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Abstract: Intracranial bacterial infection remains a major cause of morbidity and mortality in neu-
rosurgical cases. Metabolomic profiling of cerebrospinal fluid (CSF) holds great promise to gain
insights into the pathogenesis of central neural system (CNS) bacterial infections. In this pilot study,
we analyzed the metabolites in CSF of CNS infection patients and controls in a pseudo-targeted
manner, aiming at elucidating the metabolic dysregulation in response to postoperative intracranial
bacterial infection of pediatric cases. Untargeted analysis uncovered 597 metabolites, and screened
out 206 differential metabolites in case of infection. Targeted verification and pathway analysis
filtered out the glycolysis, amino acids metabolism and purine metabolism pathways as potential
pathological pathways. These perturbed pathways are involved in the infection-induced oxida-
tive stress and immune response. Characterization of the infection-induced metabolic changes can
provide robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for
pathological investigation, and new targets for treatment.

Keywords: cerebrospinal fluid; central neural system infection; mass spectrometry; metabolomics;
metabolic pathway

1. Introduction

Cerebrospinal fluid (CSF), the biofluid circulating from the choroid plexus toward the
lumbar sac and venous blood, carries abundant information regarding the metabolic and
transport state of the central neural system (CNS) [1,2]. Compared with plasma, CSF has
a low protein concentration and simple metabolome [3]. Multi-omics characterization of
CSF has curated a sum of ~250 miRNAs, ~3400 proteins, ~900 peptides and ~440 metabo-
lites [4–8]. The multi-omics profiling of cerebrospinal fluid (CSF) holds great promise to
gain insights into CNS diseases, including neurodegeneration [9], brain tumor [10], brain
injury [11], and CNS infection [12].

The CNS is endowed with the blood–brain barrier and alloantigen tolerance to main-
tain its homeostasis [13]. Pathogens, however, can still invade the CNS from blood, sur-
rounding tissues or nerves [14]. Intracranial surgery, on the other hand, can severely
disrupt the physiological and immunological barriers in the CNS, leaving the CNS suscep-
tible to various pathogens [15]. Nowadays, intracranial bacterial infection remains a major
cause of morbidity and mortality in neurosurgical cases [16]. To elucidate the mechanism
of the pathogenesis, multi-platform characterization of CSF from intracranial bacterial
infection patients has been performed. NMR and MS-based methods offer high-throughput
profiling, while ELISA and various biochemical reagent kits provide orthogonal quan-
tification of certain biomolecules [17]. Bakochi et al. mapped the CSF proteome and
depicted the dysregulation of 79 host proteins, suggesting an increase in apoptosis and
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glial cell development in response to acute bacterial meningitis [18]. Laarhoven et al.
measured the metabolome of CSF from patients with tuberculous meningitis using a liquid
chromatography mass spectrometry (LC-MS) platform and suggested tryptophan as a
predictor of survival [19]. Quist-Paulsen et al. further profiled CSF metabolites in the tryp-
tophan metabolism pathway and cytokines across patients with CNS bacterial infection
and autoimmune neuroinflammation, and reported an IFN-γ mediated up-regulation in
tryptophan metabolism in case of bacterial meningitis [20]. Moreover, the inflammatory
CNS profile was different between pediatric cases and adult patients, including a lower
elevated level of protein and white blood count, and a higher elevated level of aspartate
transaminase in pediatric cases [21].

Metabolomics, by characterizing metabolites and metabolism, can directly and dy-
namically reflect pathophysiological phenotypes, thus demonstrating great potential
in biomarker discovery and mechanism elucidation [22–25]. Untargeted and targeted
metabolomics represent two differed pursuits of broad coverage and reliable quantifi-
cation [26]. The combination of untargeted and targeted strategy, therefore, offers both
global discovery and reliable verification of potential biomarkers of CNS infection [27].
Several perturbed pathways in response to CNS infection have been reported, including
glycolysis, amino acids metabolism, and creatine biodegradation. [19,28–31]. Additionally,
several metabolites have been proposed to be involved in the infection-induced osmosis
stress (betaine and glutamate) and oxidative stress (urate, glutathione, ascorbate and car-
nitine) [31–35]. Nevertheless, there is still a lack of systematic characterization of CSF for
the study of CNS infection to further discover and verify novel pathological pathways.
Especially, there lacks understanding of the metabolomic changes in pediatric patients with
CNS infection.

