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Metabolic syndrome (MetS), characterized by a constellation of disorders such as hyper-

glycemia, insulin resistance, and hypertension, is becoming a major global public health

problem. Fructose consumption has increased dramatically over the past several decades

and with it the incidence of MetS. However, its molecular mechanisms remain to be

explored. In this study, we used male Sprague-Dawley (SD) rats to study the pathological

mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for

16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry

examination. Proteomics were used to investigate the differential hepatic protein expres-

sion patterns between the normal group and the MetS group. Proteomic results revealed

that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways.

In addition, oxidative stress and endoplasmic reticulum stress-related proteins were

modulated by high-fructose feeding. In summary, our results identify many new targets for

future investigation. Further characterization of these proteins and their involvement in

the link between insulin resistance and metabolic dyslipidemia may bring new insights

into MetS.
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1. Introduction

Metabolic syndrome (MetS), which involves obesity, insulin

resistance, hypertension, and hyperlipidemia, is becoming a

major global public health problem [1,2]. The modern lifestyle

of an increased intake of a palatable high-fat diet in associa-

tion with decreased energy expenditure contributes to the

current rising prevalence of MetS [2,3]. Metabolic syndrome is

complex and encompasses several interrelated disturbances

of glucose and lipid homeostasis [4,5]. The major risk factors

for MetS are abdominal obesity, elevated fasting plasma

glucose, atherogenic dyslipidemia (i.e., increased levels of

triacylglyerols, increased levels of low-density lipoprotein,

and decreased levels of high-density lipoprotein), the pres-

ence of prothrombotic and proinflammatory states, and

elevated blood pressure [6]. The most important interacting

features of MetS have been proposed by Grundy [6] as obesity

plus endogenous metabolic susceptibility, which is man-

ifested by insulin resistance and other factors such as genetic

factors, physical inactivity, advancing age, and endocrine

dysfunction.

Fructose, which occurs naturally in honey and sweet fruits,

is produced in crystalline and syrup forms for commercial use.

The most commonly used form, corn syrup, contains

approximately 55% free fructose. Its use as a sweetener in

processed foods and soft drinks has increased by 20e30% over

the past 20 years in the United States, similar to the dramatic

rise in obesity over the same period [7]. The metabolic effects

of fructose and its use by individuals withmetabolic disorders

have attracted much attention over the past two decades.

Fructose has unique metabolic features because it is largely

metabolized by splanchnic organs (i.e., gut and liver cells)

through insulin-independent mechanisms. Fructose is

involved in the progression to MetS through the dysregulation

of many molecular signaling factors [7,8]. Animal model ex-

periments have clearly demonstrated that fructose feeding in

rats causes hypertension and hyperinsulinemia [9], and in

hamsters causes insulin resistance, hypertriglyceridemia,

hepatic very-low-density lipoprotein overproduction, obesity,

and hyperglycemia [10,11].

Proteomics involves integrating several technologies with

the aim of systematically analyzing the complement of pro-

teins expressed in a biological system in response to specific

stimuli and different physiological or pathological conditions.

Examining changes in the proteome offers insights into

cellular and molecular mechanisms that cannot always be

obtained through genomic analysis. The information gap be-

tween the genome and cellular processes can be largely

attributed to post-translational modifications such as phos-

phorylation and glycosylation. These modifications, which

cannot be monitored by genomic analyses alone, modulate

important regulatory processes such as protein turnover,

protein activity, and protein localization within a cell.

In the current study, we employed the electrospray

ionization-tandem mass spectrometry (ESI-MS/MS) prote-

omics approach to identify candidate molecules that link

high-fructose consumption to the pathogenesis of MetS. Our

results showed that high-fructose feeding was associated

with significant alterations in the expression of hepatic
enzymes in multiple pathways. In addition to the marked

upregulation of hepatic functions that promote triglyceride

synthesis and very-low-density lipoprotein-triglycerides pro-

duction, high-fructose consumption also resulted in pertur-

bations of antioxidant functions in protein folding.
2. Methods

2.1. Establishment of the high-fructose diet-induced
MetS rat model

Male SpragueeDawley (SD) rats weighing 200e250 g were

housed two animals per cage in an air-conditioned room

(22�C ± 2�C) on a 12 hour light cycle (7:00 AM to 7:00 PM). The

animals were maintained in accordance with the guidelines

established in the Taiwan Government Guide for the Care and

Use of Laboratory Animals. In this study, we used a well-

established rat model in which insulin resistance, hyperten-

sion, and dyslipidemia can be induced by feeding the animals

a high-fructose diet [12,13]. Rats were randomly divided into

two groups: Group I, which was fed the standard Purina chow

(#5001, Purina, St. Louis, MO, USA; consisting of 23% protein,

56% carbohydrate, 4.5% fat, and 6% fiber), and Group II, which

was fed a 60% high-fructose diet plus the supplement of 21%

protein, 5% fat, and 8% fiber. The dietary manipulation lasted

for 16 weeks. Blood pressure was measured every week, total

cholesterol concentrations weremeasured every 2 weeks, and

an oral glucose tolerance test was performed every 4weeks. At

the end of the experiment, blood pressure was measured, and

the rats were decapitated after overnight fasting. Blood sam-

ples were collected in heparinized tubes, and the plasma was

separated by centrifugation and stored at �20�C until assayed

for glucose, insulin, triglyceride, cholesterol, and thio-

barbituric acid-reactive substances. The livers were stored in

liquid nitrogen and subjected to two-dimensional (2-D) gel-

based proteomics.

2.2. Tissue harvest

Frozen livers were crushed in liquid nitrogen into a fine

powder. The resulting powder was dissolved in a lysis buffer

[7M urea, 2 M thiourea, 4% w/v 3-[(3-cholamidopropyl)dime-

thylammonio]-1-propanesulfonate (CHAPS), 0.5% Triton X-

100, and 10 mM dithiothreitol (DTT)] containing a cocktail of

protease inhibitors (cOmplete™ Mini, Roche, Mannheim,

Germany) and centrifuged at 4�C and 16,000 � g for 60 mi-

nutes. The supernatant was used as the tissue protein lysate.

2.3. Two-dimensional gel electrophoresis and protein
labeling

The protein concentration was determined using the PlusOne

2-D Quant Kit (Amersham Biosciences, Piscataway, NJ, USA) in

accordance with the manufacturer's manual. Approximately

150 mg of protein was dissolved in 350 mL of rehydration buffer

(7M urea, 2 M thiourea, 1% w/v CHAPS, 0.5% Triton X-100, 100

mM DTT and 0.2% v/v immobilized pH gradient buffer, pH

3e11, nonlinear; Amersham Biosciences) and applied to an

18 cm, nonlinear pH 3e10 Immobiline DryStrip (Amersham
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Biosciences) for in-gel rehydration. Fifty micrograms of liver

protein from the control group and MetS induced group were

labeled with Cy3 and Cy5 dyes, respectively. The reaction was

then quenched with 10mM lysine for 10 minutes. The labeled

Cy3- and Cy5-treated samples were combined with 8 mL of

DeStreak (GE Healthcare, Little Chalfont, Buckinghamshire,

UK) and 4 mL of pH 3-10 ampholytes (GE Healthcare). The so-

lution volume was adjusted to 440 mL with the necessary

volume of rehydration solution. One-dimension isoelectric

focusing (IEF) was performed on a Protean IEF system (BioRad,

Hercules, CA, USA) using the following program:

0 V � 12 hours; 50 V � 1 hour; 300 V � 1 hour; 600 V � 1 hour;

1500 V � 2 hours; and 2500 V � 2 hours. The gradient was

raised from 2500 V to 8000 V within 2 hours, and IEF was

terminated after a total of 54,000 V/hour. Before separating on

sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE), the focused immobilized pH gradient strips were

equilibrated in an equilibrium buffer (50 mM Tris-Cl, pH 8.8, 6

M urea, 30% v/v glycerol and 2% w/v SDS) containing 1% w/v

DTT for 15 minutes, and then soaked in the same buffer

containing 2.5% w/v iodoacetamide for 15 minutes. The strips

were then placed on a 10% acrylamide: bis-acrylamide (37:1)

SDS-PAGE gel and immobilized with agarose sealing solution

(0.5% w/v agarose, 25 mM Tris, 192 mM glycine, 0.1% w/v SDS,

and a trace of bromophenol blue). The second-dimensional

SDS-PAGE was performed at 25 mA per gel until the bromo-

phenol blue dye front reached the bottom of the gel. The Cy3

gels were scanned at 580 Bp30 with a green laser (532 nm), and

Cy5 gels were scanned at 670 Bp30 with a red laser (633 nm).

Gels utilized for mass spectroscopy (MS) analysis were run

with 500 mg of protein. