) Examples of reference–variant pairs with the view centered on the substituted amino acid. PDB ID is given in
upper left of each row; substitution is given in upper right. (F) Distributions for core (Top) and noncore (Bottom) mutations for immunoglobulin (IG) and TCR
(TR) pairs. (G) Combining the distributions in B proportional to the relative frequencies of core and noncore residues results in an overall distribution (black),
plotted as one minus the cumulative distribution function (CDF) and an exponential fit (blue, e1/(�RTlns)). Gray line indicates the mean –Rtln(s).
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Model Selection. Each of several models was evaluated by bootstrap with
random 2:1 training:test-set splits. Each model was fit by minimizing root-mean-
squared error (RMSE) of jΔΔGj on a random 2/3 of the data (minus extreme
values; see previous section) and tested by calculating RMSE on the remaining
1/3. Each fit was repeated 200 times, and mean and SD of the fit parameters
and RMSE were recorded.

For models based on amino acid biophysics, after extensive review (35–38),
the following raw measures from ref. 39 were initially included: side-chain
molecular weight; side-chain van der Waals volume; NMR measures NM1,
NM7, and NM12; side-chain total surface area; polar surface area; polarizability;
electronegativity; number of hydrogen bond donors; number of hydrogen bond
acceptors; number of positive charges; and number of negative charges. The lat-
ter two were combined into a single “charge” variable as number positive minus
number negative (no information is lost in this process, since none of the 20
standard residues has both positive and negative charges). Because many hydro-
phobicity scales exist, these were systematically analyzed instead of simply also
including TL (for thin-layer chromatography) and logP from ref. 39. Based on
over 100 such scales examined in ref. 40 (table 5 therein), the seven least mutu-
ally redundant scales were selected for inclusion (41–47) (tables IV, III, I, 2, 3, 2,
and 1 of these references, respectively), resulting in 19 measurements for each
of the 20 canonical amino acids. All-pair correlations revealed that several pairs
of measurements had R2 ≥ 0.85. A single member of each such pair was
retained, resulting in 14 fairly independent (median/interquartile range for pair-
wise R2 = 0.09/0.32) measures (“properties”). Principal component analysis
(PCA) was performed, and the first five principal components (PCs) were used
(variance explained, 91%, comparable to the first five PCs in ref. 48). Linear fits
were performed on properties (RMSE 0.72 ± 0.04 kcal/mol) and on PCs (RMSE
0.72 ± 0.05 kcal/mol), both using ordinary least squares. Nonlinear models
were fit using support vector regression with RBF kernel trained on either prop-
erties (0.79 ± 0.05 kcal/mol) or PCs (RMSE 0.78 ± 0.06 kcal/mol). The perfor-
mance of models that were trained on fewer properties or fewer PCs (e.g.,

molecular weight, polar surface area, and electronegativity, the major contribu-
tors to the first three PCs) was statistically indistinguishable from the above.

For the mean model, the fit was the mean jΔΔGj of the training set (RMSE,
0.71 ± 0.03 kcal/mol), corresponding to Kd1/Kd2 = s = 0.30 (95% CI 0.28 to
0.32). Low RMSE and simplicity favored the mean model, and so it was used. To
assess how this single-substitution model generalized to multiple substitutions,
the limited multisubstitution SKEMPI entries were tested and found compatible
with a multiplicatively independent model, Zij = sm, with Zij as the similarity
between antibodies or TCRs i and j and with m as the number of amino acid dif-
ferences between them.

Diversity Measures. The qD was calculated as previously described (49), and
qDS was calculated according to Leinster and Cobbold (50) following Eq. 1. The
qD was corrected for sampling error using Recon v3.0 (github.com/ArnaoutLab/
Recon; default settings) as previously described (49). For readability, the notation
was changed from qDZ in ref. 50 to

qDS and from Zpi to Si (S for “similarity”). His-
tograms confirmed that the vast majority of off-diagonals were always close to
zero, allowing sensitivity to q (51). Note that Hill’s (3) framework has inspired sev-
eral methods for incorporating similarity into diversity measurements that retain
useful features of Hill’s framework (52). Two such frameworks were introduced
with explicit discussion of how to decompose population-level diversity into
within- and between-group components (51, 53). Each has advantages. Leinster
and Cobbold’s was chosen here for ease of applicability and interpretability.

