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Abstract

Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas
France) and in continental EU were assessed using mathematical models. Surveillance for early
detection of RVF virus circulation implies very low design prevalence values and thus sampling a high
number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in
ruminants is key for early warning and at present the only feasible surveillance option. The assessment
of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when
quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per
day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that
would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant
establishments close to possible points of disease incursion should be included in the surveillance. An
enhanced surveillance on reproductive disorders should be applied during summer in risk areas.
Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly
applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals
on farms within a 20 km radius of detected farms appears as the most effective measure to control
RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50
km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms.
The assessment of zoning showed that, following RVFV introduction and considering an R0 = 2, a
mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of
up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively.
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Summary

Rift Valley Fever (RVF) has never been reported in continental Europe or in countries neighbouring
the European Union (EU) to date, but in 2018–2019, it reappeared after 10 years in a French overseas
Department (Mayotte) with outbreaks involving multiple human cases. Besides this reoccurrence, a
legislative process triggered a mandate from the European Commission requesting European Food
Safety Authority (EFSA) perform a risk assessment on RVF. The Commission adopted the Commission
Delegated Regulation 2020/687 which supplements Part III of Regulation (EU) 2016/429 (Animal
Health Law), laying down rules for the prevention and control of transmissible animal diseases, and
that replaces existing Directive 92/119/EEC which currently provides for measures to apply in the
event of occurrence of certain diseases, which includes RVF. Additionally, in accordance with
Commission Implementing Regulation (EU) 2018/1882, RVF is categorised as a Category A disease.

Following the categorisation and the proposed changes to the control measures for RVF, the
Commission requested a complete risk assessment on RVF (risk of introduction, exposure and
effectiveness of prevention and control measures), since the measures proposed in the Delegated
Regulation should be based on the latest scientific knowledge.

Two EFSA assessments have been already produced about the risk of introduction and impact
assessment in Mayotte. The present document is about the assessment of i) effectiveness of
preventive and control measures in eliminating or reducing the disease impact in Mayotte as well as ii)
different surveillance strategies in animals that may be used for detection and possible prediction of
RVF recurrence in Mayotte. Finally, while considering the risk of RVF introduction into the EU, iii) the
surveillance measures for early detection of the disease as well as iv) the feasibility, availability and
effectiveness of the prevention and control measures for RVF, especially the ones foreseen in the
above-mentioned Commission Delegated Regulation.

The preventive and control measures for RVF elimination in Mayotte that were assessed were
different surveillance scenarios, zoning and different vaccination, stamping out and vector control
strategies.

Regarding possible surveillance scenarios, considering that the rainy season in Mayotte is from
December to March and this is the period at higher risk for the establishment of an RVF epidemic, two
main objectives for active surveillance can be considered, i.e. i) early detection of RVFV circulation,
ideally before the steady increase of human and/or animal cases: this implies design prevalence values
so low that a very high number of animals must be tested, so feasibility issues may rise; ii) the
verification of RVFV circulation during the previous rainy season, which can be achieved testing a
limited number of animals, due the higher design prevalence.

Monitoring the seroprevalence will give indication about the occurrence of RVF and the spatial and
temporal distribution of infection, and indicate possible areas with higher risk for the re-occurrence of
the disease. On the other hand, passive surveillance, based on the notification and testing of aborted
fetuses and animals showing clinical signs suggestive of RVF, and at present the only feasible
surveillance option, given the high percentage of animals naturally immunised after the 2018–2019
epidemic.

Zoning is not applicable in Mayotte, because, due to the small geographical size of Mayotte and the
potential dispersal of mosquitoes over long distances (e.g. > 6 km), the whole island would be
considered a single protection zone.

In order to assess vaccination and culling strategies, a stochastic version of a model previously
developed to simulate the spread and control of RVFV in Mayotte was used.

The results of the analysis of the impact of vaccination on reducing RVF infections suggested that
the vaccination is more effective when applied early before the start of the epidemic and quickly
implemented throughout the population. Differing levels of vaccine effectiveness, either 60% or 90%,
have a relatively minor impact on the reduction of the expected number of infected animals. In
particular, with a rate of 200 or 2,000 animals vaccinated per day, the epidemic is halted within one
year regardless of whether vaccination is applied before or after RVF incursion. Moreover, the number
of infections is kept under 3% if vaccination is conducted at least 30 days prior to incursion with at
least 200 animals vaccinated per day (20% coverage achieved at time of incursion, 100% coverage
achieved 120 days post incursion). The same effect is achieved if the vaccination is conducted at 2,000
animals vaccinated per day, started at 60 days post incursion at the latest (100% vaccination coverage
would be achieved 75 days after RVF incursion).

A test-and-cull strategy does not seem an alternative for the control of RVF in Mayotte unless high
numbers (ca. 2,000 per day) of animals are tested every day and the infected animals are quickly
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removed, which is particularly difficult in the rural context of Mayotte, with many small herds scattered
in the territory and difficult to be visited.

Considering vector control, some activities are in place in Mayotte, but mainly focused to protect
humans and probably have a limited impact on RVFV transmission. Vector control alone does not seem
to be a useful alternative for the control of RVF in Mayotte either. Only a reduction of 40% or more in
mosquito abundance, a level of vector reduction that would be difficult to achieve, and maintained
only for short time, e.g. 2 weeks, can have a measurable effect on the transmission and re-occurrence
of the infection, alone or combined with other control measures. Effective vector control, mostly by
using larvicides, will require long-term programmes considering the mosquito habitat and climate of
Mayotte, whereas the general use of adulticides is unfeasible due to the potential impact on the
environment.

The assessment of the possible preventive and control measures to be applied in case of RVF (risk
of) incursion into continental EU included an evaluation of different surveillance strategies and of
zoning, vaccination and stamping out strategies.

Concerning the surveillance, in case of increased risk of RVFV introduction into continental EU,
cattle and small ruminant establishments located in the proximity of the high risk points of disease
incursion by vector import (ports, airports, cargo and container yards) should be included in the
surveillance. Passive surveillance can be considered as first choice for the early detection of the
infection under these circumstances: enhanced surveillance of abortions, stillbirths and neonatal
mortality of cattle, sheep and goats, therefore, should be applied during summer and autumn (during
the peak of and end of vector season) in the areas at major risk of introduction. Regarding targets for
active surveillance programmes, based on the only known and documented case of introduction of
RVF into a previously free territory (Saudi Arabia), a target seroprevalence of below 0.3% need to be
considered.

The assessment of the various control measures against RVF in case of incursion into the
continental EU has been conducted by simulating RVF spread by a mathematical model applied to the
Netherlands as a case study, chosen because of the results of the previous EFSA Opinion about the
risk of RVF introduction in the EU, where the Netherlands was one of the countries at highest risk of
introduction of RVF.

According to the model used, in the absence of vaccination, stamping out of farms (i.e. culling all
animals) in a 20 km radius around detected farms appears to be the most effective measure to control
RVF spread after introduction in the Netherlands, during the vector season, although its feasibility in
terms of the number of animals to be culled should be evaluated.

The next most effective control measures are vaccination in a 50-km radius around detected farms,
ring vaccination between 20 and 50 km and culling of detected farms only. The time to protection
depends on the type of vaccine used (live or inactivated), and therefore, the results of the model
should be evaluated in the light of this aspect as well.

The assessment of the effectiveness of zoning showed that, according to the model used, following
RVFV introduction and considering an R0 = 2 (value of basic reproduction number of RVF estimated
from the literature), a mean dispersal of vectors of 10 km and 10 infected farms detected inside the
restriction zones, the RVFV would spread beyond a radius of up to 100 km from the infected area with
a probability of 10%. Under the same conditions, if the radius is 50 km, the probability of RVF
spreading beyond this zone would be 55%.

What most influences the probability of spread beyond a restriction zone of a certain radius is the
mean dispersal distance of vectors and the number of initial number of farms infected inside the
restriction zones, rather than R0. This suggests that the number of infected farms detected inside the
restriction zones should be kept as few as possible, implying that the early warning and early
implementation of restriction zones are key measures to contain the spread.

Considering vectors and their control, in the Netherlands, Aedes vexans and Culex pipiens can be
considered as candidates for RVFV transmission. Both species are abundant and widespread in the
Netherlands, favouring their vector capacity. The vector role of Ae. albopictus remains uncertain, since
evidences of RVFV transmission come mainly from laboratory trials only and its presence in the
Netherlands is currently also uncertain.

Floodwater potential vectors of RVFV in Europe, such as Cx. pipiens and Ae. vexans, are regularly
controlled in European Member States (MSs), but the efficacy of these vector control measures is
highly variable. In general, long-term vector control programmes by using larvicides achieve higher
rates (up to 95%) of vector control.
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Decrease of transmission of West Nile virus (WNV), transmitted by the same vector species as
RVFV, in urban and peri-urban areas, has been achieved by decreasing adult population of vectors,
mainly by using adulticides. On average, adulticide control in WNV scenarios achieves around 70%
efficacy on mosquito adult population. It is uncertain what would be the effect of the current regular
floodwater mosquito control measures of MS, mainly larvicides, on the RVFV transmission among
domestic animals. There is an uncertainty about RVFV vector control in and around farms compared to
the WNV scenario where flooded areas, peri-urban and urban areas are the main target.

Finally, considering the control of RVF in continental EU, the possible role of wildlife was also
considered. Whereas in some southern African countries, wild ruminants are considered to play a role
in the maintenance of RVFV infection during the inter-epizootic periods, no data are available about
the susceptibility of European wild ruminant species to RVFV, or the capacity of the virus of causing a
detectable viraemia in these animals. The density of wild ruminant species in Europe is much lower
than domestic ruminants, but a possible involvement of these animals in RVFV transmission in specific
geographical areas or epidemiological contexts cannot be excluded.

The EFSA Panel on Animal Health and Welfare identified several limitations in the data available for
performing the scientific assessment, mainly related to the current infection and immunological status
of the livestock population in Mayotte, the spread dynamics of RVF in newly infected areas in general
and in Europe in particular. Given the uncertainty generated by these limitations, the results should be
carefully interpreted.
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1. Introduction

1.1. Background and Terms of Reference as provided by the European
Commission

General introduction-background information

Rift Valley Fever (RVF) is a disease affecting primarily domestic ruminants (cattle, sheep, goats,
camels) and some wild ruminants, that is caused by a single stranded RNA virus of the genus
Bunyaviridae.

RVF is a vector borne disease, transmitted primarily through various species of vectors (primarily
hematophagous mosquitoes). Certain species of vectors (Aedes mosquitoes) may act as reservoirs of
the disease during inter-epidemic periods, thanks to their potential for transovarian (vertical)
transmission of the virus to their eggs. As a result, new generations of RVF virus infected mosquitoes
may hatch from infected eggs, especially in periods of favourable conditions (e.g. high rainfalls).

Ruminants are infected primarily through infected vector bites. Clinical signs range from sudden
deaths and abortions to mild, non-specific symptoms, depending on the virulence of the infecting virus
strain and the species, breed and age of the affected animals. Mortality may reach 70–100% in lambs
and kids and 20–70% in sheep and calves. Abortion rates may reach 85–100% within the affected
herds. RVF in camels can cause abortions and neonatal deaths. Infected wild ruminants usually do not
demonstrate any clinical signs.

Humans can become infected by RVF, through the bites of vectors, through contact with infected
animals and animal materials (blood, discharges, abortion materials etc.) or through consumption of
untreated animal products (meat and milk). No human-to-human transmission has been recorded to
date. About 50% of infected humans have no clinical symptoms while the rest may demonstrate flu-
like symptoms. A small percentage may develop severe clinical forms, involving haemorrhagic fever
with hepatic disease, meningoencephalitis or ocular complications. The total case fatality rate varies
between different epidemics (overall less than 1% in those documented).

To date no RVF outbreaks in humans or animals have been reported in EU or countries sharing land
borders with the continental areas of the EU. Evidence of RVF nearest to the EU is limited to
serological findings from retrospective studies, carried out in Turkey, using blood samples collected
from camels, gazelles and buffaloes from 2000 to 2006.

Currently the disease is endemic in large areas of Southern and Eastern Africa, where outbreaks of
RVF occur periodically (e.g. every few years), in seasons when weather conditions favour competent
vectors. In recent decades, large RVF epidemics have occurred in Egypt (1977–1978, 1993, 2003),
Mauritania (2010, 2012, 2015), Madagascar (2007–2009), Comoros (2007) and elsewhere on the
African continent (Kenya, Somalia, South Africa, Sudan, Senegal etc.). Egypt currently marks the
northernmost limit of RVF spread. The disease moved outside the African continent for the first time in
2000, into the Arab peninsula (Saudi Arabia and Yemen).

On 5 April 2017, EFSA, following a request from the Commission, adopted a scientific opinion on 36
vector-borne diseases, including RVF. The opinion concluded that the risk of introduction of RVF in the
EU was estimated to be very low, using a semi quantitative method (modified MINTRISK model).

In Mayotte, a French department in the Indian Ocean, close to the Comoros islands and
Madagascar, human cases of RVF were detected for the first time in 2007. Retrospective serological
studies demonstrated the presence of RVF in livestock since 2004 (serological evidence). Until recently,
the disease appeared to be in remission with no new human cases detected since 2011. However, in
2018, RVF reappeared in Mayotte and between 22 November 2018 and 14 March 2019, more than
101 human cases and more than 60 outbreaks in ruminants have been reported.

In response to the RVF resurgence, the competent authorities of Mayotte are implementing
surveillance and biosecurity measures, coupled with vector control/protection measures, aiming to limit
the overall disease spread and prevent animal-to-human transmission. In addition, movements of
ruminants and raw meat and milk thereof, originating from Mayotte, have been prohibited.

The Commission is empowered to adopt delegated acts supplementing the rules laid down in Part
III of Regulation (EU) 2016/429 on transmissible animal diseases (Animal Health Law) on disease
control measures for listed diseases as referred to in point a), b) and c) of its Article 9 (category A, B
and C diseases). Therefore a draft Commission Delegated Regulation laying down rules for the
prevention and control of certain diseases has been developed and the draft is in consultation.

The rules laid down in the abovementioned draft Commission Delegated Regulation are largely
superseding the rules currently in force concerning the disease control measures in the event of animal
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diseases with serious effects on the livestock. Consequently, animal disease control measures laid
down in existing Directives will be, if not already done by the Animal Health Law, replaced by the rules
provided in that Delegated Regulation. This is also the case of Directive 92/119/EEC, which currently
provides for measures to apply in the event of occurrence of certain diseases. This includes Rift Valley
fever, which is in accordance with Commission Implementing Regulation (EU) 2018/1882, categorised
as Category A disease.

In this regard, the existing rules of Directive 92/119/EEC will cease to apply for Rift Valley fever as
from the date of application of the Animal Health Law and its complementing legislation, i.e. from 21
April 2021. The proposed measures for the prevention and control of RVF should be assessed in order
to ensure that they are updated based on the latest scientific knowledge in this new set of legislation.

Terms of reference

1) RISK OF ENTRY OF RVF INTO THE CONTINENTAL PARTS OF THE EU

1.1) Provide an update of the global epidemiological situation in relation to RVF with
emphasis on areas posing a higher risk for the EU.

1.2) Provide an updated assessment of the overall risk of introduction of RVF (combined
rate of entry, vector transmission and establishment), separately for each one of the
EU regions potentially at risk, as specified in the 2017 EFSA scientific opinion on
Vector-borne diseases (VBD).

1.3) Provide a separate risk assessment of the risk of introduction of RVF for specific
Member States that may be at particular risk.

2) IMPACT OF RVF IN THE DEPARTMENT OF MAYOTTE AND RELEVANT CONTROL MEASURES

2.1) Assess the probability of overwintering of RVF in the department of Mayotte as well as
the risk of RVF spreading from Mayotte to other areas including other French
departments in the Indian Ocean or Metropolitan France.

2.2) Assess the impact of the disease (as defined in the ‘VBD opinion’), with emphasis on
animal health and farm production in Mayotte from the time of its initial occurrence to
date.

2.3) Assess the possible short and long term effectiveness, of different control
measures, in eliminating or reducing the disease impact in Mayotte (as per
TOR 2.2 above), namely:

2.3.1) Stamping out of RVF outbreaks;
2.3.2) Establishment of a protection and a surveillance zone around RVF outbreaks;
2.3.3) Biosecurity measures, such as the ones currently in place in Mayotte, coupled

with personal sanitary protection measures related to human-animal contact,
including measures to prevent consumption of potentially infected meat and
milk;

2.3.4) Vector control and protection measures;
2.3.5) Vaccination of livestock.

2.4) Assess the possible effectiveness of different surveillance strategies in
animals that may be used for RVF detection and possible prediction of RVF
recurrence in Mayotte in the future, in view of the diagnostic methods
currently available.

3) SURVEILLANCE AND CONTROL MEASURES FOR RVF [IN CASE OF OCCURRENCE
OR HIGH RISK OF RVF INCURSION IN EUROPE]

3.1) In case of high risk of RVFV introduction in Europe assess and describe the
surveillance measures necessary to ensure early detection of the disease

3.2) In case of RVF occurrence in Europe, assess the effectiveness of the main
available disease prevention and control measures for RVF, including the
relevant measures provided for in the draft Commission Delegated
Regulation on rules for the prevention and control of certain listed diseases
under Part III of Regulation (EU) 2016/429 on transmissible animal
diseases (Animal Heath Law), namely their potential to:

– limit the geographical spread of the disease
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– reduce the number of outbreaks
– reduce the overall impact of the disease being present in an area for

prolonged periods (e.g. in case overwintering is possible)

In particular, assess the feasibility, availability and effectiveness of:

3.2.1) the general measures set out in the enacting terms of Part I and II of
draft Commission Delegated Regulation

3.2.2) the disease-specific measures set out in Annexes I to X to draft
Commission Delegated Regulation

3.2.3) vaccination of listed species, including assessment of possible:

– risk mitigating measures necessary to be put in place for animals and
products of animal origin thereof, following vaccination

– surveillance performed after vaccination.

2. Data and methodologies

2.1. Assessment of the effectiveness of restriction zones

To estimate the zone size required for surveillance, we applied the methods developed in Schley
et al. (2009), which allows calculation of the probability of RVFV escaping a zone of a given radius.
The size of the surveillance zone can be defined as the minimum radius of zone for which the
probability of escape is below a predefined threshold value. The escape probability, pE(r), is given by,

pE(r) ¼ 1� exp �IR0

Z 1

r
k(s)ds

� �
;

where

k(r) ¼ rK(r)R1
0 rK(r)dr

is the probability of transmission at distance r, K(r) is the transmission kernel, R0 is the basic
reproduction number, here assumed to be 2, based on previous epidemics in Mayotte (M�etras et al.,
2017, 2020). On the other side, for EU, the calculation with different R0 values is provided, since the
R0 under the EU condition is not known: it is reported to vary between 2.3 and 6.8 as from modelled
values or from epidemics reported in Africa (Braks et al., 2017) and I is the number of infected animals
in the zone (in the best-case scenario assumed to be at least one). Recall that R0 is the average
number of cases an infectious animal will generate in a homogeneously mixed na€ıve population.
Therefore, the total number N≤ (r) of those cases contained within the circular surveillance zone of

radius r is given by, N� (r) ¼ R0
Rr
0
k (s)ds, and those outside that zone is, N[ (r) ¼ R0

Rx
r
k (s)ds.

Consequently, the escape probability can be rewritten as pE(r) ¼ 1� expf�IN[ (r)g and be interpreted
as the probability of finding cases outside the surveillance zone. It follows from this that the fraction of
total cases contained in the surveillance zone is simply given by (for I = 1),

N� (r)
R0

¼ 1þ lnð1� pEÞ:

An exponential kernel, K(r) = exp(–r/L), was assumed, where L is the mean transmission distance
mainly attributed to dispersal distance of hosts (vectors and animals). This means that very long-range
transmission events, such as over 20–30 km, usually attributed to animal movements and not to
vectors (EFSA, 2019) are highly unlikely, which was deemed appropriate, because we are principally
concerned with transmission, when animal movement restrictions are put in place within the restriction
zones. For such an exponential transmission kernel, the escape probability (for I = 1) is given by,
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pE(r) ¼ 1� exp �R0 1þ r
L

� �
e�r=L

n o

and the radius r of the circular surveillance zone is therefore obtained as a positive solution of,

�
1þ r

L

�
e�r=L ¼ � lnð1� pEÞ

R0
:

2.2. Assessment of the effectiveness of control measures for RVF in
Mayotte: spread model

To model the spread and control of RVFV in Mayotte, we used a stochastic version of a model
previously developed by M�etras et al. (2017, 2020).

Mayotte is a small island so treating it as a single homogeneously mixed population is a reasonable
approximation. The SEIR model (Susceptible–Exposed–Infectious–Recovered) used for Mayotte is an
approximation of the extended SEIR-SEI model used for the EU (see Section 2.3) in the limit of
stationary vector population in terms of both population level and prevalence on infection. This is
reasonable for Mayotte which is tropical and where RVFV is endemic, but not for Europe.

This is an age-structured SEIR model with the force of infection between animals driven by
precipitation to reflect seasonal variation in vector abundance. The model treats all susceptible
livestock species (cattle, sheep and goats) in Mayotte as a single homogeneously mixed population
(i.e. all species are equally susceptible and there is no spatial structure in the population). The model
has been fitted to data on RVFV IgG seroprevalence in Mayotte from 2005 to 2016 (M�etras et al.,
2017) and from 2018 to 2019 (M�etras et al., 2020).

The model is presented as in Figure 1 by M�etras et al. (2017).

And it is described by the following equations. For age class 1 (comprising animals 0–1 years old),
the number of susceptible (S), exposed (E), infectious (I) and recovered (R) animals on day t + 1 is
given by,

S1ðtþ 1Þ ¼ bt þ ð1� ktÞð1� dÞaS1(t)
E1ðtþ 1Þ ¼ kt þ ð1� dÞaS1(t)þ ð1� p1Þð1� dÞaE1(t)
I1ðtþ 1Þ ¼ p1ð1� dÞaE1(t)þ ð1� pRÞð1� dÞaI1(t)

The black arrows represent the state transitions within the same yearly age group, while the blue arrows also
account for the ageing of animals. The dashed lines correspond to disease stage transitions. The red arrows are
the import of infectious animals, and the transmission parameter bt in green is driven by climate variables.
Reproduced from M�etras et al. (2017).

Figure 1: SEIR age-stratified model diagram (10 yearly age groups, with a 2 [2–9] on the diagram)
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R1ðtþ 1Þ ¼ pRð1� dÞaI1(t)

For age classes a = 2, 3, . . ., 9 (comprising animals 1–2, 2–3, . . ., 8–9 years old, respectively), the
numbers are given by,

Saðtþ 1Þ ¼ ð1� ktÞð1� dÞaSa(t)þ ð1� ktÞdaSa�1ðtÞ;
Eaðtþ 1Þ ¼ ktð1� dÞaSa(t)þ ktdaSa�1(t)þ ð1� p1Þð1� dÞaEa(t)þ ð1� pIÞdaEa�1(t);

Iaðtþ 1Þ ¼ p1ð1� dÞaEa(t)þ p1daEa�1(t)þ ð1� pRÞð1� dÞaIa(t)þ ð1� pRÞdaIa�1(t);

Raðtþ 1Þ ¼ pRð1� dÞaIa(t)þ pRdaIa�1(t):

Finally, for age class 10 (comprising animals > 9 years old), they are given by,

S10ðtþ 1Þ ¼ ð1� ktÞa10S10(t)þ ð1� ktÞdaS9ðtÞ;
E10ðtþ 1Þ ¼ kta10S10(t)þ ktdaS9(t)þ ð1� p1Þa10E10(t)þ ð1� pIÞdaE9(t);
I10ðtþ 1Þ ¼ pIa10E10(t)þ p1daE9(t)þ ð1� pRÞa10I10(t)þ ð1� pRÞdaI9(t);

R10ðtþ 1Þ ¼ pRa10I10(t)þ pRdaI9(t):

The number of births, bt, is chosen to maintain a constant population size, N.
Note that in the stochastic implementation of the model, each of the terms in an equation becomes

a series of binomial probabilities. For example, the first term in the equation for S1(t) is implemented
in two steps: the first is to determine the number of animals surviving (Ns ~ Binomial (S1(t), a) and the
second to determine the number of these which become infected (I ~ Binomial(Ns, kt)).

In the equations above, a and a10 are daily survival probabilities and d is the daily ageing
probability. The latent and infectious periods were assumed to follow exponential distributions.
Accordingly, the daily probability of completing the latent period (and so becoming infectious) is given
by pI = 1 – exp(–1/lE), where lE is the mean latent period (which was chosen to account for both the
intrinsic (i.e. within-host) and extrinsic (i.e. within-vector) incubation periods). The daily probability of
completing the infectious period (and so recovering) is given by pR = 1 – exp(–1/lI), where lI is the
mean infectious period. The probability of infection, kt, is given by,

kt ¼ 1� exp �RðSÞ
t

lIN

X10
a¼1

Ia(t)

 !
;

where

RðsÞ
t ¼ expðb0 þ b1Pðt� 14ÞÞ;

is the seasonal reproduction number, which is assumed to depend on daily precipitation, P, with a time
lag of 14 days (i.e. at day t – 14) to reflect the lag between rainfall and change in mosquito
abundance. Parameters and their estimates are summarised in Table 1. Parameters in the model for
the transmission of RVFV in Mayotte (from M�etras et al., 2020). Data on animal populations and farm
management that have been used for this Opinion were derived from the websites of the Statistic and
Prospective Service of the French Ministry of Agriculture and Food (Service de la statistique et de la
prospective, Minist�ere de l’ Agriculture et de l’ Alimentation1 ) and from the Direction of Food,
Agriculture and Forestry (Direction de l’ Agriculture de l’ Alimentation et la Forêt, DAAF) of Mayotte.2

Data and information on the epidemiology of RVF in Mayotte, in relation to the outbreaks and cases in
animals and humans, were obtained from World Organisation for Animal Health (OIE), Animal Disease
Notification System (ADNS), French Veterinary Authorities. Monthly precipitation data for July 2018 to

1 R�esultats du recensement agricole 2010, Mayotte : Synth�ese illustr�ee du recensement agricole 2010 – �Elevage – juin 2011
(PDF : 1.4 Mo) – 13/9/2011; http://agreste.agriculture.gouv.fr/IMG/pdf_D97611A05.pdf

2 DAAF:http://daaf.mayotte.agriculture.gouv.fr/Statistiques
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June 2019 were obtained from METEO FRANCE3 and converted to daily precipitation by dividing each
monthly total by the number of days in the month. This was done based on the assumption that in a
tropical area rainy days are concentrated in rainy months with almost uniform distribution over the
month. Furthermore, the same precipitation data were used for each year of the simulations. This was
the only data set available, nevertheless, unless 2018–2019 was abnormally dry or wet, the simulations
should be representative and, in any case, the relative impact of the strategies is unlikely to be
affected.

In order to evaluate surveillance and control measures, the model was used to simulate incursions
of RVFV to Mayotte on 1 January, 1 April, 1 July or 1 October, assuming either: i) a completely na€ıve
population (except for pre-emptive vaccination) or ii) a population with immunity equal to that after
the 2018–2019 epidemic (specifically, the median simulated proportion of immune animals on 1
October 2019). For each of the eight scenarios, 100 replicates of the model were run until the end of
the second year after the incursion (i.e. day 1,095, where day 0 is 1 January in the first year of the
simulations).

Surveillance: The time course for the proportion of recovered animals (assumed to be equivalent to
IgG seroprevalence) from the ‘no control measures’ scenario was used to estimate either the time to
detection (in days) for a given design prevalence or the design prevalence required to detect an
incursion by a specified number of days post introduction. The value of test sensitivity is obtained from
the literature, and sample size is calculated using the RIBESS tool.4

Vaccination: When implemented as a control measure, the following assumptions were made about
vaccination:

• vaccine is deployed at a constant rate, i.e. number of animals per day, until the whole
population has been vaccinated;

• animals are vaccinated independently of their infection status, though previously vaccinated
animals are not revaccinated;

• vaccination has no effect on animals that are already infected or have been infected (i.e. are in
the E, I or R classes) as these animals will clear the virus and subsequently become (naturally)
immune;

Table 1: Parameters in the model for the transmission of RVFV in Mayotte (from M�etras et al.,
2020)

Parameter Symbol Estimate

Population size N 30,000

Number of animals in each age class (a =
1, . . ., 10)

Na {8,820, 6,180, 4,320, 3,030, 2,130, 1,500, 1,050, 720,
510, 1,740}

Simulated proportion of immune animals
in each age class on 1 October (i.e. post-
epidemic)

– {0.30, 0.54, 0.64, 0.66, 0.66, 0.66, 0.68, 0.71, 0.70,
0.78}

Daily survival probability
Age class 1–9 Α 0.9988

Age class 10 a10 0.9992
Daily ageing probability d 1/365

Seasonal reproduction number
Intercept b0 0.299

Precipitation b1 0.026
Mean latent period (days) lE 7

Mean infectious period (days) lI 7

Precipitation in 2018–2019 (mm) Median: 51.3; quantiles (25–75%): 21.2–273.1; range:
5.6–336.6

3 Meteo France : http://www.meteofrance.yt/climat/description-du-climat; and http://www.meteofrance.yt/climat/suivi-clima
tique-recent/an-2019

4 https://zenodo.org/record/167306#.XuHs6kX7TD4
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• susceptible animals are protected after vaccination with probability given by the vaccine
efficacy; the model assumed that there was no delay between vaccination and protection (this
is the day of protection).

In this case, the number of susceptible and vaccinated (and protected) animals on day t + 1 is,

Saðtþ 1Þ ¼ Saðtþ 1Þ � VðnewÞ
a (t);

V1ðtþ 1Þ ¼ ð1� dÞaV1(t)þ VðnewÞ
1 (t);

Vaðtþ 1Þ ¼ ð1� dÞaVa(t)þ daVa�1(t)þ VðnewÞ
a (t);

V10ðtþ 1Þ ¼ a10V10(t)þ daV9(t)þ VðnewÞ
10 (t);

where the number of newly vaccinated, protected animals in each age class is given by,

VðnewÞ
a (t) ¼ mE

Sa(t)P10
a¼1 Sa(t)þ Ea(t)þ Ia(t)þ Ra(t)

nV

and nV is the number of animals vaccinated per day and vE is the vaccine efficacy. We considered
three rates at which animals were vaccinated (20, 200 or 2,000 animals per day – see Section 3.3.2.3
about the choice of these scenarios, which are the numbers that could feasibly be vaccinated each day
by 1, 10 or 100 vaccination teams, see Section 3.3.2.3); five time points at which vaccination started
(60 or 30 days prior to the incursion and 30, 60 or 90 days after the incursion) and two vaccine
efficacies (60% or 90%; Njenga et al. 2015).

Culling: Culling of infected animals (i.e. those in the exposed (E) and infectious (I) classes) was
assumed to be part of a test and cull strategy (using a test with an assumed sensitivity and specificity
of 100%, a best-case scenario) in which a number of animals is tested each day and all infected
animals detected are culled. In this case, the number of exposed and infectious animals is given by

Eaðtþ 1Þ ¼ Eaðtþ 1Þ � EðcullÞa (t);

Iaðtþ 1Þ ¼ Iaðtþ 1Þ � IðcullÞa (t);

where the number of animals culled is

EðcullÞa (t) ¼ Ea(t)P10
a¼1 Sa(t)þ Ea(t)þ Ia(t)þ Ra(t)

nT;

IðcullÞa (t) ¼ Ia(t)P10
a¼1 Sa(t)þ Ea(t)þ Ia(t)þ Ra(t)

nT

and nT is the number of animals tested each day. Animals culled as part of control are assumed not to
be replaced. We considered three rates at which animals were tested (20, 200 or 2,000 animals per
day selected randomly from the population; cf. vaccination) and three time points at which testing and
culling started (30, 60 or 90 days after the incursion).

Vector control: Vector control was assumed to reduce vector abundance and, hence, the seasonal
reproduction number, Rt

(s), which is proportional to abundance (see, e.g. Smith et al., 2012). We
considered a range of scenarios in which abundance and, hence, the seasonal reproduction number
was reduced by between 10% and 90%. The broad range is due to lack of specific information on the
reduction in abundance that could be achieved by vector control measures.

Combined measures were also considered, namely vaccination combined with reduced mosquito
abundance through vector control measures, and test and cull combined with vector control measures.
Vaccination is not compatible with a test and cull strategy unless DIVA vaccines with available DIVA
diagnostic tests are used.
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2.3. Assessment of the effectiveness of control measures for RVF in EU:
modelling the transmission of Rift Valley fever virus within and
between farms in Europe

In order to assess the effectiveness of surveillance and control measures against RVF in the
continental EU, a mathematical model was used to simulate the spread of RVF after introduction into
the EU, and then to assess the effectiveness of surveillance and control measures such as vaccination
or animal culling.

However, there are very limited data on transmission of RVFV between holdings in endemic
countries and none for Europe specifically. To provide an assessment of spread and control, we
selected one country, the Netherlands, from those identified as being at highest risk of RVFV
introduction (EFSA AHAW Panel, 2020a) and geographically homogeneous to have a simpler scenario
to be simulated, since the model used does not take into account environmental elements such as
geographical barriers.

The main aim of the RVF spread model applied to the continental EU context is to provide a basic
tool for making inferences on the magnitude of the duration of an epidemic after introduction of
infection and implementation of control measures and to allow the relative comparison of the various
control measures, for obtaining informative suggestions on their relative effectiveness. The estimation
of the disease impacts in terms of absolute number of e.g. infected animals, abortions, deaths is not
the purpose of the current model and it cannot be applied as such to assess these aspects. The
description of the data used, the model structure, the underlying assumptions and the scenarios
chosen are described in the Sections 2.3.1, 2.3.2 and 2.3.3.

2.3.1. Data

2.3.1.1. Demographic data

The location of and number of cattle, sheep and goats on each farm were obtained from the
national authorities from the Netherlands. There are 65,740 farms and 6,244,938 animals in the
population used for the Netherlands simulations.

2.3.1.2. Climate data

Temperature data were obtained from the European Commission Joint Research Centre MARS
Meteorological Database, which provides daily meteorological data spatially interpolated on a 25 km by
25 km grid. Specifically, we extracted the daily mean temperatures for 2018. Farms used the
temperature data for the grid square in which they are located.

2.3.2. Within-farm transmission of Rift Valley fever virus

The dynamics of RVFV within a farm are described using a stochastic compartmental model that
includes a single ruminant host (cattle, sheep and goats are assumed to be equivalent) and a single
mosquito vector genus (Culex spp.) considered to widely transmit RVFV according to the knowledge
from epidemics in Africa.

The host population is assumed to be constant (H), except for disease-associated mortality, and is
subdivided into the number of susceptible (i.e. uninfected), infected and recovered animals, denoted
by X, Y and Z, respectively. To allow for a more general gamma distribution for the duration of
viraemia, the infected host population, Y, is subdivided into a number of stages, with newly infected
hosts entering the first stage and then passing through each successive stage. If the time spent in
each stage follows an exponential distribution with mean 1/nr, the total length of time spent in the n
stages follows a gamma distribution, with mean 1/r and variance 1/nr2 (Anderson and Watson, 1980).

The vector population (N) is subdivided into the number of adult female mosquitoes that are
susceptible (i.e. uninfected), latent (i.e. infected, but not infectious) and infectious, denoted by S, L
and I, respectively. To allow for a more general gamma distribution for the extrinsic incubation (i.e.
latent) period (EIP), the latent class is subdivided into a number of stages in a similar approach to that
described above for the duration of host viraemia. Vector mortality occurs at the same rate in all
classes and is balanced by the recruitment of susceptible vectors, so that the total vector population
remains constant. No transovarial transmission is considered in mosquitoes.
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The force of infection for the host, kH, is given by,

kH(t) ¼ bamh(t)
I(t)
N

;

where b is the probability of transmission from an infected vector to a host, a is the reciprocal of the
time interval between blood meals for the vector (assumed to be equal to the biting rate), m (= N/H)
is the vector-to-host ratio and I/N is the proportion of bites which are from infectious vectors. For the
Netherlands, mosquitoes were assumed to be active from April to October (Iba~nez-Justicia et al.,
2015), so the activity on day t is given by,

h tð Þ ¼ 0 otherwise
1 91� t� 304

�

Vector–host preference has been not considered because mosquitoes of the genus Culex (i.e. Cx.
pipiens s.l.) are considered ornithophilic, but also generalist and opportunistic mammalophilic with no
specific preference for any of the domestic animal species considered in this opinion (Brugman et al.,
2018).

The force of infection for vectors, kV, is

kV(t) ¼ bah(t)
Y (t)
H

;

where b is the probability of transmission from an infected host to a vector and Y is the total number
of infected animals. Parameters in the model are summarised in Table 2 and their values were
extracted from the published literature.

Population sizes in the model take integer values, while transitions between compartments are
stochastic processes (Table 3). The number of transitions of each type during a small time interval dt

Table 2: Parameters in the model for the transmission of Rift Valley fever virus within a farm

Description Symbol Estimate or function Comments and references

Probability of transmission from
vector to host

b 1 Turell et al. (2008)

Probability of transmission from
host to vector

b 0.1 Brustolin et al. (2017); Lumley et al.
(2018); Vloet et al. (2017)

Vector to host ratio m Gamma(sV,lV/sV) Varies amongst farms

Mean vector to host ratio lV 20 Gachohi et al. (2016)
Shape parameter for vector to
host ratio

sV 2 –

Number of animals on farm H – Obtained from national farm data
Reciprocal of the time interval
between blood meals

a a(T) = 0.0173(T – 9.6) Depends on temperature (Madder
et al., 1983)

Duration of
viraemia

Mean 1/r 6 Bird et al. (2009); Pepin et al. (2010)
No. stages n 3

Disease-associated mortality rate d 0.01 Assumes 5–30% of livestock die of
disease (Bird et al., 2009)

Extrinsic
incubation period
(EIP)

Mean 1/m m(T) = 0.0071(T – 14.6) Depends on temperature (Turell et al.,
1985; Barker et al., 2013)No. stages k 3

Vector mortality rate l l(T) = 1/(69.1 – 2.14T) Depends on temperature (Fischer
et al., 2013)

Vector recruitment rate q – For simplicity, assumed to be equal to
vector mortality rate, so the vector
population is constant

Vector population size N – For simplicity, assumed to be
constant; given by N = mH
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was drawn from a binomial distribution with population size n and transition probability q (the
appropriate per capita rate multiplied by dt) (Table 3). However, binomial random variables are
computationally expensive to simulate and an approximating distribution was used wherever possible.
If: (i) nq (1 – q) > 25; (ii) nq (1 – q) > 5 and 0.1 < q < 0.9; or (iii) min (nq, n (1 – q)) > 10, an
approximating normal variate with mean nq and variance nq (1 – q) was used, while if q < 0.1 and nq
< 10, an approximating Poisson variate with mean nq was used (Forbes et al., 2011).

2.3.3. Transmission of Rift Valley fever virus between farms

2.3.3.1. Modelling approach

To describe the spread of RVFV between farms, a stochastic, spatially explicit model with a daily
time-step was used. The probability that susceptible farm j (i.e. one with no infected hosts or vectors
present) acquires infection from infected farm k at time t was given by,

pjk(t) ¼ 1� expð�kðxjk; tÞÞ;

where k(x, t) is the force of infection and xjk is the (Euclidean) distance between farms. This is given
by,

kðxjk; tÞ ¼ ch(t) Ik(t) KðxjkÞ;

where c is the transmission parameter, Ik(t) is the number of infectious vectors on farm k (from the
within-farm model) and K(x) is the kernel. Two functional forms were considered for the kernel, K(x),
namely,

Table 3: Transitions, probabilities and population sizes in the model for the transmission of Rift
Valley fever virus within a farm

Description Transition Probability
Population

size

Hosts

Infection X ! X� 1
Y1 ! Y1 þ 1

� kHdt X

Completion of infection stage j (j = 1, . . ., n – 1) Yj ! Yj � 1
Yj ! Yj þ 1

�
Nrdt Yj

Mortality during infection stage j (j = 1, . . ., n) Yj ? Yj - 1 Ddt Yj
Recovery

Yn ! Yn � 1
Z ! Zþ 1

� Nrdt Yn

Vectors
Infection S ! S� 1

L1 ! L1 þ 1

�
kVdt S

Completion of extrinsic incubation period (EIP),
stage j (j = 1, . . ., k – 1)

Lj ! Lj � 1
Ljþ1 ! Ljþ1 þ 1

�
Kmdt Lj

Vector mortality during EIP (j = 1, . . ., k) (and
compensatory recruitment)

Lj ! Lj � 1
S ! Sþ 1

�
Μdt Lj

Completion of EIP Lk ! Lk � 1
I ! Iþ 1

�
Kmdt Lk

Mortality of infectious vectors (and compensatory
recruitment)

I ! I� 1
S ! Sþ 1

�
Μdt I
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fat-tailed kernel K(x) = (1 + (x d02))-1 exponential kernel K(x) = exp (- x d0)

where d0 is the length scale. These represent different assumptions about how transmission depends
on distance. In particular, a fat-tailed kernel results in a much higher probability of transmission at
longer distances than an exponential kernel.

2.3.3.2. Parameters

There are only very limited data available on transmission of RVFV between herds in endemic
countries and none that are directly applicable to Europe. Accordingly, we explored a range of
scenarios for the transmission parameter (c) and kernel distance scaling (d0). First, these parameters
for the fat-tailed and exponential kernels were estimated by fitting the force of infection to data on
outbreaks reported to the OIE from Tanzania in 2007 using a conditional likelihood approach
(Szmaragd et al., 2009). Second, two estimates for the transmission parameter were computed based
on the force of infection within a herd, but applied to between-herd transmission, c = baImax/N and
c = bamImax/N, where Imax is the maximum number of infected mosquitoes based on simulations of
the within-herd model. Finally, a shorter length scale (d0 = 6 km) was assumed for the exponential
kernel, based on reported dispersal distances (EFSA AHAW Panel, 2020a).

In total, nine scenarios were considered representing combinations of three transmission
parameters (c = 1 9 10�5, 3 9 10�4 and 1 9 10�3) and three kernels (fat-tailed, d0 = 1.6 km;
exponential, d0 = 6 km; and exponential, d0 = 13.7 km).

2.3.4. Control measures

2.3.4.1. Detection of infected premises

Infected premises (IPs) were assumed to be detected if they reported infection or if an animal died
of RVF. Reporting was modelled by assuming that there was a daily probability (0.05) of an infected
farm reporting disease. This corresponds to a mean time to reporting of 20 days, selected considering
that the incubation period for clinical sings is around 4–7 days, and considering the time for the
development of serious signs and to have more animals affected, to get the farmer’s attention).

2.3.4.2. Vaccination

At the animal level, vaccination was assumed to reduce the probability of transmission for vector to
host (to reflect the protective effect of vaccination) and the probability of transmission from host to
vector (to reflect reduced viral titres in infected, vaccinated animals). The probabilities were assumed
to decrease linearly over time until full protection was reached, so that,

b tð Þ ¼
b t\tvacc

b 1� t�tvacc
tFP

h i
e

� �
t� tvacc; t\tvacc þ tFP

b 1� eð Þ t� tvacc þ tFP
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:
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b t\tvacc

b 1� t�tvacc
tFP

h i
e

� �
t� tvacc; t\tvacc þ tFP

b 1� eð Þ t� tvacc þ tFP

8><
>:

where e is the vaccine efficacy (assumed to be 90%; as best-case scenario, see Table 4), tvacc is the
time of vaccination and tFP is the time to full protection (assumed to be 21 days; see Table 4).

At the herd level, vaccination was assumed to be implemented in zones around known IPs. Once
an infected herd was detected, all farms within the zone (and all animals on a farm) were assumed to
be vaccinated in a random order over the 14 days after the IP was detected. Two zones were
considered: the first was a circular zone with a 50 km radius around an IP (i.e. vaccination in the PZ
and SZ); and the second was a ring with inner radius of 20 km and outer radius of 50 km (i.e.
vaccination in the SZ only).
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2.3.4.3. Stamping out

Stamping out was assumed to be implemented so that either: i) all animals on a reported IPs were
culled; or ii) all animals on farms within a circular zone of radius 20 km (i.e. with the PZ) were culled.
Where farms other than the IP were culled, farms were culled in a random order over the 14 days
after the IP was detected.

2.3.5. Incursion

For all simulations, RVFV was assumed to be introduced on 1 July to the same (large) farm near
Amsterdam Airport Schiphol (EFSA AHAW Panel, 2020a).

2.4. Uncertainty analysis

Sources of uncertainty in the scientific assessment performed for Mayotte and the EU were
identified at two levels: inputs for the assessment (i.e. parameters used in the models) and methods
used in the assessment (here, disease spread models themselves). The limitations on the evidence for
the parameters used as inputs for the model were assessed by the WG and taken into consideration in
the modelling (see below) and in the interpretation of the results.

For the assessment of the uncertainty associated with the models, for each of the scenarios
considered in Mayotte different values/distributions were considered for several parameters
(transmission distance, dates of RVF incursion, immunity level of the population and time of
implementation of the control measures), thus generating distributions for the expected outcomes
(number of infected farms/animals, time to extinction of an outbreak) reflecting the uncertainty on
each expected outcome for a given scenario.

Similarly, when modelling the spread of the disease in Europe, a series of scenarios have been
considered, taking into account different values of transmission parameter and the type of the
transmission kernel aiming at simulating different spread characteristics.

3. Assessment

Two different mathematical models are used to assess the control and prevention measures for RVF
in Mayotte (Section 3.3) and in case of incursion into EU (Section 3.4).

Firstly, the performance of diagnostic tests and vaccines is discussed, since this will serve as inputs
for the mathematical model (Sections 3.1 and 3.2).

3.1. Diagnostic test for RVF early detection

Different laboratory diagnostic tests can be used for RVF early detection under different scenarios.
In case of investigations on clinical suspicions, direct tests, such as real time PCR (RT-PCR) or virus
isolation, performed on blood and other tissues taken from animals showing clinical signs suggestive of
RVFV infection are the best option. In the framework of a random active surveillance programme
based on blood sampling, RT-PCR might not be the best alternative, given the limited time window on
which infected animals are viraemic or with detectable RVFV’s genome in blood (Pepin et al., 2010;
Paweska, 2015) and the cost of a survey based on this molecular technique, especially when a large
number of animals must be tested. In this context, the test of choice in a psopulation free from
infection (unvaccinated animals) is the one identifying the immune response, which is, in case of RVF,
the enzyme-linked immunosorbent assay (ELISA) detecting IgM and IgG towards RVFV (Williams et al.,
2011). The laboratory diagnostic tests for RVF have been reviewed in Nielsen et al., 2020. The
commercially available ELISA test, e.g. ID Screen® Rift Valley Fever Competition Multi-species set for
bovine, ovine, caprine, horses, dogs, cats, human (ID Vet), has diagnostic sensitivity and specificity
estimated at 100% (CI95%: 91.24–100%; n = 40) and 100% (CI 95%: 99.58–100%; n = 920),
respectively (El Mamy et al., 2011; Comtet et al., 2010). In the assessment, the lower CI for Se will be
considered.

3.2. Effectiveness of RVF vaccines

A number of live-attenuated and formalin-inactivated vaccines, based on various RVFV strains
(Smithburn and Clone 13 strains), are currently licensed in African countries only and commercially
produced for livestock vaccination against RVF. These vaccines are produced by three different
laboratories: Onderstepoort Biological Products (OBP) in South Africa, Kenya Veterinary Vaccine
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Producing Institute (KEVEVAPI) and Egypt’s Veterinary Serum and Vaccine Research Institute. In
Table 4, the main characteristics of these vaccines are summarised.

Table 4: Characteristics of RVF vaccines commercially available

Live-attenuated vaccine
Clone 13 strain

Live-attenuated vaccine
Smithburn strain

Formalin-inactivated
vaccines

Effectiveness
(%)

Field condition:
• 67% in cattle
• 91% small ruminants

(Njenga et al., 2015a)

Highly immunogenic
Variable response in cows:
• 100% in pregnant aborted

(induced by vaccine)
• 44% in non-pregnant cows

(Botros et al., 2006)
Herd immunity tested by
ELISA from 95% to 66.7%
after 1 year, to 0%after 7
years

Cattle (controlled trial): 80%
after first dose, 90% after
booster 4 weeks after (Lagerqvist
et al., 2012)

Interference
with passive/
maternal
immunity

Yes Yes, cross reaction till 6
months (according to the
producer5)

No

Time to
protection
(days)

21 days (according to
producer6)

21 days (according to
producer)

30 days after boost at day 21
(Lagerqvist et al., 2012)

Duration of
immunity
(months)

At least 18 months following
vaccination in sheep and cattle
after a single inoculation
(Coackley et al., 1967). Annual
revaccination is advised
according to the producer6 above

Long lasting, although annual
revaccination is advised
according to the producer5

It requires the administration of
booster doses 3–4 weeks after
initial vaccination to ensure
adequate long-term protection, up
to 38 weeks, and annual
revaccination (Lagerqvist et al.,
2012; Barnard, 1977). Long-term
neutralising antibodies may persist
for 21 months after a booster dose
at any age and any stage of
pregnancy (Rusnak et al., 2011)

Use in
pregnant
animals
(safety)

Yes (Dungu et al., 2010)
Recently vaccine virus detected to
cross the ovine placental barrier
and spread to the fetus resulting
inmalformations and stillbirth
(Makoschey et al., 2016)

No: abortion and death of
fetus at parturition, but also
caused harmful changes in
internal organs (Botros et al.,
2006; Kamal, 2009)

Yes

Risk of
recombination

Possible recombination of Clone
13 and RVFV field strains
(Bouloy et al., 2001)

Possible recombination
between RVFV field strains and
the Smithburn strain has been
described in mammals
(Grobbelaar et al., 2011) and
mosquitoes (Turell et al., 2011)
(one reassorted isolate out of
over 200 collected from 16
African countries over 60 years)

None

DIVA No No Possible

Cost Live vaccines are cheaper than inactivated ones

5 https://www.obpvaccines.co.za/resources/products/X5Q2767Q298MMNA3/2153_RVFLive_PI.pdf
6 https://www.obpvaccines.co.za/resources/productInserts/RVF%20CLONE%2013%20VACCINE%20FOR%20CATTLE%20SHEEP
%20AND%20GOATS.pdf
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However, in the African context, several challenges for the utilisation of vaccines in the
management of RVF outbreaks have been described (Gachohi et al., 2012).

First, there may be an issue for vaccine availability. The inter-outbreak period of the disease
(approximated at 3 � 7 years) is much longer than the shelf-life of the currently available vaccine
(Smithburn vaccine; 4 years), what may hamper the maintenance of vaccine stocks due to the risk of
expiration. Therefore, most of these vaccines are often manufactured on order, and this may be a
problem for timely intervention. This may be an issue also for EU, in case mass vaccination would be
needed.

Second, the heavy rains during the high-risk periods limit access and hence the delivery of vaccines
to the rural areas.

Third, small ruminants, which are highly susceptible to the disease and hence would benefit from
vaccination, have a high population turn-over rates, limiting the maintenance of herd immunity.
Vaccinating dams may also help to provide certain degree of protection through passive immunity to
lambs and kids.

Key messages:

• Commercially available live-attenuated vaccines lack safety, especially in pregnant animals, and
do not support DIVA.

• The commercially available inactivated vaccine requires multiple doses or annual revaccination
to provide protection which renders the use of this vaccine not feasible in endemic zones due
to high costs and especially in remote areas where it is difficult to track animals, but suitable
for emergency vaccination in not at-risk areas or at least in valuable breeding animals.

• The above-mentioned drawbacks of currently available vaccines indicate the need for vaccine
development in the near future to fill the gap in safety and immunogenicity.

• Validated vaccine combined with related DIVA test should be considered in future researches.
• Vaccine availability in short time may be an issue in case of need of a high number of vaccine

doses, due to the limited stocks available and to the production on demand of the
manufacturers.

3.3. Control measures against RVF in Mayotte

3.3.1. Control measures put in place in Mayotte against RVF in 2018–2019 and
considerations about their effectiveness and feasibility

The epidemics of RVF in Mayotte started in November 2018, with a first human case that was
admitted at the hospital on 22 November 2018, the date considered as the onset of the symptoms,
and RVF confirmed in December, 1 month later. On 10 January 2019, RVF was confirmed in animals
and notified to the Animal Disease Notification System (ADNS) of the EU. Until August 2019, 121
outbreaks in ruminants from Mayotte were reported in ADNS, plus four outbreaks in December 2018
retrospectively reported by French veterinary services, i.e. a total of 125 outbreaks (EFSA AHAW Panel,
2020b).

3.3.1.1. Stamping out

No animal stamping out was applied in Mayotte during the RVF epidemic because it was considered
not possible since, very quickly after the confirmation of the first RVF cases in animals, it was evident
that the infection was present across the whole island. Furthermore, according to livestock experts
having worked in Mayotte (Dommergues, personal communication), it was assumed that stamping out
would have increased the risk of underreporting of suspected cases and possible illegal introduction of

Live-attenuated vaccine
Clone 13 strain

Live-attenuated vaccine
Smithburn strain

Formalin-inactivated
vaccines

Shelf-life Up to 12 months if stored at
+4°C (Daouam et al., 2014)

At –20°C: 2 years; at 2–8°C: 1
month7

6 months to 4 years8 (Bardosh,
2016)

At least 1 year (OIE, 2019)

7 https://kevevapi.or.ke/product/riftvax-tm/
8 https://www.oie.int/doc/ged/D12326.PDF
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ruminants. In addition, since there are no rendering plants in Mayotte, the elimination of culled
livestock would have been difficult.

3.3.1.2. Establishment of a protection and a surveillance zone around RVF outbreaks

No surveillance and protection zone were established in Mayotte around RVF outbreaks in animals.
The first RVF confirmation by RT-PCR in animals occurred in January 2019 in the commune of

Tsingoni in the centre of Mayotte (Figure 4). A protection zone of at least 20 km radius (as foreseen in
Regulation (EU) 2016/429 and annexes9) around Tsingoni would have covered most of the island
surface and a surveillance zone of 50 km radius would have included the whole island.

At the time of the first RVF confirmation in an animal in 2019, five human cases had already been
detected and they lived in various places from Mamoudzou (on the East coast of the island) to Chiconi
(on the West coast). In addition, serological evidence of RVFV circulation in livestock at least since
August 2018 indicated that the virus might have been circulating undetected in livestock for a few
months. Therefore, it was probable that RVF had already spread in Mayotte and that a surveillance
zone would not prevent the disease from reaching apparently uninfected communes.

Furthermore, controls at the border of a surveillance zone would have been very difficult to
achieve. In case on control on roads, people would have been able to move animals on foot through
forests or cultivated areas.

Figure 2: Map of Mayotte with location of communes (in the square top right the location of Mayotte
in the Indian Ocean, in the red circle)

9 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM:Ares(2019)3908627
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3.3.1.3. Biosecurity measures including sanitary protection measures related to human–
animal contact

In Mayotte, most animals are raised outdoors and biosecurity measures aiming at isolating animals
from the environment were considered impossible to achieve quickly. To protect animals suspected of
RVFV infection from vectors, veterinarians were asked to treat them with deltamethrin (pour-on).

Due to the difficulties in confining the spread in animals, the priority was set on preventive
measures related to animal to human transmission and to vector control. Awareness messages were
broadcasted on TV, radio and the newspapers (Figure 3).

Farmers were advised to use individual protective equipment (masks, gloves and goggles) and to
report abortions to the veterinarian. Selling raw milk was forbidden by the local authority (Pr�efet). The
farmer coop (CoopADEM) implemented trainings to teach farmers to pasteurise milk.

The general population was advised to:

• Boil the milk
• Cook the meat
• Keep out mosquitoes
• Eliminate mosquito larval breeding habitat
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Figure 3: Example of awareness material distributed in Mayotte for RVF prevention (Source:
Prefecture of Mayotte, France10)

10 http://www.mayotte.gouv.fr/
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3.3.1.4. Vector control and prevention measures

The surveillance protocol written at the beginning of the epidemic stated that when an animal case
was confirmed in a village, disinsectisation around the outbreak farm should be implemented by the
vector control service of the public health authorities. When an animal case was confirmed outside a
village, that is in cultivated areas or in forests, the environment should not be treated against vectors,
but breeding sites should be destroyed if possible.

At some point, the vector control service stopped visiting farms with confirmed cases in animals,
because they became too numerous and they focused their work on human households.

For each suspicion in animals, the veterinarian had to protect the animal with insecticide treatment
and to leave insecticide (deltamethrin) to the farmer to be used on the other animals. Limited
information provided in a report about activity against vectors in Mayotte at the time of RVF epidemic
has been issued by the Health Agency of Indian Ocean.11

3.3.1.5. Vaccination of livestock

No vaccination was implemented in the Mayotte epidemic, because no vaccine was authorised in
the EU. In the surrounding countries such as Kenya, Comoros and Madagascar, no mass vaccination
campaigns were in place.

3.3.1.6. Reasons for limited measures taken

The main reason why limited measures were taken to control RVF in animals in Mayotte was due to
the fact that the disease was already widespread at the time of confirmation, linked to the delay
between onset of symptoms and RVF laboratory confirmation/reporting. This delay was due to:

– The time between the onset of symptoms and the call of the owner to the veterinarian can
take a few days. For example, in case of an abortion the expulsion of the foetus might occur
a few days after the onset of symptoms in the cow

– The time between the call of the owner and the effective visit of the veterinarian: resources
are limited and there were only two vet practices in Mayotte and both vet practices cover the
whole island so the visit can be delayed by one day

– The time between the notification of the suspicion by the veterinarian and results of the
laboratory: samples were sent only once a week to Reunion Island, and therefore,
confirmation analysis can be delayed by 1 week

As a result, RVF was usually confirmed about 10–15 days after the onset of symptoms.
The other reason for limited measures applied is farm size and accessibility: even if Mayotte is a

small island, most farms are located in forest areas accessible only by a four-wheel drive vehicle or on
foot. Therefore, any intervention on a single farm requires almost half a day. Since the average herd
size is five animals, most farms had only one infected animal. Very soon after the beginning of the
epidemic, the number of people available at the veterinary services or in veterinary practices was not
enough to implement control measures in all infected farms.

Key messages:

• During the RVF outbreak in Mayotte, priority was put on protection measures related to animal
to human transmission, because animal cases became too many and uncontrollable.

• No stamping out, no protection zones and no vaccination were implemented.
• The only measures applied were very limited biosecurity and some vector control measures.
• The main reasons for limited measures applied were the delayed disease reporting, lack of

personnel to visit many small and isolated farms, cost of stamping out and vaccination and
inability to prevent animal movement (no protected zones (PZs)) as many animals were neither
housed nor corralled.

11 https://www.mayotte.ars.sante.fr/system/files/2019-11/Rapport%20annuel%20d%27activit%C3%A9%202018%20de%20l%
E2%80%99ARS%20Oc%C3%A9an%20Indien.pdf
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3.3.2. Scenarios of possible surveillance and control measures to be applied in
Mayotte and their effectiveness

3.3.2.1. Size of restriction zones

The radius of the surveillance zone as defined by the model applied herein depends on the basic
reproduction number, the threshold probability of escape (i.e. the risk of finding cases outside of the
surveillance zone) and the mean dispersal distance of mosquitoes (Figure 4). Active flight of
mosquitoes can be over distances from 50 m to 50 km, with average flight range of up to 6 km (EFSA
AHAW Panel, 2020a). For R0 = 2 and a mean dispersal distance of mosquitoes of 6 km, the radius of
the circular surveillance zone would be 34 km, 45 km and 60 km for probabilities of escape of 0.05,
0.01 and 0.001, respectively, corresponding to 95%, 99% and 99.9%, respectively, of cases from a
source farm contained within the surveillance zone (Figure 4). In the context of Mayotte (area = 376
km2, i.e. a radius of about 11 km), the whole of the island would be covered by a single zone for all
these sizes and, hence, the use of restriction zones was not considered further.

Key messages:

• Due to the small geographical size of Mayotte and the potential dispersal of mosquitoes over
long distances (e.g. > 6 km), the whole island can be considered a single protection zone;
thus, the use of restriction zones was not considered further.

3.3.2.2. Surveillance scenarios for RVF in Mayotte

Assuming a completely naive population at the time of incursion, the seroprevalence at around 40–
50 days from disease incursion is about 0.1%, whereas at around 110–170 days is 3% (Table 5). The
time to detection depends on the time of the incursion, with incursions in January or April that can be
detected earlier than those in July or October (Table 5). This reflects the seasonal pattern of rainfall in
Mayotte (rainy season is from December to March) and, hence, vector abundance and potential for
spread. Although all possible timing during the year for RVFV incursions are considered, those
happening at the early stages of the rainy season (from September to December) have in general the
maximum probability of resulting in larger epidemics, as observed in 2108–2019 and described in a
previous EFSA opinion (EFSA AHAW Panel, 2020b).

To ensure early detection of an incursion in a completely na€ıve population e.g. by 30 days after
incursion, the surveillance system requires a design prevalence of around 0.04–0.05%, regardless of
the time of incursion (Table 5). For longer times to detection (60, 90, 120 days), the required design
prevalence is higher and depends on the time of incursion (Table 6).

Figure 4: Radius of surveillance zone required for different mosquito dispersal distances for R0 = 2.
The probability of RVFV escaping the zone through mosquito dispersal alone (in restriction
zones, animal movements are forbidden) is 0.05 (red), 0.01 (blue) or 0.001 (magenta)
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If a certain level of pre-existing immunity is present in the population (equal to that following the
epidemic in 2018–2019; Table 1), the time to detection is longer than in a completely na€ıve population,
being 78–100 days to detect a prevalence of 0.1% (Table 7). Furthermore, the prevalence of newly
infected animals seldom exceeds 0.2% before the virus dies out, meaning a design prevalence of 1%
or 3% will not allow an incursion to be detected. To ensure early detection of an incursion in a partially
immune population within 30 days after incursion, the surveillance system requires a design prevalence
of around 0.02%, thus lower than in a completely na€ıve population, and the required design
prevalence does not increase greatly for longer times to detection (Table 8). This reflects the slow rate
of spread in the population due to the presence of immune individuals.

Table 5: Number of days to detection (median and 95% prediction interval) for a specified design
prevalence for RVFV in Mayotte assuming a completely na€ıve population

Design prevalence

0.1% 1% 3%

Time of incursion

1 January 42 (28, 109) 87 (65, 170) 111 (85, 204)
1 April 41 (30, 95) 106 (74, 196) 145 (102, 227)

1 July 53 (32, 112) 132 (96, 222) 172 (128, 249)

1 October 52 (30, 98) 118 (84, 184) 142 (111, 210)

Table 6: Design prevalence (%) (median and 95% prediction interval) required for a specified
number of days to detection for RVFV in Mayotte in a completely na€ıve population

Days to detection

Time of incursion 30 60 90 120

1 January 0.05 (0.02, 0.12) 0.26 (0.02, 0.78) 1.11 (0.02, 3.85) 4.35 (0.02, 13.61)

1 April 0.05 (0.02, 0.10) 0.22 (0.02, 0.56) 0.62 (0.02, 1.99) 1.46 (0.02, 5.06)
1 July 0.04 (0.01, 0.08) 0.11 (0.02, 0.33) 0.26 (0.02, 0.83) 0.55 (0.02, 2.02)

1 October 0.04 (0.02, 0.10) 0.12 (0.02, 0.39) 0.31 (0.02, 1.20) 0.95 (0.02, 4.43)

Table 7: Number of days to detection (median and 95% prediction interval) for a specified design
prevalence for RVF in Mayotte assuming a partially immune population (from pre-existing
immunity)

Design prevalence

0.1%

Time of incursion

1 January 78 (50, 160)
1 April 80 (39, 156)

1 July 100 (54, 172)

1 October 88 (53, 122)

Table 8: Design prevalence (%) (median and 95% prediction interval) required for a specified
number of days to detection for RVFV in Mayotte assuming a partially immune population
(from pre-existing immunity)

Days to detection

Time of incursion 30 60 90 120

1 January 0.02 (0.003, 0.04) 0.03 (0.003, 0.11) 0.04 (0.003, 0.32) 0.04 (0.003, 0.32)

1 April 0.01 (0, 0.05) 0.02 (0.003, 0.10) 0.03 (0.003, 0.17) 0.03 (0.003, 0.20)
1 July 0.01 (0.003, 0.04) 0.02 (0.003, 0.09) 0.02 (0.003, 0.12) 0.02 (0.003, 0.12)

1 October 0.01 (0.003, 0.04) 0.02 (0.003, 0.08) 0.02 (0.003, 0.15) 0.02 (0.003, 0.21)
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RVF surveillance was described in a previous EFSA opinion (EFSA AHAW Panel, 2020b). In livestock,
surveillance was mainly based on repeated cross-sectional sero-surveys and on monitoring the number
of abortions reported via the national brucellosis surveillance system. RVF seroprevalence was
computed yearly, aggregating data from July on year N to June on year N + 1 in order not to split the
rainy season in two parts. Results were displayed in the previous opinion.

In Table 9, the characteristics and performance of different active surveillance strategies in animals
that may be applied for RVF detection and possible prediction of RVF recurrence in Mayotte in the
future are reported, considering the diagnostic methods currently available and a na€ıve population. An
active surveillance programme based on random sampling is not feasible in the scenario of a high
proportion of population naturally immune as foreseen after the 2018-–2019 epidemic due to the
extremely low required design prevalence (Table 9).

Passive surveillance, based on the systematic testing of aborted fetuses and notifications of clinical
cases, remains a pillar for the detection of virus circulation.

Two main objectives for the active surveillance have been considered:

• Early detection of virus circulation, ideally before having a significant number of human and
animal cases (i.e. steep increase in the number of cases, from the mathematical point of view
the point when the derivative of the epidemic curve assumes its maximum value can be
considered), in order to apply control measures. In this case, the best period of testing is
represented by September–December, at the beginning of the rainy season. Different values of
expected prevalence of infection can be considered in this period of the year, according to the
time of viral incursion to the island. In case of incursion on 1 July, the expected prevalence can
vary from 0.11% in September to 0.55% in November (Table 9). In case of incursion on 1
October, the expected prevalence can vary from 0.04% in November to 0.12% in December
(Table 6).

• To monitor the level of virus circulation after the rainy season, when the expected prevalence
of infection, in case of virus circulation, is maximum. Therefore, for this objective, the best
period of testing is in May–June, after the rainy season. Under this scenario, the main
assumption is that the virus circulation occurred mainly during the rainy season, and therefore,
it is assumed that the viral incursion in the island occurred in January at latest. This would
correspond to a value of expected prevalence of 4.35% or more (Table 6).

For both objectives of the surveillance, the target population is represented by non-immune animals
born after the end of previous epidemics, to be tested after 3–4 months of age, when the probability
of interference with maternal antibodies is lower.

Concerning the diagnostic tests, IgG ELISA is the best option to have the maximum probability of
detecting the infected animals. Positive samples should be tested also for the presence of IgM and
viral genome (RT-PCR) to provide more information about the timing of infection.

Since the exact time of incursion of RVFV into the island cannot be predicted, but considering that
the period from September to December (at the beginning of rainy season) is the most risky for the
establishment of a new epidemic, we could also calculate from the model a mean value of design
prevalence for that period of time which would be equal to around 0.24%. This would imply a sample
size of 1,371 animals to be tested once or, as alternative, the repeated monthly testing of 343
randomly selected animals (preferably from different farms), in order to assure the same sensitivity of
the surveillance system (Cameron et al., 2020).

The characteristics of the surveillance scenarios are presented in Table 9.

Table 9: Surveillance scenarios for early detection of RVF in Mayotte considering a na€ıve population

Objective of
surveillance

Early detection of virus circulation (ideally before
having a significant number of human and animal
cases)

To verify whether the
virus circulated during
the previous rainy
season

Diagnostic tests ELISA IgG (sensitivity = 91%)
Positive samples should be tested also for the presence of IgM and viral genome (RT-PCR)

Target population Not vaccinated animals and born after the end of previous epidemics. To be tested after 3
–4 months of age, when the probability of interference with maternal antibodies is lower

Period of testing September–December (at the beginning of rainy season) May–June (after the rainy
season)
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Key messages:

• Considering that the rainy season in Mayotte is from December to March and this is the period
at higher risk for the establishment of an RVF epidemic, according to surveillance objectives,
two possible scenarios for active surveillance can be considered:

– Early detection of RVFV circulation, ideally before the occurrence of a significant number
of human or animal cases. This implies that a substantial number of animals need to be
tested to detect as early as possible RVFV incursions. Feasibility issues may rise.

– Verification of RVFV circulation during previous rainy season, which can be achieved
testing a limited number of animals, due to the higher required design prevalence.

• Monitoring the seroprevalence will give an indication about the occurrence of RVF and the
spatial and temporal distribution of infection and indicate possible areas with higher risk for the
re-occurrence of the disease.

• Passive surveillance, based on the notification and testing of aborted fetuses and animals
showing clinical signs suggestive of RVF, is the pillar of any early warning system and at
present the only feasible surveillance option, given the high percentage of animals naturally
immunised after the 2018–2019 epidemic.

3.3.2.3. Vaccination against RVFV in Mayotte

Vaccination can reduce the size and duration of an epidemic provided it is implemented early
enough and deployed quickly enough (Figure 5. Simulated dynamics of Rift Valley fever virus showing
the impact of vaccination assuming a vaccine efficacy of 60% (Figures 6 and 7).

In order to depict realistic vaccination rate scenarios (number of animals that can be realistically
vaccinated per day in Mayotte), given the experience gathered in Mayotte, it can be considered that
one team composed of one vet and one technician moving across the island by 4WD car can vaccinate
between five and 80 animals a day, with an average of about 20. Although the island is very small,
many factors hamper to reach higher vaccination rates:

• farm accessibility and farm size: often the vaccination team must drive 45 min and walk 20
min only to vaccinate two cows.

• Difficulty to localize and reach cattle breeders in order to localise animals in the forest.

It must be considered that during the FMD vaccination campaign in 2019–2020, four or five teams
contributed to vaccination.

Therefore, vaccination rates of 20, 200 and 2,000 animals vaccinated per day were considered as
possible scenarios by cross checking with veterinary personnel having worked there and by considering
the local reality in Mayotte such as the dispersal of small farms and the logistics available to the
veterinary services.

As it could be expected, when only 20 animals are vaccinated each day the impact on the number
of infected animals is minimal, though an effect can be expected on the number of epidemics lasting
beyond the end of the second year after the introduction of RVFV. If 200 or 2,000 animals are
vaccinated each day, both the number of infected animals and time to extinction are reduced, with

Objective of
surveillance

Early detection of virus circulation (ideally before
having a significant number of human and animal
cases)

To verify whether the
virus circulated during
the previous rainy
season

Design
prevalence ranges
according to the
time of incursion

Time of incursion
1 July
0.11%–0.55%

1 October
0.04%–0.12%

1 January
4.35%

Mean value for the period September–December: 0.24%
Sample size (95%
C.L.)

2,992–598 3,500–2,742 75

Sampling frequency With 0.24% design prevalence: 1,371 animals to be tested
once or, repeated monthly testing (September–December)
of 343 randomly selected animals (Cameron et al., 2020)
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bigger reductions seen with earlier deployment. The magnitude of any reduction for any scenario was
greater for a vaccine efficacy of 90% (Figure 7) compared with 60% (Figure 6).

Plots show the median (line) and interquartile range (shaded area) for the percentages of infected animals,
recovered animals, vaccinated (and protected) animals and immune animals (i.e. recovered and vaccinated,
protected) assuming no vaccination (red) and 20 (blue), 200 (magenta) or 2,000 (cyan) animals are vaccinated
each day. Results are based on 100 replicates of the model for an incursion on 1 January.

Figure 5: Simulated dynamics of Rift Valley fever virus showing the impact of vaccination assuming a
vaccine efficacy of 60%
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The top row shows the cumulative number of infected animals and the bottom row shows the time to extinction
(the numbers indicate the number of replicates for which RVFV had not been eliminated by the end of the third
year of the simulation). Incursions were simulated in January, April, July and October and assumed a completely
naive population (except for any pre-emptive vaccination). Vaccination was implemented 60 or 30 days prior to or
30, 60 or 90 days after the incursion at a rate of 20, 200 or 2,000 animals per day. Box-and-whisker plots show
the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles (whiskers) for 100 replicates of
the model.

Figure 6: Impact of vaccination on incursions of Rift Valley fever to Mayotte assuming a vaccine
efficacy of 60%
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In Table 10, the level of vaccination coverage and % infections reached 3 years after RVF incursion
with different vaccination rates and different start in relation to disease incursion are reported.

The top row shows the cumulative number of infected animals and the bottom row shows the time to extinction
(the numbers indicate the number of replicates for which RVFV had not been eliminated by the end of the third
year of the simulation). Incursions were simulated in January, April, July and October and assumed a completely
naive population (except for any pre-emptive vaccination). Vaccination was implemented 60 or 30 days prior to or
30, 60 or 90 days after the incursion at a rate of 20, 200 or 2,000 animals per day. Box-and-whisker plots show
the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles (whiskers) for 100 replicates of
the model.

Figure 7: Impact of vaccination on incursions of Rift Valley fever to Mayotte assuming a vaccine
efficacy of 90%

Table 10: Vaccination coverage and % infected reached 3 years after an RVF incursion in January
with different vaccination rates and different start in relation to disease incursion

Vaccination
rate

Vaccination
coverage at

time of
incursion if
started
60 days
prior

Median %
infection

prevalence
cases at the

end of 3 years

Median
duration of

the
epidemics
(years)

Vaccination
coverage at

time of
incursion if
started 30
days prior

Median %
infection

prevalence
at the end
of 3 years

Median
duration of

the
epidemics
(years)

60%
VE

90%
VE

60%
VE

90%
VE

60%
VE

90%
VE

60%
VE

90%
VE

20 animals/day 4% 52.9 44.7 1.86 1.83 2% 54.3 46.7 1.79 1.81

200 animals/day 40% 0.14 0.05 0.34 0.21 20% 0.6 0.13 0.59 0.31

2000 animals/day 100% 0.03 0.003 0.14, 0.05 100% 0.02 0.003 0.14 0.05
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Key messages:

• The results of the analysis of the impact of vaccination on reduction of RVF infections suggest
that the vaccination is more effective when applied early before the start of the epidemic and
quickly implemented throughout the population. Different levels of vaccine effectiveness, either
60% or 90% have a relatively minor effect on the reduction, albeit higher for 90%
effectiveness.