In this study, both untargeted and targeted analysis were performed for the characteri-
zation and measurement of CSF metabolome, to investigate the metabolic dysregulation in
response to postoperative intracranial bacterial infection of pediatric cases. We included
eight infection and six control CSF samples for metabolomic analysis as a pilot study,
found 206 differential metabolites out of the 597 metabolites identified, and verified the
glycolysis, amino acids metabolism, and purine metabolism pathways as potential patho-
logical pathways. Characterization of the infection-induced metabolic changes can provide
robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for
pathological investigation, and new targets for treatment.

2. Results and Discussions

A pseudo-targeted strategy was adopted to discern the infection-related metabolic
changes in CSF (Scheme 1). In the discovery stage, untargeted analysis was performed
to characterize CSF metabolome of the six control and eight infection samples and select
differential metabolites as potential targets. The patients with bacterial CNS infection were
all diagnosed by bacterial culture together with clinical symptoms and routine biochemical
items of biofluids, using the procedure shown in Figure S1. The CSF diagnostic parameters,
bacterial culture results, and blood inflammatory marker quantification results of the
patients and controls are summarized in Table 1. In the verification stage, targeted analysis
offered reliable quantitation to test the significance of the targets. In the function prediction
stage, pathway analysis related our experimental results with prior curation, broadening
the biological picture regarding the intracranial bacterial infection of pediatric patients.
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Scheme 1. The pseudo-targeted metabolomic workflow used to characterize CSF metabolome. RPLC: reverse phase liquid
chromatography; ESI: electrospray ionization; DDA: data-dependent acquisition; PRM: parallel reaction monitoring.

Table 1. Patient information.

Group Infection Control

Age 2.1 ± 4.4 years 1.6 ± 2.2 years
Gender 62.5% male 66.7% male

CSF cell count (×106/L) 274 ± 132 6.25 ± 8.07
CSF glucose (mmol/L) 1.96 ± 1.63 2.85 ± 0.32

CSF protein (mg/L) 997 ± 562 350 ± 37
CSF lactate (mmol/L) 3.45 ± 0.08 1.50 ± 0.33

CSF bacterial isolates 75% negative
25% S. epidermidis positive 100% negative

Blood WBC (×109/L) 17.06 ± 6.88 9.15 ± 3.01
Blood N% 51.0 ± 17.8% 34.9 ± 14.0%

Blood CRP (mg/L) 31.0 ± 37.8 5.75 ± 3.03
Blood PCT (ng/mL) 1.29 ± 0.79 NA

WBC: white blood count; N: neutrophil; CRP: C-reactive protein; PCT: procalcitonin; S. epidermidis:
Staphylococcus epidermidis.

2.1. Untargeted Analysis for Metabolic Profiling of CSF from Patients with Intracranial
Bacterial Infection

As shown in Figure 1a,b, the total ion chromatograms (TICs) of quality control (QC)
samples overlapped well in both positive and negative modes, indicating the sound repro-
ducibility of the LC-MS system. Unsupervised PCA analyses based on the LC-MS features
of patients and controls are shown in Figure S2. A total of 597 metabolites were identified
by the untargeted profiling of the 14 samples (eight patients and six controls) combining the
positive and negative mode based on accurate molecular weight assignment and tandem
MS pattern matching, including 284 human metabolites not yet included in the current
CSF metabolite library (see Dataset S1) [3,8]. Both polar metabolites (amino acids, purines,
monosaccharides, etc.) and non-polar metabolites (eicosanoids, phenols, steroids, etc.)
were identified (see Figure S3). With functional enrichment analysis by MetaboAnalyst, it
was found that the identified metabolites covered most of the pathways known to be in-
volved in infection pathogenesis (Figure 1c), such as glutamine and glutamate metabolism,
arginine metabolism, and ascorbate and aldarate metabolism [29,31,36].
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Figure 1. The LC-MS total ion current chromatograph (TIC) of QC samples in the positive mode
(a) and negative mode (b), the dotted lines show the LC gradient in B phase percentage. (c) Top
25 metabolic pathways enriched in children CSF samples by untargeted metabolomic analysis.