Robustness to Sampling (Fig. 3 A–C). IGH and TRB were analyzed separately.
A conservative upper bound for IGH was evaluated by constructing a metareper-
toire by combining the following: IGG sequences of subjects before vaccination
(n = 28 individuals) (24), sequences from memory cells from healthy subjects
from a public database (n = 3 individuals) (22), and sequences from subjects
enrolled in the MESA study (n = 41 individuals) (25). Sequences were sampled
as singletons from this set, since repertoires of all singletons will have higher
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Fig. 3. Robustness, validity, and comparison to edit distance–only measures. (A) The 0D and 0DS diversity, (B) discovery rate, and (C) maximum error for
sequences (open symbols) and classes (filled circles) for repertoires from DNA (small circles) or mRNA (small triangles) and for metarepertoires (large circles)
vs. sample size. Maximum undercount in C is the maximum fraction by which sample diversity will underestimate overall diversity (49). Red arrowhead,
underestimate for a 300,000-sequence TRB repertoire is ≤33%; yellow arrowhead, sample class diversity of a 1-million-sequence IGH repertoire will underes-
timate overall class diversity by ≤30×; open arrowhead, for a million-sequence IGH repertoire from DNA, there is a ∼50–50 chance that the next sequence
will be new. (D–F) Validity: sequence vs. class diversity for four in silico repertoires, each with 34 unique/752 total sequences with identical sequence fre-
quency distributions (compare Fig. 1B). In the networks, each node represents a unique sequence; node size reflects that sequence’s frequency in the reper-
toire. Edges connect sequences that differ at a single amino acid position. (D) CDR3s from a somatically hypermutated IGG clonotype. The extent to which
class diversity exceeds one reflects intraclone diversity. (E) CDR3s from two different IGG clonotypes. (F) CDR3s drawn randomly from repertoires in this
study. (G) Non-CDR3 amino acid sequences generated uniformly at random. Note the contrast between class diversity and edit distance thresholds In D–F,
the final two columns, edit distance–based clustering requires a threshold to be chosen: for example, one, two, or three amino acids. Sequences that differ
by this threshold amount or less are clustered together. The resulting number of clusters gives one measure of diversity. Different thresholds often give dif-
ferent clusters, and thereby different measures of diversity. In the rightmost column of D–F, note the fairly wide ranges for repertoires A and B, a conse-
quence of the nonuniqueness illustrated in Fig. 2 B–D. In the extremely diverse repertoires in C (all very different CDR3s) and D (random amino acids), edit
distance approximates class diversity, but this happens only in the most extreme cases, not in typical repertoires (e.g., Fig. 4 C–E).
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diversity than repertoires with larger clone sizes. TRB metarepertoires were con-
structed by combining sequences from CMV seronegative individuals (n = 69
individuals) (23) and again sampling at uniform frequency. CMV seronegative
individuals were preferred for their higher diversity. Samples from real-world rep-
ertoires were from subject D3 for IgH (from DNA), subject SRR960344 for IGH
(from mRNA), and subject Keck0070 for TRB (CMV seronegative) from the referen-
ces above. For these samples, genes were sampled proportional to their fre-
quency in the repertoire. The results from this analysis are conservative, because
they assume that a given person’s repertoire is as diverse as the combined reper-
toires of the 72 (IGH) or 69 (TRB) repertoires above; in reality, no single person’s

repertoire is likely to be this diverse, meaning that sampling from a single per-
son’s repertoire will be more robust than the results of this analysis.

In Silico Repertoires (Fig. 3 D–G). Small synthetic in silico repertoires were
created by sampling from post-influenza-vaccination IgG repertoires (24). A sin-
gle clone was chosen at random to serve as a reference repertoire (34 unique/
752 total CDR3s; CDR3 length, 17 amino acids). A network representation was
created in which the nodes represent unique CDR3s, and each pair of nodes of
edit distance one is connected by an edge. To create a two-clone repertoire with
identical node size distribution and intraclone edges as the reference repertoire,
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of the corresponding repertoires; filled circles represent CMV-specific CDR3s. Note that the highest-probability CMV-negative repertoires in D include 51 reper-
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half of the unique CDR3s of the reference repertoire were replaced with CDR3s
from a second, unrelated clone chosen at random from another repertoire.
CDR3s from the second clone were filtered to induce a subgraph identical to the
subgraph of the replaced CDR3s. Frequencies of the replaced CDR3s were
assigned to the new CDR3s. A third repertoire comprising unrelated CDR3s was
created by sampling 34 length-17 CDR3s at random from among all antibody
repertoires used in this study (we confirmed that all pairs had an edit distance
of >1, as expected from such sampling), and again assigning these the same
frequencies as in the reference repertoire. A fourth repertoire was created from
random 17-mer amino acid sequences, assigning frequencies as above.

Robustness of Relative Ordering of qDS as a Function of Sample Size.

For a given q, for all pairs i, j of the six large naive and memory B cell repertoires
in ref. 22, the ratio qDSi/

qDSj was calculated, indicating which repertoire was
more diverse and by what factor (the ground truth or “correct relationship;” e.g.,
a ratio of 1.3 meant repertoire 1 was 30% more diverse than repertoire 2). For
decreasing sample sizes (300,000, 100,000, 30,000, 10,000, 3,000, 1,000,
300, and 100 sequences), each repertoire was randomly subsampled 20 times,
qDS was calculated for each subsample, and

qDSi/
qDSj was calculated on each pair

i, j of subsamples. For each sample size, the fraction of comparisons that gave
the correct relationship was recorded, as well as the mean and SD of the ratios.
This showed that, for 0DS, differences of ≥50% can be detected at sample sizes
of 3,000 sequences, 10% at 30,000 sequences, and 1% at 100,000 sequences,
all with 99% confidence (and similarly for 1DS). The same procedure was carried
out for TCR using the six largest repertoires from among the 69 obtained from
ref. 23 (Keck 069, 070, 080, 093, 095, and 113; maximum sizes of 300,000 to
500,000 sequences), demonstrating that differences of 3% (0DS) and 4% (1DS)
can be detected reliably at sample sizes of ≥50,000.

CMV Classifier (Fig. 4 G, I, and J). A random forest classifier was trained
(using scikit-learn’s RandomForestClassifier module) to predict the probability
that a repertoire was CMV seronegative. The model was fit on 1DS (class
Shannon entropy), ∞D (a measure of how large the largest clone is), and ∞DS
(a measure of how large the largest class is) with a training:test set split of 2:1,
30 estimators, and a maximum depth of one. Classifier AUC was 0.83. Other
parameters were tested with indistinguishable results (e.g., using 0DS instead of
1DS; using a maximum depth of two instead of one). Ninety percent confidence
thresholds for CMV positivity and negativity were used to annotate repertoires in
Fig. 4 I and J (plus and minus signs). If a repertoire did not meet that threshold,
it was left unannotated (no sign).

Scientific Software. Recon v3.0 was performed using Python 3.7.6 with
NumPy version 1.18.0 and SciPy version 1.4.1. All other analyses were per-
formed on Python 3.9.1 with NumPy 1.20.0 and SciPy 1.6.1.

Results

Overall Approach (Fig. 2A). We started from the principle that
antibodies or TCRs with binding properties similar to those
already present in a repertoire should contribute less to the overall
diversity of the repertoire than antibodies or TCRs with different
binding properties. We developed this principle into repertoire-
wide measures in three steps. The first was to derive a
quantitative definition of the binding similarity between any two
antibodies or TCRs. The second was to develop a method for
estimating this quantity for every pair of antibodies or TCRs in a
repertoire. The third was to sum contributions to the overall
diversity, weighting each antibody or TCR according to the
uniqueness it adds, such that antibodies or TCRs that are similar
to each other contribute less, and those that are different
contribute more. Sums of this kind constitute the desired family
of repertoire-scale binding measures.

A Quantitative Definition of Binding Similarity between Two
Antibodies or TCRs. There are many sensible ways to define
similarity between two antibodies or TCRs. Many are expected
to correlate with antigen binding, and, indeed, some have been

shown to do so (12, 13). We sought to derive a definition from
thermodynamic first principles. We observed that, for two anti-
bodies present at the same concentration, if one antibody or
TCR binds its target n times better than another, the second
antibody or TCR will bind 1/nth of the target (54). For exam-
ple, two antibodies that each bind a target half as well as a third
antibody collectively have the same binding capacity as that
third antibody. Quantitatively, the definition of binding similarity
that has this additive property is the ratio Kd1/Kd2, where Kd1 is
the dissociation constant of one antibody or TCR for a target and
Kd2 is the dissociation constant of the other antibody or TCR for
that target, with Kd1 the smaller of the two. (For completeness,
this formulation can be extended across all possible targets; for
convenience, because similar antibodies or TCRs usually show
similar binding patterns across targets, we treated the ratio for a
single target as representative of the relationship and leave formal
extension for future study.) Note that the ratio Kd1/Kd2 is related
to the absolute difference in free energy for the two binding inter-
actions, jΔΔGj, by the equation ΔΔG = �RT ln(Kd1/Kd2),
where T is standard temperature (298 K) and R is the ideal gas
constant (1.99 × 10�3 kcal�mol�1�K�1).