• In particular, with a vaccination rate of 200 and 2,000 animals vaccinated per day, the
epidemic is halted within 1 year, regardless whether the vaccination is applied before or after
the RVF incursion. Moreover, the number of infections is kept under 3% if the vaccination is
conducted at least 30 days prior to incursion with at least 200 animals vaccinated per day
(20% coverage achieved at time of incursion, 100% coverage achieved 120 days post
incursion). The same effect is achieved if the vaccination is conducted at 2,000 animals
vaccinated per day, started at 60 days post incursion at the latest, 100% vaccination coverage
would be achieved 75 days after RVF incursion.

• On the contrary, with 20 animals vaccinated per day, the epidemic continues for more than 2
years and the whole population would get infected.

3.3.2.4. Culling strategies to control RVFV in Mayotte

When carried out as part of a test and cull strategy, culling is unlikely to be effective at controlling
RVF in terms of both number of animals infected and epidemic duration unless large numbers of
animals (2,000 per day) can be tested to identify infected animals for culling (Figure 8. Impact of
testing and culling on incursions of Rift Valley fever to Mayotte.). Lower levels of testing (20 or 200 per
day) had no impact on the number of infected animals or epidemic duration compared with no control
(Figure 8).
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Key messages:

• Test and cull strategy does not seem a valid alternative for the control of RVF in Mayotte
conditions unless high numbers (ca. 2,000 per day) of animals are tested every day and the
infected culled.

3.3.2.5. Impact of vector control on RVFV in Mayotte

In theory, vector control in RVFV endemic areas may contribute to decrease transmission of the
disease by controlling adult mosquitoes, breeding sites, engage general public and predict and monitor
of RVFV high-risk areas (Anyamba et al., 2010; Chevalier et al., 2010). However, in reality, there have
been few attempts at controlling vectors of RVFV in endemic areas in Africa. In the 90s, Linthicum
et al. (1989) showed promising results in a semi-field controlled trial where a single treatment of IGR
Methoprene (5.6 kg/ha) was able to control Aedes and Culex spp. for 2 weeks in a dambo12 area in
Kenya after 3 and 1 day after flooding. Subsequently, Logan et al. (1990) tried to control floodwater
mosquito vector species in Kenya by treating with Methoprene (4%) the dambos habitat 5, 3 and 1

The top row shows the cumulative number of infected animals (including those which were not detected and those
which were detected and culled), the middle row shows the cumulative number of infected animals detected and
culled, and the bottom row shows the time to extinction (the numbers indicate the number of replicates for which
RVFV had not been eliminated by the end of the third year of the simulation). Incursions were simulated in
January, April, July and October and assumed a completely naive population. Culling was implemented as part of a
test and cull strategy starting 30, 60 or 90 days after the incursion, with 20, 200 or 2,000 animals tested per day.
Box-and-whisker plots show the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles
(whiskers) for 100 replicates of the model.

Figure 8: Impact of testing and culling on incursions of Rift Valley fever to Mayotte

12 class of complex shallow wetlands in central, southern and eastern Africa.
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week before flooding and 1 day after. Treatment performed 5 weeks before flooding showed to reduce
Aedes spp. adults by 98% and 100% if treatment was conducted 1 day after flooding. Treatments
conducted 3 and 1 week before flooding reduced Aedes spp. adults by 88% and 84%, respectively.
None of the treatments was effective against Culex spp. In a similar approach, Logan and Linthicum
(1992) used Bacillus thuringiensis var. israelensis (Bti) in briquet formulation in different doses during
30 days and 13 days after flooding in a dambo area in Kenya. The doses of 1 briquet/9 m2 showed to
significantly increased Aedes spp. larval mortality by 36% compared to the control (8%). The
treatment even at higher doses failed to control Culex spp. larvae when compared to the control site.
In a different strategy conducted in Senegal (Diallo et al. 2008), a bull-calf treated with 25 mg/m2 of
deltamethrin showed to reduce the average number of mosquitoes attracted during the first 2 weeks
post-treatment for the main RVFV vector species in the area (Ae. vexans, Ae. ochraceus, Cx. poicilipes,
Cx. neavei and Ma. uniformis). In addition, the number of blood engorged females was reduced by
64.1%, while mortality rate of collected mosquitoes decreased by 43.8%.

Despite the potential effect of larvicides, adulticides and repellents on mosquito populations, up to
now, there is no evidence on their effect on the transmission of RVFV in endemic countries. Therefore,
it is difficult to determine the level of vector control that should be achieved for an effective decrease
of disease transmission. In addition, the fact RVFV is transmitted by a multi-species mosquito fauna
(Aedes spp. and Culex spp.) with different ecological and behavioural traits, makes difficult to
effectively control their populations.

In the case of Mayotte, there is a lack of information about the vector control procedures during
the recent RVFV outbreaks. However, mosquito control has been a regular activity in the island since
the 50s because of the presence of human diseases such as malaria and Bancroftian filariasis, as well
as the outbreaks of dengue and chikungunya in different decades (Pocquet et al., 2014). Therefore,
main control efforts are conducted on Cx. pipiens/quinquefasciatus, Anopheles gambiae, Ae. albopictus
and Ae. aegypti, all potential vectors of RVFV except An. gambiae. However, current mosquito control
in the island is constrained by the European legislation, that reduced the number of formulates
available for mosquito control and more importantly, by the protection of ecosystems. Insecticides
used in the island were the larvicides temephos (an organophosphate) from 1973 to 2012 and
currently the larvicide Bti as well as the adulticide deltamethrin (pyrethroid) since 1984 in indoor
residual spraying and/or on long-lasting insecticide-treated nets. Since all these treatments are
intended for the control of human VBD and therefore applied around human settlements, there are no
evidences of their impact on other potential vector species of RVFV in Mayotte.

Provided they are able to reduce mosquito abundance (and, hence, the seasonal reproduction
number) by 40% or more, vector control measures have the potential to reduce both the number of
animals infected and epidemic duration (Figure 9). If the reduction in abundance is lower (10–30%),
however, vector control can potentially increase the duration of an epidemic, even though it reduces
the total number of animals infected during its course (Figure 9). In this case, vector control reduces
the seasonal reproduction number, but not to below one, effectively flattening the epidemic curve.

There are no previous studies showing the effect of vector control on the reduction of transmission
of RVFV in endemic countries. In fact, considering the diversity of vector species in Mayotte (EFSA
AHAW Panel, 2020b), as well as the wide variety of breeding sites and suitable climatic conditions,
controlling mosquito abundance by 40% or more seems rather unfeasible when conventional methods
(i.e. larvicide and adulticide treatments) are used. As commented above for other RVFV endemic
countries in Africa, while effective control can be achieved for some species (i.e. Aedes spp.), control
for other species (i.e. Culex spp.) seems to be very limited. In addition, the impact of treatments in
natural and agricultural areas (i.e. impact on pollinators) may preclude any vector control on those
areas. The data about vector control measures taken during the epidemics in Mayotte in order to
protect animals and humans, as well as its efficacy, are unavailable. In consequence, there is no
baseline data to estimate the level of impact of the vector control procedures applied in Mayotte to be
compared with the model produced here.
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Key messages:

• There are few examples of control of RVFV vectors in endemic African countries, but none of
them showed an effective control of all mosquito species involved in RVFV transmission.

• There are vector control activities in Mayotte mainly against human VBD with probably none or
limited impact on the RVFV vector species.

• Vector control alone does not seem to be a valid alternative for the control of RVF in Mayotte.
Only a reduction of 40% or more of mosquito abundance (which is achievable for short time,
e.g. 2 weeks, according to experience from Kenya using larvicides against Aedes spp., can
have a measurable effect on the transmission and re-occurrence of the infection).

• Effective vector control, mostly by using larvicides, will require long-term programmes
considering the mosquito habitat and climatology of Mayotte. General use of adulticides is
unachievable due to the potential impact on the environment.

• Lesser rates of mosquito reduction (10–30%, which may also be levels very challenging to
achieve) may reduce the total number of animals infected during its course but also flatten the
epidemic curve, thus increasing the duration of the whole epidemic.

The top row shows the cumulative number of infected animals and the bottom row shows the time to extinction
(the numbers indicate the number of replicates for which RVFV had not been eliminated by the end of the third
year of the simulation). Incursions were simulated in January, April, July and October and assumed a completely
naive population. Vector control measures were assumed to reduce abundance by 10–90%. Box-and-whisker plots
show the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles (whiskers) for 100
replicates of the model.

Figure 9: Impact of reduced mosquito abundance through vector control measures on incursions of
Rift Valley fever to Mayotte
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3.3.2.6. Impact of pre-existing immunity on RVFV control

If there is a high level of pre-existing immunity (see Table 1) on the population as a result of a
previous epidemic, it is unlikely that a new epidemic will occur, even in the absence of control
measures. Accordingly, vaccination, culling and vector control all have limited impact on the (small;
median < 10 animals) number of infected animals or time to elimination of the virus from the
population in this scenario (see Annex A).

3.3.2.7. Impact of combination of control measures

In the real situation, a combination of different strategies can put in place. However, a systematic
use of vaccination is not compatible with a test and culling strategy, unless DIVA vaccines with
available DIVA diagnostic tests are used. Vaccination and test-and-culling strategies can be therefore
considered alternative approaches, while the control of vector population can be usually applied in all
situations. Therefore, two realistic combinations of control strategies above reported can be
considered:

• Vaccination and reduced mosquito abundance through vector control measures,
• Test-and-culling and reduced mosquito abundance through vector control measures.

When combined with either vaccination or testing and culling, vector control measures sufficient to
reduce abundance by 10% have limited additional impact (Figures 10 and 11). When they are
sufficient to reduce abundance by 20–30% vector control measures have some impact in reducing
both the number of infected animals and time to extinction, particularly where vaccination or testing
and culling have only a limited impact (i.e. vaccinating 20 animals per day or testing and culling 20 or
200 animals per day) (Figures 10 and 11).
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The top row shows the cumulative number of infected animals and the bottom row shows the time to extinction
(the numbers indicate the number of replicates for which RVFV had not been eliminated by the end of the third
year of the simulation). Incursions were simulated in January and assumed a completely naive population (except
for any pre-emptive vaccination). Vaccination was implemented 60 or 30 days prior to or 30, 60 or 90 days after
the incursion at a rate of 20, 200 or 2000 animals per day and assumed a vaccine efficacy of 60%. Vector
control measures were assumed to reduce abundance by 10, 20 or 30%. Box-and-whisker plots show the
median (black line), interquartile range (box) and 2.5th and 97.5th percentiles (whiskers) for 100 replicates of
the model.

Figure 10: Impact of vaccination in combination with vector control measures on an incursion of Rift
Valley fever to Mayotte
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The top row shows the cumulative number of infected animals (including those which were not detected and
those which were detected and culled), the middle row shows the cumulative number of infected animals
detected and culled, and the bottom row shows the time to extinction (the numbers indicate the number of
replicates for which RVFV had not been eliminated by the end of the third year of the simulation). Incursions
were simulated in January, April, July and October and assumed a completely naive population. Culling was
implemented as part of a test and cull strategy starting 30, 60 or 90 days after the incursion, with 20, 200 or
2,000 animals tested per day. Vector control measures were assumed to reduce abundance by 10, 20 or 30%.
Box-and-whisker plots show the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles
(whiskers) for 100 replicates of the model.

Figure 11: Impact of testing and culling in combination with vector control measures on an incursion
of Rift Valley fever to Mayotte
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Key messages

• When a vaccination strategy is considered in combination with the application of vector control
measures, null or small combined effects can be seen for reduction of mosquito population less
than 40%.

• When testing and culling strategy is considered in combination with vector control measures,
the latter, for mosquito reductions of 40% or above, increase the efficacy of the culling
strategy.

3.4. Surveillance strategy for early detection in case of risk of
introduction of RVF into continental EU

In case of high risk of RVFV introduction in EU, the surveillance measures necessary to ensure early
detection are assessed below. Currently, there is no current EU legislation or diagnostic manual for the
early detection or surveillance with respect to RVF, and the sampling procedures and diagnostics for all
category A disease according to Regulation (EU) 2016/429 (among those also RVF) will be also
assessed in next opinions by EFSA.

3.4.1. Objective of the surveillance

The objective of any surveillance in the EU would be to detect the incursion of the RVFV as early as
possible to put in place proper control measures to limit the spread and the impact of the infection on
the EU territory.

3.4.2. Geographical areas for surveillance

To have the highest chance of detecting the RVFV in case of entry, the surveillance should be
focused in those areas at major risk of RVFV introduction only. In the previous EFSA Opinion (EFSA
AHAW Panel, 2020a), an assessment of possible RVFV introduction pathways into the EU has been
made. While the probability of introduction through infected animals was considered ‘very low’, due to
the rigorous measures hampering the import of live animals from infected countries, the entry of
infected vectors when shipped by flight or sea containers was assessed as ‘low’. In the same EFSA
Opinion, it has been recommended, considering that higher risk values estimated for the introduction
of infected vectors, to integrate the surveillance systems already in place in the EU for invasive
mosquitoes, with particular attention to those points of entry receiving major air and sea traffic from
RVF affected countries. Under this scenario for RVFV introduction, cattle and small ruminant
establishments located in the proximity of these points of entry (ports, airports, cargo, container
yards) should be included in the surveillance.

In addition, in the recommendations of the previous EFSA Opinion (EFSA AHAW Panel, 2020a), it
was stated that: ‘Considering the possible future source of risk represented by the spread of infection
into new areas closer to the EU borders, it is of paramount importance for the EU to establish and
maintain a close collaboration with North African and Middle Eastern countries in the surveillance of
possible introduction of RVF from currently infected areas, as well as to carefully monitor the evolution
of the epidemics in African countries’. This should be especially monitored along the southern borders
of the EU, which would be the area more exposed in case of the presence of RVFV infections in North
African and Middle Eastern countries. To date, apart from Libya and Egypt, all other countries of these
two regions are considered free from RVF. Although the presence of a RVF epidemic would not pass
unnoticed, the social detriment situation due to the war in Libya and the contemporaneous presence
of SARS-CoV-2 infection could substantially delay the recognition of a RVF spread in human and animal
populations. For these reasons, the EU territory closer to Libya, like Sicily, Malta and southern Greek
islands, could be considered eligible to be included into a surveillance scheme in order to ensure early
detection and timely implementation of control in case of introduction into EU.

3.4.3. Type of surveillance

3.4.3.1. Passive surveillance

The introduction of RVFV into a fully susceptible ruminant population, such as in the Europe, would
result in a significant number of clinical cases, with high mortality in young animals and abortion
storms. For this reason, passive surveillance can be considered the most effective for the early
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detection of the infection under these circumstances. An enhanced passive surveillance of abortions,
stillbirths and neonatal mortality in cattle, sheep and goats, therefore, should be applied during
summer and autumn (during the peak of and end of vector season) in the areas at major risk of
introduction. In case of abnormal abortion or mortality rates, all aborted fetuses and dead animals
should be investigated also for the presence of RVFV during the vector season.

3.4.3.2. Active surveillance

In the lack of any credible assessment of the RVF epidemic dynamic under the EU conditions (see
outputs of model results, Section 3.5.1.3), it is difficult to hypothesise the level of infection that should
be the target of an active surveillance strategy at the beginning of an RVF epidemic.

The only documented experience of RVFV introduction into a na€ıve territory is the RVFV incursion into
the Kingdom of Saudi Arabia and Yemen in 2000–2001. From the end of August 2000 to September
2001, a total of 886 human cases and thousands of affected animals were reported in the southwestern
region of Jazan in Saudi Arabia (Madani et al., 2003). Two-thirds (64.7%) of the animal cases occurred in
September and October 2000 and the apparent prevalence at the end of this epidemic wave was 9.7% in
sheep, 7.9% in goats, 1.2% in cattle and 1.3% in camels (Elfadil et al., 2006). Difference between these
values may depend on several variables: test sensitivity, animal density, type of husbandry, sample size
etc. Control measures, including the mass vaccination of livestock (primarily sheep and goats) with the
live-attenuated RVF Smithburn strain vaccine, were implemented immediately after the outbreak was
detected (Elfadil et al., 2006). A serological study conducted from August to October 2004 on non-
vaccinated animals belonging to 17 small ruminant flocks (n = 6,143) in which death, abortion and/or
diarrhoea were observed, resulted in the detection of 0.36% IgM-positive animals (Elfadil et al., 2006),
which may suggest a possible reference value for estimating a design prevalence in EU.

Although the epidemiological conditions of the RVF epidemic in Saudi Arabia must be considered
largely different from those that would be encountered in the EU in terms of the ecological/climatic
conditions, the type of animal breeds and the vector species involved, this is the only known and
documented case of introduction of RVF into a free territory. If the level of infections observed in Saudi
Arabia is taken into consideration for an active surveillance for early detection in the EU based on
antibody detection, then a target prevalence around 0.3% should be at least considered. For
comparison, this would correspond to the target prevalence value estimated for Mayotte at 90 days
post introduction (see Section 3.3.2.2), while the target prevalence value estimated for Mayotte at
earliest time post introduction (30 days) would correspond to 0.04%. Real-time RT-PCR against two
target genes should be used for virus detection although serology tests using commercial ELISA kits
could be used for screening large numbers of animals.

Key messages:

• In the scenario of RVFV introduction into EU by introduced vectors as previously described
(EFSA AHAW Panel, 2020a), it is recommended cattle and small ruminant establishments
located in the proximity of the points of disease entry (ports, airports, cargo, container yards)
should be included in the surveillance

• Passive surveillance can be considered the most effective for the early detection of the
infection in continental EU when a risk of introduction would emerge. An enhanced surveillance
on abortions, stillbirths and neonatal mortality, therefore, should be applied during summer
and autumn (during the peak of and end of vector season) in the areas at major risk of
introduction.

• Based on the only known and documented case of introduction of RVF into a free territory
(Saudi Arabia), a target prevalence based on antibody detection of around 0.3% or lower for
designing an active surveillance for early detection of RVF in the EU should be considered.

3.5. Assessment of feasibility, availability and effectiveness of
prevention and control measures in the event of RVF occurring in
the EU

The general measures for the prevention and control of listed diseases are set out in the enacting
terms of Parts I and II of the Commission Delegated Regulation 2020/68713, and the epidemiological

13 COMMISSION DELEGATED REGULATION (EU) 2020/687 supplementing Regulation (EU) 2016/429 of the European Parliament
and the Council, as regards rules for the prevention and control of certain listed diseases.