To find out the significant metabolic features in the patients with intracranial bacterial
infection compared to the control group, univariate analysis and multivariate analysis were
performed on the untargeted metabolomic data acquired in positive and negative modes.
Univariate analysis screened out a total of 618 significant features (fold change (FC) ≥ 2 and
p value ≤ 0.05), among which 477 were up-regulated and 141 down-regulated (Figure 2a,d).
The slightly skewed distribution suggested an increase in total metabolite concentration
in the infection group. Partial least squares regression-discriminant analysis (PLS-DA)
model was further used for feature selection [37]. As shown in Figure 2b,c,e,f, the model
separated the two cohorts well on the feature level in both positive and negative mode.
The goodness-of-fit parameters (accuracy, R2 and Q2) of the PLS-DA model is shown in
Figure S4. We included features from the top five components in the positive ion mode and
top two components in the negative ion mode for differential metabolites screening. Of the
4125 variable importance in the projection (VIP) features, the 618 univariately significant
features were all included (Figure 2). After identification, a total of 206 differential metabo-
lites were screened out (VIP ≥ 1) (see Figure S5, Dataset S2). It should be noted here the
raw p-value, instead of multiple testing correction adjusted p-value, is used together with
multivariate analysis as a cut-off for feature screening, due to the heterogeneity among
biological samples and the imbalance between the large number of features and the small
sample set. The screened features were then subjected to further validation by targeted
analysis and pathway analysis.

2.2. Targeted Metabolomic Analysis for Semi-Quantitative Verification and Pathway Analysis

Eighteen of the differential metabolites were chosen as targets based on biological
knowledge in prior publications, namely glucose, pyruvate and lactate in the glycol-
ysis pathway, tryptophan, kynurenine, tryptamine, indole-3-acetate in the tryptophan
metabolism pathway, ADP, adenosine, inosine, guanosine, xanthine, urate in the purine
metabolism pathway, and proline, hydroxyproline, glutamine, arginine, citrulline in the
arginine and proline metabolism pathway [19,29–31]. Targeted analysis was performed
on the metabolites for further semi-quantification and verification (see Dataset S3). Two
injections were performed on each sample. Twelve (67%) of the targets passed the veri-
fication (with p value < 0.1), and showed fine discriminatory potential in CV-ROC test,
both univariately and multivariately (Figure 3). Among the 12 significant metabolites, the
specificity of lactate, tryptophan and kynurenine has been tested across different subtypes
of CNS infection in previous reports [30,38]. Pathway analysis based on the 12 significant
metabolites showed the dysregulation in glycolysis, tryptophan metabolism, arginine and
proline metabolism, and purine metabolism (Figure 4). The dysregulated pathways were
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reported to be involved in several infection-induced processes as immune response and
oxidative stress [36,39].
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Figure 4. Overview of the metabolic dysregulation in glycolysis (a), tryptophan metabolism (c), arginine and proline
metabolism (e), and purine metabolism pathways (g), up-regulated, stable, and down-regulated metabolites are marked
in red, white, and blue, respectively; solid and dotted lines indicate direct and indirect reactions, respectively; significant
intensity differences between infection and control cohorts verified by targeted metabolomic analysis (b,d,f,h), error bars
represent the standard deviation, and “*” and “**” represent p values less than 0.05 and 0.01, respectively.

The dysregulation in glycolysis suggests an altered energy metabolism. The elevated
flux from glucose to lactate may, according to the Warburg effect, result from the aerobic
glycolysis of infection-activated immune cells (Figure 4a,b) [40]. Further, the accumulation
of lactate downstream plays an immunosuppressive role by down-regulating rate-limiting
glycolytic enzymes upstream [41]. The increase in lactate/pyruvate ratio (see Figure S6a)
also suggests that other mechanisms are involved, such as anaerobic glycolysis as a result
of infection-induced hypoxia [42]. The activated tryptophan metabolism suggests differ-
ent immunoregulation and neuro-damage. A higher kynurenine/tryptophan ratio in the
infection group represents a higher activity of indoleamine-2,3-dioxygenase (IDO) (see
Figure 4c,d, Figure S6b) [30]. The up-regulation of IDO is in response to cytokines and
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inflammatory signaling molecules. Activated IDO and elevated kynurenines downstream
have been reported to play an immunosuppressive role [39,43]. Downstream metabolites
of kynurenines also exhibit differed neurological effects: kynurenic acid, picolinic acid
and nicotinamide adenine dinucleotide being neuroprotective, while quinolinic acid being
neurotoxic [44]. The elevation in arginine and proline metabolism suggests a protective
response to oxidative stress. The increase in proline can be attributed to the increase in
CSF protein upstream (Figure 4e,f). Under infection-induced oxidative stress, proline can
interact with hydroxy peroxide, generating hydroxyproline and nitroxide radicals [45].
In this way, proline helps scavenge reactive oxygen species, and complement the argi-
nine metabolism pathway in generating nitric oxide, a molecule that plays a dual role in
neuroprotection and anti-microbial defense [46]. The dysregulated purine metabolism
suggests perturbed oxidative homeostasis and purinergic signaling. Elevation of xanthine
and urate suggests the activation of xanthine oxidase (XO), which sustains oxidative home-
ostasis by generating multiple reactive species, including hydrogen peroxide and urate
(Figure 4g,h) [36]. It has been reported that the up-regulation in inosine and urate are a
protective response, and thus severity-related [33,47]. Additionally, the streamline from
ATP to urate plays a pivotal role in purinergic signaling, forming a balance between
pro-inflammation (by ATP) and anti-inflammation (by adenosine) [48].