A Model for Estimating Binding Similarity between Pairs of
Antibodies or TCRs. To estimate Kd1/Kd2 for a given pair of
antibodies or TCRs, we fit a model to a large set of experimen-
tally determined measurements of ΔΔG for a pair of antibodies
or TCRs and a specific binding target. Because Kd1/Kd2 cannot
yet be predicted precisely for a given reference–variant pair
(55, 56), the model’s estimates were expected to be imprecise
for any given pair of antibodies or TCRs; however, the law of
large numbers—on the order of 1010 pairwise comparisons per
repertoire—provides for accuracy of the desired overall measures.

The experimental measurements used to train our model con-
sisted of 1,328 systematic comparisons between pairs of Kds
(11) measured as ΔΔG = �RT ln(Kd1/Kd2). Here, Kd1 is the
Kd for the interaction between a given antigen or pMHC epi-
tope and a reference antibody or TCR, and Kd2 is the Kd for
the interaction between the same epitope and a variant antibody
or TCR that differs from the reference by a single amino acid
substitution. Because, on average, amino acids in the interior of
protein interaction interfaces (“core”) are known to affect ΔΔG
less than those at the surface (“noncore”) (29, 57), we evaluated
core and noncore substitutions separately. As expected, we
found ΔΔG differed substantially between core and noncore
substitutions, both for human antibodies (median/interquartile
range 1.05/1.36 kcal�mol�1 for n = 154 core amino acid sub-
stitutions vs. 0.43/0.92 kcal�mol�1 for n = 244 noncore sub-
stitutions; MWU P value = 3 × 10�8) as well as for human
TCRs (0.93/1.22 kcal�mol�1, n = 217 vs. 0.53/0.95
kcal�mol�1, n = 242; MWU P = 1 × 10�6). Consistent with
antibodies’ and TCRs’ structural similarities as members of the
immunoglobulin superfamily, we also found that, for each sub-
set, ΔΔG distributions were statistically indistinguishable
between antibodies and TCRs (P = 0.21 for core and 0.13 for
noncore substitutions by MWU), allowing pooling across IG/
TCR for greater statistical confidence. Manual review of crystal
structures (28) showed that core residues comprised 15 ± 5% of
the CDR3s of human IGH and TRB. Thus, a master distribu-
tion of effects of single amino acid substitutions in IGH or TRB
CDR3s (Fig. 2G) was created as a 0.15:0.85 weighted sum of
the observed effect sizes for core and noncore substitutions.

We evaluated several multiparameter statistical models based
on specific amino acid substitutions, including a linear regres-
sion model based on biophysical properties of the substituted
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amino acids [e.g., molecular weight, electronegativity, and 13
others (35, 39); RMSE, 0.70 ± 0.04 kcal�mol�1], a linear
regression model based on PCA-dimensionality-reduced aggre-
gate biophysical descriptors (48) (five parameters; RMSE
0.70 ± 0.03 kcal�mol�1), and corresponding nonlinear models
(RMSE 0.79 to 0.80 ± 0.05 kcal�mol�1). However, in cross-
validation, none of these models statistically outperformed
the simplest possible model, a simple mean (0.71 ±
0.02 kcal�mol�1). Therefore, this latter was used. The average
similarity for a single amino acid substitution s = Kd1/Kd2 =
0.30 (95% CI, 0.28 to 0.32). Comparison to cases in which
reference and variant antibodies or TCRs differed by multiple
substitutions supported a multiplicative model for the pairwise
similarity between IGH or TRB CDR3s that differ at multiple
positions. Thus, in our model, the similarity between two IGH
or TRB i and j, Zij, is the average Kd1/Kd2 for an amino
acid substitution, s, raised to the edit distance, m: Zij = sm,
with s = 0.30 based on large-scale experimental binding data,
and with those data currently insufficient to justify further
model complexity. Results were robust to sensitivity analysis.

Class Diversity from Pairwise Similarity Measures. To obtain
the desired repertoire-scale measures for antibodies or TCRs, a
sum is taken over all unique pairs of antibodies or TCRs. This
sum yields the effective number (3, 50, 58) of different anti-
bodies or TCRs in the repertoire, taking similarities into
account (Fig. 1 C and D). (The effective number is the same as
qDS below.) The effective number can be understood in several
ways: as a measure of how much of antigen space a repertoire
can address; as the number of clusters in the repertoire, dis-
counting overlap between clusters; or as the number of
completely unrelated antibodies or TCRs a repertoire could be
replaced by (antibodies or TCRs with disjoint or completely
nonoverlapping binding specificities) and still bind the same
targets at the same aggregate strength. For example, if an anti-
body repertoire has 50,000 unique sequences but these all bind
the same two structurally completely unrelated antigens, the
repertoire’s effective number is two; such a repertoire could be
replaced by another repertoire with two completely unrelated
antibodies, one that binds each antigen.
Pairwise similarities Zij for all antibodies or TCRs in a reper-

toire were calculated using the model, and then summed
according to Eq. 1 (50),

qDZ = ∑
i
pi Zq�1

i

� �1=ð1�qÞ

for q ≠ 1,∏
i

1=Zpi
i

� �
for q = 1; Zi = ∑

j
Zij pj :