Surveillance and control for Rift Valley Fever in EU

www.efsa.europa.eu/efsajournal 41 EFSA Journal 2020;18(11):6292



specificities set out in Annexes I–X of the same Regulation. Parts I and II of this Regulation describe
the measures to be applied in case of suspicion of an outbreak of category A disease and in case of
confirmation of an outbreak, the measures to be applied in the restricted zone (protection and
surveillance zones) and the related derogations. The Annexes include (i) sampling procedures (clinical
and laboratory) for confirming disease and carrying out surveillance to demonstrate disease freedom
or evidence to allow derogations from movement restrictions, (ii) the monitoring period for which
measures in the restriction zones should be maintained and the time used in epidemiological
investigations, (iii) the minimum size and duration of the restriction zones, (iv) all the prohibitions of
activities concerning animals of listed species and their products and (v) risk mitigating treatments of
the products.

In terms of detecting and confirming disease, given the livestock population in the EU and the small
number of wild or captive animals of other susceptible species in comparison, early warning passive or
active surveillance using laboratory tests would be most effective in cattle and domestic small
ruminants.

In the event of an outbreak of RVF being confirmed, the competent authority prescribes the culling
of all animals in the farm, the proper disposal of carcasses, products and materials, cleaning and
disinfection and all biosecurity measures to avoid further spread. Derogations from immediate culling
of all animals on the infected establishment are only allowed for animals kept in confined
establishments, animals in research establishments, rare breeds and animals of high genetic, cultural
and educational value. In addition, in establishments keeping animals of listed species in two or more
epidemiological units, the competent authority may grant a derogation from killing for the
epidemiological units in which the disease has not been confirmed. Different culling strategies are
assessed in Section 3.5.2.2 of this opinion. Testing and culling alongside mosquito surveillance is
recommended to assess whether the disease further spreads as well as to increase the surveillance of
livestock: this will be part of the assessment in the EFSA Scientific Opinion on the control measures for
all category A diseases. In terms of derogating from culling listed species in certain circumstances, this
presents a very low risk of spread, providing that the animals have been in vector-proof or -protected
housing and are tested negative regularly during the monitoring period (i.e. every 4–5 days). Clinical
examination alone will not give sufficient confidence as these species may experience occult infections.

Furthermore, the competent authority must establish restriction zones around the infected
establishment, which comprises a Protection Zone (PZ) and a Surveillance Zone (SZ) with the
possibility to establish further restricted zones according to epidemiological criteria (set out in Article
64 of Regulation (EU) 2016/429). The size of the restriction zone is assessed in Section 3.5.2.5.

The Delegated Regulation (EU) 2020/687 requires certain measures in the restriction zones, which
must be in place for a minimum period, set as 30 days for RVF (plus additional period of 15 days for
surveillance measures), for which the assessment will be carried out in the EFSA Scientific Opinion on
the control measures for all Category A diseases. These measures include no movements of live
animals of listed species out of the PZ, unless directly to slaughter; no movement of live animals within
or through the zone except under specific conditions to minimise the risk; tracing of animal by-
products. In addition, monitoring for clinical signs in listed species should be in place and insect control
in and around establishments carried out. The in-depth analysis of these measures will be part of the
EFSA Scientific Opinion on the control measures for Category A diseases.

A clinical examination of all listed species in the PZ should be carried out as quickly as possible
along with suitable testing sufficient to detect disease if necessary. As RVF can cause occult infection
in older, non-pregnant animals, laboratory sampling will be necessary to demonstrate less than 5%
prevalence with 95% confidence in each flock or herd. There is no indication in the legislation on what
level of surveillance (design prevalence) should be carried out. As the PZ is greater than 3 km radius,
the authorities may decide to require only a visit to a representative number of premises, and in this
case, a risk factor sampling strategy would be used, where those establishments with a higher density
of livestock and suitable vector habitat would be targeted.

Certain derogations for moving animals directly to slaughter within the PZ or moving animals to
pasture in the SZ may be considered and these will be assessed in details in the EFSA Scientific
Opinion on the control measures for all Category A diseases. This will include statistical sampling of
animals to provide evidence of disease freedom for which there is currently no guidance. Derogations
for moving animals to slaughter within the monitoring period require pre-movement testing for each
individual animal, as the potential public health concerns of slaughtering infected animals must take
priority.
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In the SZ, although the Delegated Regulation allows for clinical examination only for surveillance,
given the possibility of occult infection, laboratory sampling for a statistical sample targeting those
establishments with certain risk factors can be used to rule out the infection with a certain level of
confidence. There are derogations for the movement of live animals directly to slaughter or to grazing
pastures within the SZ or to a slaughterhouse or processing plant outside the Restriction Zone.

These measures are lifted once the monitoring period has elapsed and preliminary cleaning and
disinfection on the infected establishment are completed and all establishments have had favourable
clinical and/or laboratory examinations. In the case of a vector-borne disease, the duration of
measures can take into account other factors relevant for disease spread. After 30 days (for RVF),
these measures are lifted but instead the measures applied in the SZ will continue for the PZ for an
additional period of 15 days.

Vaccination against Category A diseases is not foreseen by the Regulation, although it has been
requested to be assessed for RVF in the present opinion. Lessons learnt from other exotic vector-borne
diseases (e.g. LSD epidemics in Europe in 2015–2018) suggest that vaccination is often a key
measure, and sometimes the only effective one, to contain the spread of certain diseases. Vaccination
strategies are assessed in Section 3.5.2.1 of this opinion.

According to the Implementing Regulation (EU) 2018/1882, RVF belongs to Category A of listed
diseases that do not normally occur in the Union and for which immediate eradication measures must
be taken as soon as they are detected, as referred to in Article 9(1)(a) of the Regulation (EU) 2016/
429(EFSA AHAW Panel, 2020a).

The disease prevention and control rules for RVF referred to in Article 9(1) of Regulation (EU)
2016/429 shall apply for the listed species referred to in the table set out in the Annex of Regulation
(EU) 2018/1889, namely Perissodactyla, Antilocapridae, Bovidae, Camelidae, Cervidae, Giraffidae,
Hippopotamidae, Moschidae and Proboscidae and vector species belonging to Culicidae.

The following points are dealt in the present assessment, i.e. the use of vaccination, the culling
strategies, the size of the restriction zones, the requirement to test wild animals. The other
prohibitions, mitigations and derogations will be assessed in details in a separate EFSA scientific
opinion on disease control measures for category A diseases.

3.5.1. Assessment of potential RVF spread in EU

In order to assess the effectiveness of the prevention and control measures against RVF in case of
incursion into the EU, one case study has been carried out where simulations of RVF spread are run by
a mathematical model. The case study is the RVF spread following incursion into the Netherlands.

3.5.1.1. Ruminant population

The density of farms of large and small ruminants in the Netherlands is plotted in a grid 2 9 2 km
in Figure 12 and Figure 13. In the Netherlands, there are around 70,000 farms with large or small
ruminants (30,000 with only cattle, 30,000 with small ruminants and 10,000 mixed).
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The distributions of farm sizes of cattle and small ruminants in the Netherlands are displayed in
Figure 13.

3.5.1.2. Vectors

Potential vectors of RVFV in the Netherlands

The mosquito fauna in the Netherlands comprises 35 native mosquito species and two invasive
mosquito species, Ae. japonicus japonicus that is considered established and Ae. albopictus which
establishment is uncertain (ECDC mosquito maps14); (Beuk, 2002; Iba~nez-Justicia et al., 2015). In
addition, several imported species mainly via aircrafts have been detected in the Netherlands but are

Figure 12: Distribution of farms and bovines, sheep and goats at 2 3 2 km grid in the Netherlands

Figure 13: Distributions of herd sizes of cattle and small ruminants in the Netherlands

14 https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps
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not currently established such as Ae. aegypti, Ae. atropalpus, Cx. quinquefasciatus, Cx. antennatus,
Ae. mcintoshi and An. algeriensis. Some of these species are considered important vectors for RVFV
and the risk of introduction into Europe via international means of transports was assessed previously
(EFSA AHAW Panel, 2020a).

In a surveillance conducted by the Centre for Monitoring of Vectors in the Netherlands from 2010
to 2013 under the framework of the National Vector Survey in urban, rural-agriculture and natural
environments (Iba~nez-Justicia et al., 2015), 778 random locations were sampled twice every year. The
seasonality of mosquitoes was recorded from mid-April to second half of October. From this work, 27
species of mosquitoes were recorded.

The most diverse genus in the Netherlands was found to be Aedes, while the most widespread
species was Cx. pipiens/torrentium, and the most abundant species were Ae. vexans, Cx.
pipiens/torrentium, Culiseta annulata, Ae. cinereus and Coquillettidia richiardii. These species were
present in all types of environments, with similar mosquito fauna in urban and agricultural areas. The
Netherlands is considered to have fragmented landscape structure, where urban and rural area
predominate and are highly connected to natural areas. Therefore, mosquito species can actively or
passively move easily from one environment to another. Among the species which are native to the
Netherlands, only Ae. vexans and Cx. pipiens can be considered as proven RVFV vectors, based on
virus isolation from field specimens in Africa (Reference). In Africa, Aedes species are considered to
have a role in the persistence of the virus via vertical transmission, and also to initiate transmission
events. Culex species, on the other hand, are considered to increase the magnitude of transmission
and thus the risk of transmission to humans. For most of the proven and/or potential vector species,
the role of vertical transmission of RVFV within the vector is uncertain, since it has been recorded only
in Ae. macintoshi, Ae. vexans and Cx. quinquefasciatus (EFSA AHAW Panel, 2020b).

In regards to seasonality, Cx. pipiens/torrentium were active during the whole mosquito season in
the Netherlands (April to October), having a peak of abundance in mid-July, while other species such
as Ae. vexans were active from June.

From all the species present in the Netherlands and considering the current status of the potential
competent vectors for RVFV in Europe, only Ae. vexans and Cx. pipiens can be considered as
candidates for RVFV transmission. In fact, natural European populations of Ae. vexans have been
confirmed to be competent vectors for RVFV transmission in laboratory trials (Birnberg et al., 2019) In
addition, both species are abundant and widespread in the Netherlands favouring its vector capacity
(Figure 14). The vector role of Ae. albopictus remains uncertain, since evidences of RVFV transmission
come mainly from laboratory trials only and its presence in the Netherlands is currently also uncertain.
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Aedes vexans, Culex pipiens occur also in other European countries, together with other relevant
RVF vectors such as Aedes caspius, Aedes detritus, Aedes japonicus and Culex theileri, and have been
described in EFSA AHAW Panel (2020a) and their presence modelled in Wint et al. (2020).

Key messages:

• In the Netherlands, Ae. vexans and Cx. pipiens can be considered as candidates for RVFV
transmission. Both species are abundant and widespread in the Netherlands favouring its
vector capacity. The vector role of Ae. albopictus remains uncertain, since evidences of RVFV
transmission come mainly from laboratory trials only and its presence in the Netherlands is
currently also uncertain.

3.5.1.3. Simulations of RVF spread in NL

The simulated spread of RVF following incursion into the Netherlands and related time course of
epidemics in the absence of control measures is displayed in Figures 15 and 16. Time course of RVF
epidemics simulated by different model settings after incursion in the Netherlands in the absence of
control measures: median (line) and 95% prediction interval (ribbon) for the incidence (number of new
infected farms per day) based on 100 replicates of the model. Incursion is on 1 July, respectively.
Different model settings for the between-herd transmission, as explained in Section 2.3.5, are used to
produce the simulated spread and the outputs discussed.

Figure 14: Distribution of Cx. pipiens/torrentium and Ae. vexans in the Netherlands recorded from
2010 to 2013 (Source: Iba~nez-Justicia et al., 2015. By permission of Oxford University
Press on behalf of Entomological Society of America)
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Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d). Each map shows the proportion of replicates for which at least one farm becomes infected
in each 5 km grid square (as indicated by the colour bar). For each scenario, 100 simulations were run from the
time of incursion (1 July) to the end of the year (31 December).

Figure 15: RVF spread scenarios by different model settings simulated after incursion in the
Netherlands in the area of Amsterdam in the absence of control measures
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As explained in Section 2.3.3, the limited data available on transmission of RVFV between herds in
endemic countries and none directly applicable to Europe increase the uncertainty of the parameter
values that have to be considered when setting an RVF spread model. This is the reason why in the
above-reported figures, a range of scenarios for the transmission parameter (c) and kernel distance
scaling (d0) are explored and, consequently, the model outputs of the model differ substantially. The
estimation of between herd transmission may be driven either by the estimation from real
epidemiological data or similar to the within farm transmission and then further scaled by distance.

Nevertheless, for the scope of this opinion, the important aspect is the comparison of the relative
effect of the control measures, which is comparable across the scenarios, and not the absolute value
of the probability of RVF spread for each scenario. The relative effect of different control measures is
discussed in the next section.

Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d).

Figure 16: Time course of RVF epidemics simulated by different model settings after incursion in the
Netherlands in the absence of control measures: median (line) and 95% prediction
interval (ribbon) for the incidence (number of new infected farms per day) based on 100
replicates of the model. Incursion is on 1 July
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3.5.2. Assessment of possible RVF control measures in EU

3.5.2.1. Assessment of possible vaccination strategies to control RVF

The most probable scenario for the use of vaccines in the EU (except overseas regions) is as a
reaction to the detection of RVF in the EU territory. It is difficult, in fact, to hypothesise a preventive
use of vaccination, unless a slow progression of the RVF infection in the countries surrounding the EU
is considered, which is, to date, a remote possibility.

Therefore, under a scenario of reactive vaccination, as a response to the introduction of RVF in any
part of the EU territory, the sole vaccine eligible for such emergency vaccination would be the
inactivated vaccine, because of the safety limitations affecting the live-attenuated vaccines and the
risks that mosquitoes transmit actively the vaccine strain due its use during the vector season.

Because the inactivated vaccines are the only ones plausibly usable, it must be considered that two
injections at 3- to 4-week interval are required to immunise the animals. Considering the time needed
for the establishment of a solid immunity in vaccinated animals, it should be considered that animals
are only immune at least 4–5 weeks from the first injection.

A further aspect to be considered in case of an emergency vaccination against RVF under the
scenario of its introduction into the EU is related to the vaccine availability on the market. Both
inactivated and live-attenuated vaccines are available in the market, but in case a very high number of
doses is required, it must be considered that a certain number of months are needed to produce
millions of doses in case of an inactivated vaccine.

As follows, two different types of interventions of vaccination against RVF are simulated:
vaccination in a 50 km area around detected farms, and ring vaccination with 20 km inner radius and
50 km outer radius. The results should be compared with the no control scenario as shown in
Figure 15.

The first one is a reactive vaccination (vaccination following introduction of disease) in a 50 km
radius and all farms and animals within the zone are vaccinated over the 14 days after the central
farm was detected (Figure 17). Farms were assumed to be detected if an animal died of RVF or if the
farmer reported disease (which happened with daily probability of 0.05). Vaccine efficacy is assumed
to be 90% and the time to full protection is 21 days.
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The second scenario of control is ring vaccination around detected farms Figure 18). Farms were
assumed to be detected if an animal died of RVF or if the farmer reported disease (which happened
with daily probability of 0.05). Vaccination zones have an inner radius of 20 km and an outer radius of
50 km and all farms and animals within the ring zone are vaccinated over the 14 days after the central
farm was detected. Vaccine efficacy is assumed to be 90% and the time to full protection is 21 days.

Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d). Each map shows the proportion of replicates (indicated by the colour bar) for which at least
one farm was infected in each 5 km grid square. For each scenario, 100 simulations were run from the time of
incursion (1 July) to the end of the year (31 December).

Figure 17: Simulated impact of reactive vaccination in 50 km circular zones around detected farms
on the spread of Rift Valley fever virus in the Netherlands
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The number of farms and animals vaccinated in each of the scenarios is shown in Tables 11 and 12
below. In all cases, the vaccination strategies require > 20% of farms and animals (cattle, sheep and
goats) to be vaccinated.

Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d). Each map shows the proportion of replicates (indicated by the colour bar) for which at least
one farm was infected in each 5-km grid square. For each scenario, 100 simulations were run from the time of
incursion (1 July) to the end of the year (31 December).

Figure 18: Simulated impact of reactive ring vaccination around detected farms on the spread of Rift

Table 11: Number of farms vaccinated (thousands) as part of vaccination strategies

Transmission scenario

Median no. farms vaccinated
(95% prediction interval) (thousands)

Vaccination in PZ and SZ Vaccination in SZ only

c = 1 9 10�5, fat-tailed kernel, d0 = 1.6 km 13.3 (13.3, 24.7) 11.4 (0, 26.1)

c = 1 9 10�5, exponential kernel, d0 = 6.0 km 13.3 (0, 18.7) 13.4 (0, 24.4)
c = 1 9 10�5, exponential kernel, d0 = 13.7 km 21.8 (0, 47.4) 24.3 (11.4, 44.3)

c = 3 9 10�4, fat-tailed kernel, d0 = 1.6 km 37.7 (13.3, 61.2) 39.1 (11.4, 63.8)
c = 3 9 10�4, exponential kernel, d0 = 6.0 km 25.5 (13.3, 43.0) 30.4 (15.6, 47.0)

c = 3 9 10�4, exponential kernel, d0 = 13.7 km 65.7 (13.3, 65.7) 65.7 (45.9, 65.7)
c = 1 9 10�3, fat-tailed kernel, d0 = 1.6 km 62.4 (13.3, 65.7) 64.1 (11.4, 65.7)

c = 1 9 10�3, exponential kernel, d0 = 6.0 km 37.5 (13.3, 53.8) 43.1 (29.2, 58.1)

c = 1 9 10�3, exponential kernel, d0 = 13.7 km 65.7 (13.3, 65.7) 65.7 (11.4, 65.7)
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3.5.2.2. Assessment of possible culling strategies to control RVF

Two different types of interventions of stamping out against RVF are simulated: stamping out of
detected farms and stamping out of farms in a 20 km circular zone around detected farms. The results
should be compared with the no control scenario as shown in Figure 15.

The first stamping out scenario is the culling of only detected farms Figure 19). Farms were
assumed to be detected if an animal died of RVF or if the farmer reported disease (which happened
with daily probability of 0.05).