By untargeted and targeted metabolomic analysis, we provide potential biomarkers
and pathological mechanisms for CNS bacterial infection. This knowledge can further
contribute to clinical diagnosis and drug development. In this pilot study, CSF from
children with hydrocephalus was used as the aseptic control cohort, which does not strictly
correspond to the healthy CSF. Given the ethical issues regarding the procurement of CSF
from healthy children, CSF from children with hydrocephalus remains a common choice
of control group to mimic sterile and less-inflammatory states [49–51]. Larger sample sets
are desired to train a robust classification model and to validate the potential pathological
pathways proposed in this paper. However, it was not easy to collect CNS bacterial
infection pediatric patients. Not knowing the bacteria strains involved in postoperative
infection, we focused on the Homo sapiens metabolic pathways instead of the bacteria
metabolic pathways. Therefore, further efforts are needed to dissect the co-metabolism
of host and pathogen. Moreover, while our work focused on polar metabolites, it has
been reported that certain lipid classes, such as phosphatidylcholines, sphingolipids and
ceramides, play an important role in CNS infection [52,53]. Multi-omics characterization
of CSF, as well as peripheral blood are expected for an integrated and detailed regulatory
landscape regarding CNS infection.

3. Materials and Methods
3.1. CSF Sample Collection and Patient Information

Clinical information and CSF samples were collected during lumbar puncture from
hydrocephalic pediatric patients (without intracranial infection, n = 6) and pediatric patients
of postoperative intracranial bacterial infection (n = 8) at the neurosurgery department of
the Children’s Hospital of Shanghai, China (Table 1). Between the infection and control
groups, there was no significant difference in age and gender but a significant difference
in CSF protein level and CSF lactate level with a p-value cut-off of 0.05. The 6 control
and 8 infection samples were used for non-targeted and targeted metabolomic analysis.
The CSF samples were centrifuged at 3000 rpm under 4 ◦C for 15 min to remove cells.
Supernatants were collected and stored in 200 µL aliquots at −80 ◦C before further use.

3.2. Chemicals and Reagents

HPLC grade acetonitrile (ACN) and methanol were purchased from Hushi Laborato-
rial Equipment (Shanghai, China). Analytical grade formic acid was purchased from J&K
Scientific (Beijing, China), and caffeine was purchased from Sigma-Aldrich (St. Louis, MI,
USA). Deionized (DI) water (18.2 MΩ·cm) was obtained from a Milli-Q system (Millipore,
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Bedford, MA, USA) and used in all experiments. All chemicals were used as received
without further purification.

3.3. Metabolite Extraction

CSF samples were thawed at room temperature. For the analysis, 100 µL of the
CSF sample was thoroughly mixed with 400 µL of ACN:MeOH (1:1, v/v), followed by
centrifugation at 13,000 rpm for 15 min at 4 ◦C. The supernatant was then lyophilized at
−40 ◦C overnight. The dried extracts were then reconstituted in 150 µL of H2O:ACN:MeOH
(2:1:1, v/v), sonicated for 1 min, and centrifuged at 15,000 rpm under 4 ◦C for 20 min. A
total of 145 µL of the supernatant was transferred to an LC auto-sampler vial (CNW
technologies, Shanghai, China). A total of 20 µM of caffeine was added as the internal
standard for untargeted analysis in the positive ion mode. A QC sample was prepared by
mixing 10 µL of each sample treated as above, which was used to check the stability of the
analytical conditions.