[1]

Here, pi is the frequency of the ith antibody or TCR in the rep-
ertoire, and q is the so-called viewpoint parameter, which
up-weights antibodies or TCRs based on frequency, just as it
does in the Hill framework [where q = 0 corresponds to species
richness; q = 1, Shannon entropy; q = 2, the Gini–Simpson
index; and so on up to q = ∞ for the Berger–Parker index
(58); e.g., SI Appendix, Fig. S1]. Setting q > 0 up-weights
higher-frequency antibodies or TCRs to focus on for example,
larger B or T cell clones or higher-titer antibodies; q = 0 yields
the unweighted sum. The formulation and notation of qDS
were developed in ecology as extensions of the Hill framework
(50); qDS reduces to

qD if binding similarity is ignored, which
is accomplished mathematically by setting Z = I. Usefully, this
framework is modular: Other models of similarity can be
explored by simply changing the values of Z.

The new qDS measures estimate the class diversity of a reper-
toire. A class is a set of antibodies or TCRs that have a similar
binding pattern (Fig. 1C). Class members bind the same anti-
gens or pMHCs similarly well. Like binding, class membership
is not binary but continuous: Two antibodies or TCRs are
members of the same class to the extent that their binding pat-
terns are similar to each other. A class is an example of what is
known in mathematics as a fuzzy set (59). In immunology, this
concept has long been viewed as an organizing principle of
antibody and TCR repertoire composition (60–62). Our class
diversity framework develops this concept into a family of
quantitative repertoire-scale measures that can be easily applied,
compared, and interpreted in biological and clinical settings,
for example, for stratification of patient cohorts, as we demon-
strate below. We found that qDS is robust to sampling error for
sample sizes of ≥50,000 T or 100,000 B cells, unlike qD, which
is much more prone to sampling error and is dangerous to use
without correction (Fig. 3 A–C) (49, 63). We also found that
the relative order of diversity values—whether repertoire 1 is
more diverse than repertoire 2, for a given pair—is preserved in
subsamples, such that a 1% difference in B cell receptor and a
5% difference in TCR are detectable at sample sizes of 100,000
and 50,000 sequences, respectively, at 99% confidence, for 0DS

and 1DS, meaning that statements about which of two reper-
toires is more diverse can be made quite precisely, even when
the two values being compared have far higher uncertainty (see
Methods). Fig. 3 D–G illustrates the relationship between
sequence and class diversity (see Methods).

Class Diversity of Naive vs. Memory B Cells. We compared 72
high-throughput CDR3H repertoires from 31 healthy individuals,
including three exceptionally deeply sequenced naive (IgM+IgD+
CD27�) and memory repertoires from DNA (22) and 28 IGM
and IGG repertoires from mRNA (SI Appendix, Fig. S1) (24).
(Note that repertoires from mRNA will overrepresent highly tran-
scribing cells such as circulating plasmablasts.) Naive B cells
express IGM antibodies, which, collectively, can bind many differ-
ent antigens but, individually, are often weak, polyspecific, and/or
degenerate binders (64–66). (Note that, while up to half of mem-
ory B cells express IgM, because naïve cells outnumber memory
cells, a majority (∼80%) of IgM+ B cells are naive.) Binding a
specific antigen may trigger a naive cell to become a memory cell
and class-switch to IGG; IGG antibodies are generally stronger
binders due to somatic hypermutation and selection, an evolution-
ary process that diversifies memory lineages away from the naive
repertoire and from each other (67, 68). Accordingly, naive reper-
toires can be considered very diverse in terms of the number of
different antibodies they contain but less diverse from a functional
perspective to the extent that these antibodies exhibit degeneracy,
whereas memory repertoires are very diverse for the distances the
evolution of their lineages may have carried them but less diverse
insofar as they generally include fewer unique genes (i.e., unique
sequences recovered). We found that class diversity reflects these
relationships (SI Appendix, Fig. S1 A and C). For example, we
found that, even as naive repertoires have 3 to 10 times as many
unique genes as memory repertoires (SI Appendix, Fig. S1 B and
D), memory has nearly as many classes. Thus, while sequence and
class diversity are complementary, class diversity better captures
the biology and intuition of what it means to be functionally
“diverse,” as desired (69).