Table 12: Number of animals vaccinated (millions) as part of vaccination strategies

Transmission scenario

Median no. animals vaccinated
(95% prediction interval) (millions)

Vaccination in PZ and SZ Vaccination in SZ only

c = 1 9 10�5, fat-tailed kernel, d0 = 1.6 km 1.32 (1.32, 2.36) 1.18 (0, 2.45)

c = 1 9 10�5, exponential kernel, d0 = 6.0 km 1.32 (0, 1.88) 1.37 (0, 2.29)
c = 1 9 10�5, exponential kernel, d0 = 13.7 km 2.13 (0, 4.68) 2.38 (1.18, 4.23)

c = 3 9 10�4, fat-tailed kernel, d0 = 1.6 km 3.74 (1.32, 5.86) 3.72 (1.18, 6.10)
c = 3 9 10�4, exponential kernel, d0 = 6.0 km 2.46 (1.32, 4.12) 2.93 (1.55, 4.51)

c = 3 9 10�4, exponential kernel, d0 = 13.7 km 6.24 (1.32, 6.24) 6.24 (4.36, 6.24)
c = 1 9 10�3, fat-tailed kernel, d0 = 1.6 km 6.00 (1.32, 6.24) 6.13 (1.18, 6.24)

c = 1 9 10�3, exponential kernel, d0 = 6.0 km 3.59 (1.32, 5.10) 4.13 (2.79, 5.56)

c = 1 9 10�3, exponential kernel, d0 = 13.7 km 6.24 (1.32, 6.24) 6.24 (1.18, 6.24)
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The second stamping out scenario is the culling of farms in a 20-km circular zone around detected
farms Figure 20). Farms were assumed to be detected if an animal died of RVF or if the farmer
reported disease (which happened with daily probability of 0.05). All farms and animals within the
zone were culled over the 14 days after the central farm was detected.

Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d). Each map shows the proportion of replicates (indicated by the colour bar) for which at least
one farm was infected in each 5-km grid square. For each scenario, 100 simulations were run from the time of
incursion (1 July) to the end of the year (31 December).

Figure 19: Simulated impact of stamping out of detected farms on the spread of Rift Valley fever
virus in the Netherlands
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The number of farms and animals culled in each of the scenarios is shown in Table 14.

Between-herd transmission parameter (gamma) varies by row: (top) inferred from within-farm model parameters
(excluding the vector to host ratio); (middle) estimated from Tanzania data; (bottom) inferred from within-farm
model parameters (including the vector to host ratio). The kernel varies by column: (left) fat-tailed, Tanzania
distance parameter (d); (middle) exponential, half mean dispersal of Tanzania (d); (right) exponential, Tanzania
mean dispersal (d). Each map shows the proportion of replicates (indicated by the colour bar) for which at least
one farm was infected in each 5-km grid square. For each scenario 100 simulations were run from the time of
incursion (1 July) to the end of the year (31 December).

Figure 20: Simulated impact of reactive stamping out of farms in a 20-km circular zone around
detected farms on the spread of Rift Valley fever virus in the Netherlands

Table 13: Number of farms culled15 (thousands) as part of stamping out strategies

Transmission scenario

Median no. farms culled
(95% prediction interval) (thousands)

Detected farms only 20 km zone

c = 1 9 10�5, fat-tailed kernel, d0 = 1.6 km 0.001 (0.001, 0.004) 1.89 (1.89, 5.35)

c = 1 9 10�5, exponential kernel, d0 = 6.0 km 0.001 (0.001, 0.013) 1.89 (1.89, 5.48)
c = 1 9 10�5, exponential kernel, d0 = 13.7 km 0.004 (0.001, 0.035) 4.59 (1.89, 20.98)

c = 3 9 10�4, fat-tailed kernel, d0 = 1.6 km 0.014 (0.001, 0.22) 6.13 (1.89, 37.1)
c = 3 9 10�4, exponential kernel, d0 = 6.0 km 0.38 (0.001, 2.37) 7.43 (1.89, 20.7)

c = 3 9 10�4, exponential kernel, d0 = 13.7 km 18.4 (0.001, 37.5) 61.9 (1.89, 65.5)
c = 1 9 10�3, fat-tailed kernel, d0 = 1.6 km 0.31 (0.001, 3.5) 26.7 (0, 60.9)

c = 1 9 10�3, exponential kernel, d0 = 6.0 km 5.66 (0.001, 13.5) 19.4 (1.89, 39.6)

c = 1 9 10�3, exponential kernel, d0 = 13.7 km 45.1 (0.001, 47.8) 65.7 (1.89, 65.7)

15 There are 65,740 farms and 6,244,938 animals in the population used for the Netherlands simulations.
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3.5.2.3. Vector control

Mosquito control methods are well developed in the EU. Breeding sites can be controlled either by
physical or biocide methods (e.g. Bacillus thuringiensis). For mosquitoes present in freshwater flooding
areas, salt marshes and irrigation channels (e.g. Cx. pipiens, Ae. vexans and Ae. caspius), larvicides
are commonly used, such as B. thuringiensis israelensis (Bti) and Lysinibacillus sphaericus (Ls), insect
growth regulators (IGR diflubenzuron, pyriproxyfen, S-methoprene) (Becker and Zgomba, 2007).

Adulticides are used in very specific scenarios, usually when local transmission of human diseases
related to arboviruses occurs (i.e. WNV, DENV), because of the environmental concerns and the risk to
induce insecticide resistance in the local populations. All these methods can be applied in the EU in
case RVFV is introduced and transmitted by local vector species (e.g. Cx. pipiens), but there is no
information about the effect of those control measures in the rate of transmission of the virus. Vector
control using both larvicides and adulticides is probable to be applied in the case of transmission of
RVFV to humans, similar to the current situation when West Nile, dengue and chikungunya outbreaks
are detected in the EU (Becker and Zgomba, 2007; Bellini et al., 2014). Because of that, WNV can be
used as a proxy to estimate the efficacy of vector control on decreasing vector population and
therefore, potentially also the rate of transmission (Chaskopoulou et al., 2016). Outbreaks of WNV are
detected each year in the EU (Haussig et al. 2018) and is mainly transmitted by Cx. pipiens. In
addition, this mosquito species is found to be predominant in farms in Europe, such as horse, bird and
cattle farms (Boukraa et al., 2016; Brugman et al., 2018).

Regular control of floodwater mosquitoes, including potential vectors of RVFV in Europe such as
Cx. pipiens and Ae. vexans (Brustolin et al., 2017; Ducheyne et al., 2013), is conducted in the MS by
using mostly larvicides. For example, in Germany (Becker and Zgomba, 2007), the use of Bti and Ls
has resulted in 95% annual reduction of floodwater mosquitoes, such as Ae. vexans and Culex
mosquitoes over 2,500 km2 of breeding areas. In Greece, the control procedures (mainly larvicides)
conducted in 50 departments (100.000 ha) since 1996 has reduced by 97% the biting rate of
floodwater mosquitoes in 2001. In Italy, the region of Comacchio started a mosquito control
programme in 1991 (including larvicides and adulticides), reducing biting densities by 95% compared
to pre-intervention densities. In Poland, large-scale control activities were developed after catastrophic
floods in 1997. Since 2001, regular larvicide treatments in floodwater irrigated areas resulted in a
reduction of mosquito populations of 95%.

Main preventive measures are based in source reduction strategies, while adulticide ground and/or
aerial insecticide treatments are recommended just in the case of outbreaks involving human cases
(Bellini et al. 2014). For adulticides, usually pyrethroid is the first option. For example, Chaskopoulou
et al. (2011) showed that ultra-low volume applications of deltamethrin and d-phenothrin decreased
mean population of wild mosquito populations (Ae. caspius, Cx. modestus and Anopheles sacharovi)
by 76.5% and 78%, respectively, in rice field areas in Greece.

In regard to the effect of vector control on the transmission of WNV, there are studies from four
places in the USA (urban and peri-urban areas) and one in Greece showing positive results. These
results have been recently reviewed by ECDC with the aim of developing control strategies against
WNV (Chaskopoulou et al., 2020). In general, repeated aerial ultra-low volume (ULV) treatments (e.g.
over three sequential nights) reduced vector abundance and decreased transmission; however, there

Table 14: Number of animals culled (millions) as part of stamping out strategies

Transmission scenario

Median no. animals culled
(95% prediction interval) (millions)

Detected farms only 20-km zone

c = 1 9 10-5, fat-tailed kernel, d0 = 1.6 km 0.0012 (0.0012, 0.0017) 0.14 (0.14, 0.46)

c = 1 9 10-5, exponential kernel, d0 = 6.0 km 0.0012 (0.0012, 0.0022) 0.14 (0.14, 0.54)
c = 1 9 10-5, exponential kernel, d0 = 13.7 km 0.0015 (0.0012, 0.0058) 0.37 (0.14, 2.05)

c = 3 9 10-4, fat-tailed kernel, d0 = 1.6 km 0.0026 (0.0012, 0.022) 0.58 (0.14, 3.58)
c = 3 9 10-4, exponential kernel, d0 = 6.0 km 0.034 (0.0012, 0.24) 0.59 (0.14, 2.04)

c = 3 9 10-4, exponential kernel, d0 = 13.7 km 2.05 (0.0012, 4.26) 5.90 (0.14, 6.22)
c = 1 9 10-3, fat-tailed kernel, d0 = 1.6 km 0.034 (0.0012, 0.41) 2.64 (0, 5.80)

c = 1 9 10-3, exponential kernel, d0 = 6.0 km 0.60 (0.0012, 1.57) 1.93 (0.14, 3.75)

c = 1 9 10-3, exponential kernel, d0 = 13.7 km 5.22 (0.0012, 5.67) 6.24 (0.14, 6.24)
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are also reports showing no success in transmission reduction due to vector control measures
(reviewed in Bellini et al. 2014). All studies reporting successful reduction of WNV transmission showed
this through reduction of WNV prevalence in sentinel animals or vectors due to adult population
control. For example, Elnaiem et al. (2008) showed 75% reduction of Cx. pipiens in Sacramento
decreasing the risk of WNV infection, while Clifton et al. (2019) showed that pyrethroid ULV
treatments decreased host seeking females 24 h after treatment by 65.3% but not gravid females in
Chicago (USA), possibly not affecting infection rate of the population.

In case of RVFV introduction in Europe, vector control, such as adulticide treatments, would be in
place if transmission in human cases is detected, similar to WNV scenario. It is uncertain what would
be the effect of the regular current control measures, mainly larvicides, of floodwater mosquitoes on
RVFV transmission among domestic animals. The use of adulticides by ground/aerial treatments, a part
of those intended around human cases, would probably not be applied in general in farm
environments and surroundings due to environmental concerns that depend on the status of
protection of the habitat and surface to be treated. There is uncertainty as well on the efficacy of
those adulticide control measures at farm level for decreasing transmission rate of RVFV. It is also
uncertain what would be the effect of vector control by using larvicides in and around farms,
compared to the WNV scenario where flooded areas, peri-urban and urban areas are the main target.
The most plausible scenario for vector control in the case of introduction of RFV in the EU would be
the use of biological larvicides (i.e. Bti) in floodwater areas around farms and possibly, the use of
repellents to avoid mosquito feeding activity on animals. These measures can be applied independently
to other RFV control strategies, such as vaccination and stamping out. For this assessment, it is
assumed that there would be no difference on the efficacy of vector control either considering a
scenario of vaccination or stamping out.

Key messages:

• Floodwater potential vectors of RVFV in Europe, such as Cx. pipiens and Ae. vexans, are
regularly controlled in European MS.

• Most of the vector control strategies in Europe are based on the use of larvicides, mainly Bti,
while adulticides are used just in case of human outbreaks of arboviral diseases, such as West
Nile, dengue or chikungunya.

• Efficacy of vector control measures is highly variable. In general, long-term vector control
programmes by using larvicides achieve higher rates (up to 95%) of vector control.

• Decrease of transmission of WNV, transmitted by the same vector species as RVFV, in urban
and peri-urban areas has been achieved by decreasing adult population of vectors, mainly by
using adulticides.

• On average, adulticide control in WNV scenarios achieves around 70% of efficacy.
• It is uncertain what would be the effect of the current regular floodwater mosquito control

measures of MS, mainly larvicides, on the RVFV transmission among domestic animals.
• There is an uncertainty about RVFV vector control in and around farms compared to the WNV

scenario where flooded areas, peri-urban and urban areas are the main target.

3.5.2.4. Comparison of control strategies

For the purpose of comparison, in the following graphs, the comparison of the effect of the four
types of control measures is displayed for each transmission scenario (Figures 21 and 22). Vector
control would be applied in all cases (spraying around infected farms); this would reduce the force of
infection in all scenarios, so the effect of vector control would be comparable across all the measures
applied.
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Each plot shows the median RVF incidence (line) and interquartile range (shading) for a control strategy
assuming nine different scenarios for the spread of RVFV between farms in terms of the transmission parameter
(c), kernel shape and distance scaling (d0) (indicated above the plot). Five control strategies were considered:
no control (red); vaccination in a circular zone of 50-km radius around detected farms (blue); vaccination in a
ring of inner radius 20 km and outer radius 50 km around detected farms (cyan); stamping out of detected
farms (magenta); and stamping out of farms in a circular zone of 20-km radius around detected farms (black).
Farms were assumed to be detected if an animal died of RVF or if the farmer reported disease (which happened
with daily probability of 0.05). All farms and animals within a zone were vaccinated or culled over the 14 days
after the central farm was detected. Vaccine efficacy is assumed to be 90% and the time to full protection is 21
days. For each scenario, 100 simulations were run from the time of incursion (1 July) to the end of the year (31
December).

Figure 21: Simulated time course for the number of farms newly infected with Rift Valley fever virus
each day in the Netherlands under different control measures
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For a better comparison among the type of interventions, in Figure 23, one scenario is chosen
where the four types of control measures are applied, compared to no control. In terms of reducing
the spread probability, the stamping out in 20-km radius around infected farms appear the most
effective measures, while the stamping out of only infected farms the least effective.

Each plot shows the median incidence (line) and interquartile range (shading) for a control strategy assuming
nine different scenarios for the spread of RVFV between farms in terms of the transmission parameter (c),
kernel shape and distance scaling (d0) (indicated above the plot). Five control strategies were considered: no
control (1, red); vaccination in a circular zone of 50-km radius around detected farms (2, blue); vaccination in a
ring of inner radius 20 km and outer radius 50 km around detected farms (3, cyan); stamping out of detected
farms (4, magenta); and stamping out of farms in a circular zone of 20-km radius around detected farms (5,
black). Farms were assumed to be detected if an animal died of RVF or if the farmer reported disease (which
happened with daily probability of 0.05). All farms and animals within a zone were vaccinated or culled over the
14 days after the central farm was detected. Vaccine efficacy is assumed to be 90% and the time to full
protection is 21 days. For each scenario, 100 simulations were run from the time of incursion (1 July) to the end
of the year (31 December).

Figure 22: Simulated number of farms ever infected with Rift Valley fever virus in the Netherlands
under different control measures

Surveillance and control for Rift Valley Fever in EU

www.efsa.europa.eu/efsajournal 58 EFSA Journal 2020;18(11):6292



Key messages:

• According to the model used, stamping out of farms in a 20-km radius around detected farms
appears as the most effective measure to control RVF spread after introduction in the
Netherlands, although its feasibility and acceptability in terms of large number of animals to be
culled should be evaluated.

• The following most effective measures are vaccination in a 50-km radius around detected
farms, ring vaccination between 20 and 50 km and culling of only detected farms.

3.5.2.5. Size of restriction zones

The radius of a restriction zone for RVFV (the area where preventive and control measures should
be applied following the detection of the disease, in order to prevent the further spread) and its
dependence on the between-herd reproduction number, the mean dispersal distance, the number of
infected herds in the zone when it is implemented and the probability of escape (probability of herds
infected with Rift Valley fever virus being found outside a surveillance zone) is reported in Figure 24.

Figure 23: Comparison of control strategies considering the spread scenario based on transmission
parameter gamma = 1 9 10�3, fat-tailed kernel and distance scaling of 1.6 km
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Some examples of above-mentioned probability values are indicated in Table 15.

Plots are shown for different zone radii and numbers of infected farms (I) within the zone when implemented.
Computation of the probability of escape assumes an exponential dispersal kernel K(r) = exp(–r/L), where L is
the mean dispersal distance. The colour bar indicates the probability of escape and the contours probabilities of
escape of 0.001, 0.01 or 0.05.

Figure 24: Probability of herds infected with Rift Valley fever virus being found outside a surveillance
zone of a specified radius and its dependence on the between-farm reproduction number
and mean dispersal distance

Table 15: Example of probability of herds infected with Rift Valley fever virus being found outside a
surveillance zone of a specified radius and its dependence on the between-farm
reproduction number and mean dispersal distance

Restriction
zone

20 km 50 km 100 km

Mean vector
dispersal

Numbers of infected
farms detected within

the zone when
implemented

R0 = 2 R0 = 6 R0 = 2 R0 = 6 R0 = 2 R0 = 6

5 km 1 0.17 0.42 0.001 0.003 8.6 9 10�8 2.6 9 10�7

10 0.84 1.0 0.01 0.03 8.6 9 10�7 2.6 9 10�6

10 km 1 0.56 0.91 0.08 0.22 0.001 0.003

10 1.0 1.0 0.55 0.91 0.099 0.03
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Key messages:

• According to the model, following RVFV introduction and considering an R0 = 2, mean dispersal
of vectors of 10 km and 10 infected farms detected inside the restriction zones, the RVFV would
spread beyond a radius of up to 100 km from the infected area with a probability of 10%. Under
the same conditions, if the radius was 50 km, the probability of RVF spreading beyond this zone
would be 55%.

• What most influences the probability of spread beyond a certain radius of restriction zone is
mostly the mean dispersal distance of vectors and the number of infected farms detected inside
the restriction zones, rather than R0. This suggests that the number of infected farms detected
inside the restriction zones should be kept as small as possible; thus, early detection and early
implementation of restriction zones are key measures to contain the spread.

• The dispersal distance of vectors is largely varying according to the biology of each mosquito
species and the climatic (e.g. winds) and geographic (e.g. the presence of mountains or other
barriers) conditions which can modulate the dispersal of mosquitoes, even to long distances.

3.5.3. Possible role of wildlife in RVF spread in EU

In Africa, RVFV is able to persist in the environment for long periods between epidemics probably
through two main mechanisms:

• Through transovarial transmission in some mosquito species (Linthicum et al., 1985), or
• by low level transmission cycles in wild species populations (Evans et al., 2008; Olive et al.,

2012; Capobianco Dondona et al., 2016).

Wild ruminants have been investigated in some African countries about their possible role in the
RVFV transmission. Serological positive findings and abortion have been observed in African buffaloes
(Syncerus caffer) in South Africa (Olive et al., 2012) and Kenya (Evans et al., 2008). Antibodies against
RVFV at high prevalence, varying from 20% to 35%, were detected in springbok (Antidorcas
marsupialis), wildebeest (Connochaetes taurinus) and black-faced impala (Aepyceros melampus
petersi) in Namibia (Capobianco Dondona et al., 2016), as well as in Thomson’s gazelle (Gazella
thomsonii), lesser kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus) in Kenya (Evans
et al., 2008). In Namibia, viral RNA was detected in 9% of tested springbok in 2011 (Capobianco
Dondona et al., 2016).

Other wild mammal species have been studied for their possible susceptibility to the infection and
antibodies against RVFV were detected in black rhino (Diceros bicornis), giraffe (Giraffa
camelopardalis), African elephant (Loxodonta africana) and warthog (Phacochoerus aethiopicus) (Lubisi
et al., 2020). Even some bats have been found serologically positive and RVFV strains were isolated
from pooled organs of three bat species (Micropteropus pusillus, Hipposideros abae and Hipposideros
caffer) in Guinea (Olive et al., 2012).

The epidemiological role of these animal species is not fully understood in the African context,
albeit wild ruminants are considered to play a role in the maintenance of the infection during the inter-
epizootic periods in some areas of southern Africa due to their significant density.

No data are available about the susceptibility of European wild ruminant species to RVFV, or the
capacity of the virus of causing a detectable viraemia in these animals. The sole indication outside the
African continent is related to white-tailed deer (Odocoileus virginianus) in North America (Wilson
et al., 2018).

Concerning the possible role of wild ruminants in case of RVFV introduction into Europe, it must be
considered that the density of these animal species in Europe is in general much lower than domestic
ruminants. However, a possible involvement of some European wild ruminant species on RVFV
transmission cannot be excluded, especially for those species and geographical areas with highest
density, such as Central Europe (Figures 25 and 26. Map of cumulated density of main wild ruminants
(all species merged as from Figure 9) in Europe.).
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Figure 25: Map of occurrence of main wild ruminants in Europe (Data source: Linnell et al. 2020)
Data source: Apollonio et al. (2010) and Linnell et al. (2020).
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Key messages:

• In some southern African countries, wild ruminants are considered to play a role in the
maintenance of RVFV infection during the inter-epizootic periods.

• No data are available about the susceptibility of European wild ruminant species to RVFV, or
the capacity of the virus of causing a detectable viraemia in these animals.

• The density of wild ruminants species in Europe is much lower than domestic ruminants, but
even with large uncertainty due to lack of data from ad hoc trials, it cannot be excluded a
possible involvement of these animals in RVFV transmission in specific geographical areas or
epidemiological contexts.

3.6. Uncertainty analysis

The sources of uncertainty identified during the scientific assessment related with the data available
for the different parts of the assessment are displayed in the table below (Table 16).

Figure 26: Map of cumulated density of main wild ruminants (all species merged as from Figure 9) in
Europe

Table 16: Sources of uncertainty in the different parts of the assessment

Part of the
assessment

Sources of uncertainty

Effectiveness of
restriction zones

• The mean dispersal distance of vectors is unknown since it can vary according to the
biology of each mosquito species and the climatic (e.g. winds) and geographic (e.g.
the presence of mountains or other barriers) conditions, which can modulate the
dispersal of mosquitoes, even to long distances.
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4. Conclusions

Availability, safety and effectiveness of vaccines and diagnostic tests for RVF:

• Commercially available live-attenuated vaccines lack both safety (especially in pregnant
animals) and DIVA.

• The commercially available inactivated vaccine requires multiple doses or annual revaccination
to provide protection, which renders the use of this vaccine not feasible in endemic zones,
such as Mayotte, due to high costs, and especially in remote areas, where it is difficult to track
animals, but suitable for emergency vaccination in not at-risk areas or at least in valuable
breeding animals.

• Vaccine availability in the short term may be an issue in case of need of high number of
vaccine doses, due to the limited stocks available and to the production on demand of the
manufacturers.

Control measures in place in Mayotte against RVF in 2018–2019:

• Priority was put on protection measures for animal to human transmission, because the spread
of infection in animals was very fast, involving the whole island in short time.

• No stamping out, no protection zones, no vaccination were implemented, because the disease
spread too fast compared to the available veterinary resources in Mayotte.

• The measures applied in the farms focussed on increasing the biosecurity and vector control.

Assessment of possible control measures in Mayotte:

Restriction zone:

• Due to the small geographical size of Mayotte and the potential dispersal of mosquitoes over
long distances (e.g. > 6 km), the whole island can be considered a single protection zone;
thus, the use of restriction zones was not considered further.

Surveillance:

• Considering that the rainy season in Mayotte is from December to March and this is the period
at higher risk for the establishment of an RVF epidemic, two main objectives for active
surveillance can be considered:

Part of the
assessment

Sources of uncertainty

RVF spread model in
Mayotte and related
surveillance and
control methods

• No data are available about the current level of immunity in the ruminant population
in Mayotte.

• The sensitivity of passive surveillance under Mayotte conditions is unknown.
• Data on impact of vector control measures on RVF transmission in Mayotte are

lacking.
• Data on vaccination effectiveness under Mayotte conditions for the major available

vaccine products are not available.

RVF spread model in
the EU and related
surveillance and
control measures

• Lack of data to estimate the force of infection of RVF transmission between farms in
the continental EU, due to the absence of historical episodes of RVF in Europe and
the poor quality of the current available data on RVF outbreaks in Africa.

• Lack of solid data on vaccination effectiveness under the European conditions for the
major available vaccine products

• Lack of available data for the estimation of the design prevalence at early stage of
RVFV incursion into a free area.

• Vector competence of various EU mosquito species is not available.
• Lack of detailed mosquito abundance data for major species in the EU.
• The effect on the RVFV transmission of the current regular floodwater mosquito

control measures, mainly larvicides, applied by the EU MS is unknown.

Possible role of
wildlife in the EU

• No data are available about the susceptibility of European wild ruminant species to
RVFV, or the capacity of the virus of causing a detectable viraemia in these animals.
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– early detection of RVFV circulation, ideally before the occurrence of a significant number of
human and/or animal cases. This implies a design prevalence values so low that a high (up
to 3500) number of animals must be tested, which may not be readily feasible.

– Verification of RVFV circulation during previous rainy season, which can be achieved testing
a limited number of animals, due the higher design prevalence.

• Monitoring the seroprevalence will provide estimates of the spatial and temporal distribution
and suggest areas of higher risk of re-occurrence of RVF infections.

• Passive surveillance, based on the notification and testing of aborted fetuses and animals
showing clinical signs suggestive of RVFs, is the pillar of any early warning system and at
present the only feasible surveillance option, given the high percentage of animals naturally
immunised after the 2018–2019 epidemic.

Vaccination:

• The results of the analysis of the impact of vaccination on reducing RVF infections suggest that
the vaccination is more effective when applied before the start of the epidemic and quickly
implemented throughout the population. Different levels of vaccine effectiveness, either 60%
or 90%, have a relatively minor impact on the reduction of the expected number of infected
animals.

• In particular with a rate of 200 or 2,000 animals vaccinated per day, the epidemics is halted
within one year, regardless whether the vaccination is applied before or after the RVF
incursion. Moreover, the number of infections is kept under 3% if the vaccination is conducted
at least 30 days prior to incursion with at least 200 animals vaccinated per day (20% coverage
achieved at time of incursion, 100% coverage achieved 120 days post incursion). The same
effect is achieved if the vaccination is conducted at 2,000 animals vaccinated per days, started
at 60 days post incursion at the latest (100% vaccination coverage would be achieved 75 days
after RVF incursion).

• On the contrary, with 20 animals vaccinated per day, the epidemics continue for more than 2
years and the whole population would get infected.

Culling:

• A test-and-cull strategy does not seem a useful alternative for the control of RVF in Mayotte
unless high number (ca. 2,000 per day) of animals are tested every day and the infected
quickly culled.

Vector control:

• There are few examples of control of RVFV vectors in endemic African countries, but none of
them showed an effective control of all mosquito species involved in RVFV transmission.

• Vector control activities are in place in Mayotte, mainly focused to protect humans, but with
probably a limited impact on the RVFV transmission.

• Vector control alone does not seem to be a useful alternative for the control of RVF in
Mayotte. Only a reduction of 40% or more of mosquito abundance (which is achievable for
short time, e.g. 2 weeks, according to experience from Kenya using larvicides against Aedes
spp.) can have a measurable effect on the transmission and re-occurrence of the infection.

• Effective vector control, mostly by using larvicides, will require long-term use considering the
mosquito habitat and climatology of Mayotte. General use of adulticides is unachievable due to
the potential impact on the environment.

• Lower rates of mosquito reduction (10–30%, which may also be very challenging to achieve)
may reduce the total number of animals infected during its course but also flatten the
epidemic curve, thus increasing the duration of the whole epidemic.

Combined control measures:

• When a vaccination strategy is considered in combination with the application of vector control
measures, no or small combined effects can be seen for reduction of mosquito population less
than 40%.

• When a test and cull strategy is considered in combination with vector control measures, the
latter, for mosquito reductions of 40% or above, increase the efficacy of the culling strategy.
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Assessment of possible control measures in the continental EU in case of RVF incursion or
risk of:

Surveillance:

• Under the scenario for risk of RVFV introduction, cattle and small ruminant establishments
located in the proximity of the possible points of disease incursion by vector import (ports,
airports, cargo, container yards) should be included in the surveillance.

• Passive surveillance can be considered the most effective for the early detection of the
infection under these circumstances. An enhanced surveillance on abortions, stillbirths and
neonatal mortality, therefore, should be applied during summer and autumn (during the peak
of and end of vector season) in the areas at major risk of introduction for cattle and small
ruminants.

• Based on the only known and documented case of introduction of RVF into a free territory
(Saudi Arabia), a target seroprevalence of 0.3% or less should be considered for active
surveillance based on serology.

RVF vectors relevant in continental EU:

• In the Netherlands, the case study used for simulating RVF control, Ae. vexans and Cx. pipiens
can be considered as candidates for RVFV transmission. Both species are abundant and
widespread in the Netherlands favouring its vector capacity. The vector role of Ae. albopictus
remains uncertain, since evidences of RVFV transmission come mainly from laboratory trials
only and its presence in the Netherlands is currently also uncertain.

• The above-mentioned vector species are widespread also in other European countries together
with other relevant RVF vectors in EU such as Ae. caspius, Ae. detritus, Ae. japonicus and Cx.
theileri.

Control measures:

• The assessment of the spread of RVF in the EU and efficacy of the various control measures
has been conducted by choosing the Netherlands as a case study, due to the results of the
previous EFSA Opinion about the risk of RVF introduction in the EU. Therefore, the results
presented in this Opinion are related to the epidemiological conditions that can be observed in
that country only.

• A range of simulated scenarios of RVF spread are presented, which differ in terms of
magnitude of number of infected animals and extension of geographical spread. This is due to
the very limited data available on transmission of RVFV between herds in endemic countries
and no data directly applicable to Europe. This makes it difficult to identify a single set of
parameters describing the force of infection and so produce a single spread scenario.

• According to the model used, stamping out of farms in 20-km radius around detected farms
appears as the most effective measure to control RVF spread after introduction in the
Netherlands, although its feasibility and acceptability in terms of number of animals to be
culled should be evaluated.

• The following most effective control measures are vaccination in a 50-km radius around
detected farms, ring vaccination between 20 and 50 km and culling of only detected farms.

• The time to protection depends on the type of vaccine used (live or inactivated), and
therefore, the results of the model should be evaluated in the light of this aspect as well.

Vector control:

• Floodwater potential vectors of RVFV in Europe, such as Cx. pipiens and Ae. vexans, are
regularly controlled in European MS.

• Most of the vector control strategies in Europe are based on the use of larvicides, mainly Bti,
while adulticides are used just in case of human outbreaks of arboviral diseases, such as West
Nile, dengue or chikungunya.

• Efficacy of vector control measures is highly variable. In general, long-term vector control
programmes by using larvicides achieve higher rates (up to 95%) of vector control.

• Decrease of transmission of WNV, transmitted by the same vector species as RVFV, in urban
and peri-urban areas has been achieved by decreasing adult population of vectors, mainly by
using adulticides.

• In average, adulticide control in WNV scenarios achieve around 70% of efficacy.
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• It is uncertain what would be the effect of the current regular floodwater mosquito control
measures of MS, mainly larvicides, on the RVFV transmission among domestic animals.

• There is an uncertainty about RVFV vector control in and around farms compared to the WNV
scenario where flooded areas, peri-urban and urban areas are the main target.

Restriction zones:

• According to the model developed, following RVFV introduction and considering an R0 = 2
(value of basic reproduction number of RVF estimated from the literature), a mean dispersal of
vectors of 10 km and 10 infected farms detected inside the restriction zones, the RVFV would
spread beyond a radius of up to 100 km from the infected area with a probability of 10%.
Under the same conditions, if the radius is 50 km, the probability of RVF spreading beyond this
zone would be 55%.

• What most influences the probability of spread beyond a certain radius of restriction zone is
mostly the mean dispersal distance of vectors and the number of infected farms detected
inside the restriction zones, rather than R0. This suggests that the number of infected farms
detected inside the restriction zones should be kept as small as possible, implying that the
early detection and early set of restriction zones are one of the key measures to contain the
spread.

• The dispersal distance of vectors is largely varying according to the biology of each mosquito
species and the climatic (e.g. winds) and geographic (e.g. the presence of mountains or other
barriers) conditions which can modulate the dispersal of mosquitoes, even to long distances.

Role of wildlife in the spread of RVF in EU:

• In some southern African countries, wild ruminants are considered to play a role in the
maintenance of RVFV infection during the inter-epizootic periods. Although the density of wild
ruminant species in Europe is much lower than domestic ruminants and no data are available
about the susceptibility of European wild ruminant species to RVFV, or the capacity of the virus
of causing a detectable viraemia in these animals, it cannot be excluded a possible
involvement of these animals in RVFV transmission in specific geographical areas or
epidemiological contexts.

Uncertainty

• The panel identified several limitations in the data available for performing the scientific
assessment, mainly related to the current infection and immunological status of the livestock
population in Mayotte, the spread dynamics of RVF in newly infected countries in general and
in Europe in particular. Given the uncertainty generated by these limitations, results should be
interpreted carefully.

5. Recommendations

• The biggest impact on the efficacy of any vaccination programme against RVF in Mayotte is
given by the number of animals that can be vaccinated per day; therefore, efforts should be
focused on vaccinating as many animals per day. The logistics to organise this should be
properly planned.

• Considering the importance of an early detection of the RVF infection in case of introduction
into the EU, enhanced passive surveillance during the peak to the end of vector season should
be implemented in the geographical areas at major risk of introduction, such as in the
proximity of the possible points of disease incursion by infected vector import (ports, airports,
cargo, container yards) and in those territories closer to infected countries.

• Considering the possibility, under certain circumstances, of RVFV spreading beyond a radius of
up to 100 km from the infected area, in the absence of vaccination, the possibility of
increasing the radius of surveillance zone currently proposed by the EU legislation (50 km)
should be considered.

• In case of RVF incursion into EU, if vaccination policy is adopted, a large number of doses
would be needed and the quick vaccine availability would have to be considered.

• The already mentioned drawbacks of currently available vaccines indicate the need for further
researches to develop vaccines safer and more immunogenic, as well as based on DIVA
approaches. Since the RVF simulated spread may cover long distance in at least some
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scenarios, those countries bordering the infected one should be alerted and ready to take
appropriate measures.

• A precise estimate of RVF force of infection would be needed to simulate control measures. In
the absence of outbreaks in the EU, where real data can be collected, the research should
focus on better assessment of vector dispersal.

• Moreover, more robust and informative outbreak data from African context are needed in order
to better estimate force of infection.

• More research on the efficacy and developed protocols about vector control at farm level
under the scenario of hypothetical RVF incursion into EU should be conducted.
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Annex A – Impact of RVFV control measures on Mayotte with pre-existing
immunity

Here, we show the impact of the control strategies when there is pre-existing immunity (equal to
levels expected after the 2018–2019 epidemic).

Figure A.1: Impact of vaccination on incursions of Rift Valley fever to Mayotte assuming a vaccine
efficacy of 60%. The top row shows the cumulative number of infected animals and the
bottom row shows the time to extinction (the numbers indicate the number of replicates
for which RVFV had not been eliminated by the end of the third year of the simulation).
Incursions were simulated in January, April, July and October and assumed a population
with immunity equal to that after the 2018–2019 epidemic. Vaccination was implemented
60 or 30 days prior to or 30, 60 or 90 days after the incursion at a rate of 20, 200 or
2,000 animals per day. Box-and-whisker plots show the median (black line), interquartile
range (box) and 2.5th and 97.5th percentiles (whiskers) for 100 replicates of the model
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Figure A.2: Impact of vaccination on incursions of Rift Valley fever to Mayotte assuming a vaccine
efficacy of 90%. The top row shows the cumulative number of infected animals and the
bottom row shows the time to extinction (the numbers indicate the number of replicates
for which RVFV had not been eliminated by the end of the third year of the simulation).
Incursions were simulated in January, April, July and October and assumed a population
with immunity equal to that after the 2018–2019 epidemic. Vaccination was implemented
60 or 30 days prior to or 30, 60 or 90 days after the incursion at a rate of 20, 200 or
2,000 animals per day. Box-and-whisker plots show the median (black line), interquartile
range (box) and 2.5th and 97.5th percentiles (whiskers) for 100 replicates of the model
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Figure A.3: Impact of culling on incursions of Rift Valley fever to Mayotte. The top row shows the
cumulative number of infected animals (including those which were not detected and
those which were detected and culled), the middle row shows the cumulative number of
infected animals detected and culled, and the bottom row shows the time to extinction
(the numbers indicate the number of replicates for which RVFV had not been eliminated
by the end of the third year of the simulation). Incursions were simulated in January,
April, July and October and assumed a population with immunity equal to that after the
2018–2019 epidemic. Culling was implemented as part of a test and cull strategy starting
30, 60 or 90 days after the incursion, with 20, 200 or 2,000 animals tested per day. Box-
and-whisker plots show the median (black line), interquartile range (box) and 2.5th and
97.5th percentiles (whiskers) for 100 replicates of the model
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Figure A.4: Impact of reduced mosquito abundance through vector control measures on incursions of
Rift Valley fever to Mayotte. The top row shows the cumulative number of infected
animals and the bottom row shows the time to extinction (the numbers indicate the
number of replicates for which RVFV had not been eliminated by the end of the third
year of the simulation). Incursions were simulated in January, April, July and October and
assumed a population with immunity equal to that after the 2018–2019 epidemic. Vector
control measures were assumed to reduce abundance by 10–90%. Box-and-whisker plots
show the median (black line), interquartile range (box) and 2.5th and 97.5th percentiles
(whiskers) for 100 replicates of the model
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