3.4. LC-MS/MS Analysis

For both untargeted and targeted metabolomics, LC-MS/MS analysis was performed
on a TripleTOF 4600 mass spectrometer (SCIEX, Boston, MA, USA) coupled to a LC-20AD
XR high performance liquid chromatography system (Shimadzu, Kyoto, Japan). Samples of
different cohorts were placed in a randomized order. One QC sample and one solvent were
injected after each of the 5 CSF samples. The separation was performed using an Acquity
UPLC HSS T3 column (100 × 2.1 mm, 1.8 µm, Waters, Elstree, UK) in binary gradient mode.
The mobile phases in different ionization modes were as follows: (A) 0.1% (v/v) formic
acid in water and (B) pure ACN in positive mode; (A) pure water and (B) pure ACN in
negative mode. The flow rate was 200 µL·min−1. In positive mode, an optimized gradient
of 0–3.5 min (B, 5–25%), 3.5–13 min (B, 25–55%), 13–18 min (B, 55–80%), 18–23 min (B,
80–85%) with a 5 min re-equilibration applied. In negative mode, an optimized gradient
of 0–3.5 min (B, 2–25%), 3.5–13 min (B, 25–55%), 13–18 min (B, 55–80%), 18–23 min (B,
80–85%) with a 5 min re-equilibration applied. Column temperatures were maintained
at 25 ◦C, and the injection volumes were set as 8 µL and 7 µL for positive and negative
modes, respectively. For untargeted analysis, the mass scanning range was m/z 50–1000.
The data-dependent acquisition (DDA) cycle took 1.3 s with a TOF-MS scan for 0.25 s and
at most 10 MS/MS spectra acquisition for 0.1 s each. For targeted analysis, the cycle was
consisted of a 0.09 s TOF-MS scan and several 0.09 s parallel reaction monitoring (PRM)
channels. The precursor and product ion pairs acquired were listed in Dataset S3.

3.5. Statistical Analysis

For untargeted analysis, the XCMS package (https://bioconductor.org, accessed on
30 December 2020) was used to process all data files obtained by the LC-MS/MS. Univariate
statistical analysis was performed with fold change (FC) = 2 and t-test p value = 0.05 as
thresholds. Multivariate analysis was processed using MetaboAnalyst 5.0 (McGill University,
Montréal, Quebec, Canada) [54]. Logarithm transform and pareto scaling were performed.
In PLS-DA, features with a VIP value over 1 were selected as significant features.

For targeted analysis, the areas of target peaks were extracted by PeakView (SCIEX,
Boston, MA, USA). T-test was performed to compare peak areas of metabolites. All experi-
mental data were presented as means ± standard deviation (SD). Cross validation–receiver
operating curve (CV-ROC) was performed by pROC RPackage (https://cran.r-project.
org/web/packages/pROC/index.html, accessed on 30 July 2021) and MetaboAnalyst
5.0 (https://www.metaboanalyst.ca/, accessed on 30 July 2021) [55]. Multi-variate ROC
curves were generated by Monte Carlo cross validation (MCCV). In each MCCV, 2/3 of the
samples were used to evaluate the feature importance. The top important features were
then used to build the random forest classification models which was validated on the 1/3
the samples that were left out. The procedure was repeated multiple times to calculate the
performance and confidence interval of each model.

https://bioconductor.org
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://www.metaboanalyst.ca/
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3.6. Identification and Pathway Analysis

The structural identification of metabolites was performed by the MetDNA web
server (http://metdna.zhulab.cn/, accessed on 30 July 2021) and the mzmine 2 tool
(http://mzmine.github.io/, accessed on 30 July 2021) [56,57]. Function enrichment analysis
was carried out using MetaboAnalyst 5.0 against the Homo sapiens Kyoto encyclopedia of
genes and genomes (KEGG) dataset (https://www.kegg.jp/, accessed on 30 July 2021) [58].
Pathway analysis was implemented on KEGG databases.

4. Conclusions

Combining the untargeted and targeted analysis of CSF metabolome, we identified
12 metabolites that discriminate pediatric cases of postoperative intracranial bacterial
infection against control group. We also reported the dysregulation in the glycolysis,
tryptophan metabolism, arginine and proline metabolism, and purine metabolism among
the infection pediatric cases. These perturbed pathways depicted the metabolic changes
under infection-induced oxidative stress and immune response. Characterization of the
infection-induced metabolic changes could provide robust biomarkers for clinical diagnosis,
novel pathways for pathological investigations, and new targets for treatment.

Supplementary Materials: The following are available online, Figure S1: The workflow of CNS
infection diagnosis, Figure S2: Unsupervised PCA analysis, Figure S3: Classification of identified
metabolites, Figure S4: Goodness-of-fit parameters, Figure S5: Heatmaps of differential metabolites,
Figure S6: Differences in the intensity ratio of downstream over upstream metabolites, Dataset
S1: Metabolites identified in untargeted analysis, Dataset S2: Differential metabolites between the
infection and control groups, Dataset S3: Relative quantification of 18 metabolites by targeted analysis.
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