IGG Repertoires in Influenza Vaccination. To test the potential
utility of class diversity as a biomarker, we measured sequence
and class diversity on 30 IGG CDR3 repertoires from 14
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individuals taken before and 7 d after influenza vaccination
(Fig. 4 A and B) (24). In previously exposed populations, vaccina-
tion leads to an IGG recall response marked by a rise in sequence
diversity at day 7 post administration, as measured by the sequence
diversity index species richness (although these measurements of
diversity were not corrected for sampling error in the referenced
work) (24). However, a rise can result either from clonal diversifi-
cation, considered a correlate of protection (70), or from bystander
proliferation (71). We hypothesized that class diversity might dis-
tinguish between these possibilities: If a rise in sequence diversity is
from clonal diversification, class diversity should fall, since the new
sequences will be similar to each other; if it is from bystander
effects, meaning unrelated sequences, class diversity should rise.
After correcting for sampling error (49) we found that sequence
diversity rose in only about two-thirds of subjects, likely reflecting
a rise in plasmablasts (Fig. 4 A and B). However, almost all indi-
viduals experienced a fall in class diversity—in many cases, by over
a third—and only rarely a rise (never more than 20%; bystander
proliferation), suggesting clonal diversification in some but not all
vaccinees. Thus, class diversity stratified individuals independently
of sequence diversity, which may suggest a marker of successful vs.
unsuccessful vaccination. Note the difference between class diver-
sity and pure edit distance–based measures (Fig. 4 C–E).

TRB Repertoires in CMV Exposure. Interestingly, this ability to
stratify came despite a fairly strong overall correlation between
sequence and class diversity for IGG repertoires obtained from
mRNA (R2 = 0.33) (Fig. 4F). Class diversity also correlated
fairly strongly with sequence diversity for IGM repertoires from
mRNA (R2 = 0.51) and IGH from DNA (R2 = 0.50), indicat-
ing that sequence diversity explains about half the variance in
class diversity in antibody repertoires. However, in TRB reper-
toires (from DNA) (23), class diversity was independent of
sequence diversity (R2 = 0.00) (Fig. 4F).
We therefore further tested class diversity’s potential for patient

stratification by comparing sequence diversity and class diversity
in the setting of human CMV exposure, using TRB CDR3 rep-
ertoires from 51 known seropositive cases and 69 seronegative
controls (Fig. 4 G and H; see Methods, including note on batch
effect) (23). CMV is a highly prevalent chronic human herpesvi-
rus infection that can cause life-threatening illness in newborns
and transplant recipients and is thought to contribute to heart
disease (72). The hallmark of CMV exposure is low TRB CDR3
sequence diversity and large T cell clones, leading to high-
frequency CDR3s (73). We focused on this feature by consider-
ing diversity as measured using the maximum q (∞D; =BPI�1)
(74): The bigger the largest clone, the higher the BPI, and the
lower the ∞D. The class diversity analog of BPI is class BPI
(∞DS

�1): High class BPI means a repertoire contains large sets of
similar TRB CDR3s, regardless of the size of any one clone. We
found that, in CMV-seropositive individuals, both ∞D and ∞DS

trended lower than in controls; thus, in CMV, not only are
clones larger, but, summed over the repertoire, their CDR3
sequences are more similar than in negative controls (Fig. 4H),
despite TCR not undergoing somatic hypermutation as antibod-
ies do. Accuracy was 5% better than in an otherwise identical
model that used 1D and ∞D but no class diversity measures.
Finally, we found that combining these measures with class
entropy or class richness improved stratification of CMV status,
again demonstrating the potential of class diversity to contribute
to diagnostic stratification (Fig. 4 G and H).

TRB Repertoires in Aging. The potential ability to stratify pop-
ulations raises the possibility of identifying immunologically

exceptional individuals. We tested the potential of class diver-
sity to identify such individuals by measuring sequence and
class diversity as functions of age, using TRB CDR3 repertoires
from 41 healthy 6- to 90-y-olds (5). Before accounting for sam-
pling error, sequence diversity correlates negatively with age, as
the thymus involutes and as larger clones displace smaller ones
(5). After accounting for sampling error (49), we found that
this trend begins only in the fourth decade of life in this data-
set, with low values in adolescents and several apparent outliers
among 20- to 40-y-olds (Fig. 4I). In contrast, class diversity
was characterized by a steep drop during adolescence, followed
by plateauing, indicating a relatively rapid loss of functional
diversity during this period, followed by relative functional sta-
bility even as sequence diversity continues to be lost (Fig. 4J).
However, three subjects in their 70s appeared to buck this
trend, with sequence richness similar to that of other seniors
but with the class richness of children (Fig. 4J, arrowheads).
Using Fig. 4 G and H, CMV status is unlikely as an explana-
tion. Additional clinical data were unavailable. It is unclear
whether the unusually high class diversity of these individuals,
who comprise a quarter of individuals of ≥65 y of age in this
cohort, reflects a transient rise in class diversity or persistence
since childhood possibly reminiscent of “superaging” (75). This
utility for identifying unusual or exceptional individuals may be
useful for revealing heterogeneity in other cohorts as well.

Implications for Public vs. Private Repertoires. Finally, we
found that class diversity also suggests a resolution to the para-
dox of how it is that, clinically, most people respond with simi-
lar success to a given immunological challenge despite sharing
few antibody and TCR genes [<1% for IGH (76, 77) and
<10% for TRB (78) CDR3s] and with even lower percent
overlap (as shared genes are often low in frequency): The 90 to
99% of genes that are “private” (79, 80) may simply belong to
common classes. As a first test of this hypothesis, we generated
rarefaction curves for genes and classes using 71 IGH and (sep-
arately) 69 TRB repertoires pooled across the population
(5, 22–25). We found that the number of genes grew linearly
with continued sampling, as expected for low sequence overlap
(Fig. 3A, open symbols): Most genes were new to the sample,
and so the discovery rate remained high (Fig. 3B, open sym-
bols). In contrast, we found that the number of classes satu-
rated for TRB and had begun to plateau for IGH, with a
discovery rate of ≤10% at sample sizes of 0.5 million to 1 mil-
lion cells (Fig. 3B, small symbols), consistent with a very high
degree of class overlap between individuals (Fig. 3 A–C, filled
symbols). Extraordinarily, for both IGH and TRB, the number
of classes in the entire sampled population was not substantially
larger than that in a single young, healthy individual. This
result implies that the private repertoire is functionally public
and that classes hold additional useful patterns, which future
studies may reveal (18, 26, 81, 82).

Discussion

Ultimately, repertoires owe their large-scale organization to pat-
terns of similarity among their constituent antibodies and
TCRs. Consequently, similarity has long been of interest. It is
the basis of well-known, powerful, and insightful coarse-
graining techniques such as binning by segment use (83, 84),
clone collapsing by Hamming distance (24) [also used for net-
work clustering (85, 86)], and defining amino acid motifs
(12, 13). That the results are often specificity groups that con-
tain antibodies or TCRs with functional similarity should not
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be surprising, since these techniques are all based on sequence
similarity (whether in the form of edit distance or a more com-
plex function of, e.g., mutation frequencies or biophysical
properties), and proteins with similar sequence often have
similar properties. Thus, all of these techniques can be seen as
indirect measures of the same, more fundamental property:
similarity of antigen binding. Quantitatively and thermody-
namically, there appears to be only one way of defining antigen
binding similarity between two antibodies or two TCRs that
respects the basic property of addition, which is as the ratio of
their Kd s for a given antigen (although see limitations below).
(A reasonable lower limit on similarity, below which similarity
is zero, would be set by antibody solubility; the upper limit is,
of course, one.) Using this definition, summing yields the total
number of unique binders in the repertoire (50). Other defini-
tions of similarity can be used to populate the similarity matrix
Z in Eq. 1, but we have reasoned that only the ratio of Kd s
yields this straightforward repertoire-scale interpretation.
Note that this approach does not restrict the investigator to a

specific Hill-type (3) diversity measure such as richness, Shan-
non entropy, or Simpson’s index (12). Just as, for example,
sequence richness and sequence entropy capture different
aspects of a repertoire’s sequence frequency distribution, and
can be useful in different circumstances as a result (87), the
approach described here allows investigation of whatever aspect
of class frequency distribution might be of interest (selectively
up-counting larger classes by choosing a larger value of q; for
example, q = 1 for 1DS, the effective number equivalent of class
Shannon entropy). The same effective number interpretation
applies (3, 50, 58). Usefully, note also that the ratio-of-Kd s def-
inition is continuous, meaning that low-level binding similarity
among, for example, natural antibodies is not ignored for being
below some arbitrary cutoff, as it is in several of the referenced
prior techniques; the collective impact of many low-similarity
antibodies, for example, is less likely to be overlooked in meas-
urements using the framework we describe. Nature offers sev-
eral examples of the importance of such “weak ties” (88, 89);
given the extraordinary number of different genes in immune
repertoires, low-level similarities may well add up.
One limitation of this study is that the ratio of Kd s is for a

single reference antigen. To be clear, the experimental data on
which our model is based include a very wide variety of differ-
ent antigens (11). It is our definition that imagines the exis-
tence of an antigen (or pMHC) such that, given an
antibody–antigen pair (or TCR–pMHC pair), if a second anti-
body (or TCR) binds this antigen (or pMHC) half as well, the
resulting similarity defines the relationship with the first
antibody (or TCR) over all antigens (or pMHCs). Both basic
biology (centered on the relationship between sequence and
specificity) and experimental experience justify this line of rea-
soning. The conclusion can be illustrated by a counterfactual:
It is not biologically reasonable that, as a general rule, two anti-
bodies or TCRs bind all potential antigens or pMHCs wildly
and/or unpredictably differently. Instead, each experimental
measurement of relative binding for a pair of antibodies or
TCRs is likely to be highly representative of the similarity land-
scape across all antigens or pMHCs for that pair (they both
bind a given antigen or set of antigens fairly well, and both
bind the millions of other, unrelated antigens for which they
are not specific, at an orders of magnitude lower level, close to
some baseline; this is illustrated by the low level of binding of
the wide variety of negative controls across published ELISA
studies). Populating the matrix Z using a similarity measure
that averages over this landscape is left for future work.

A second limitation is imprecision in the prediction of simi-
larity for a given pair of antibodies or TCRs. Despite great
interest and progress in this area (90, 91), predicting ΔΔG,
let alone measuring it at repertoire-scale throughput to populate
similarity matrices (Z) with billions of entries, remains chal-
lenging. Fortunately, larger matrices benefit from the law of
large numbers, making the repertoire-scale measures we report
more reliable, and we found that small differences in class
diversity between repertoires or over time can be reliably identi-
fied using conventional sample sizes. Larger public datasets of
pairwise binding data would be beneficial. Finally, we note that
the present study was limited to a single CDR, although the
framework we describe is amenable to more-comprehensive
characterizations of antibodies and TCRs, or indeed any macro-
molecules, as such application requires simply updating the
similarity matrix. Regardless, that the class diversity of an indi-
vidual should so closely mirror the class diversity of a popula-
tion, for both antibodies and TCRs, strongly supports the view
that most individuals have similar antigen-binding capacity,
and that the erstwhile “dark matter” of unshared or private
genes organizes into public or shared binding classes. We expect
that a better understanding of these classes, and of binding-
based functional class overlap, will help characterize differences
between individuals that may underlie differences in health or
susceptibility to disease.

Our work highlights the need for larger training sets for pre-
dicting differences in binding. Despite SKEMPI being the best
database available, its antibody and TCR data were an insufficient
basis for binding models based on specific amino acid substitu-
tions or biophysical properties. While such models fit training
portions of the dataset better than Zij = sm, they overfit these
training data, resulting in same-or-worse predictions on the test
portion of the training–test split. This is an example of why it is
important to test models in this way, to reduce the risk of being
falsely impressed by more “realistic” models whose additional
realism or complexity is not, in fact, supported by data.

Overall, the results presented here illustrate the value and
opportunities that can be unlocked by using repertoire-scale
measures that are based on the defining function of repertoires’
elemental units: epitope binding, for both antibodies and TCRs.
This approach was inspired by foundational and well-established
ideas in immunology (19, 60, 92), ecology (3, 52, 58, 69, 93),
and physics (94, 95). Class diversity differs from network-, line-
age-, or cluster-based (8, 85, 86) descriptions of repertoires in
that class diversity 1) avoids the need for similarity cutoffs, which
are arbitrary but can have large effects on network architecture/
cluster counts (96); 2) accounts for weak antibody–antigen/
TCR–pMHC interactions, which are the overwhelming majority
and are considered important in immunology (19–21), as they
are in other complex systems (95); and 3) is based explicitly on a
model of binding similarity (albeit a rough/limited one), as
opposed to simply on nucleotide or amino acid edit distance
(85, 86). Our method’s modular design means it can be easily
updated using models of binding similarity (Zij) that make use of
additional sequence or structural data as such data become avail-
able, and is readily applied beyond immunology, to measure, for
example, class diversity of tumors (cell diversity) (97), micro-
biomes/metagenomes (bacterial/viral diversity) (98), and other
complex systems (99). Classes redefine diversity.

Data, Materials, and Software Availability. All data needed to evaluate
the conclusions in the paper are present in the paper, references, and/or SI
Appendix. Code is available upon request. Previously published data were used
for this work (5, 11, 22–25, 28, 30, 31).
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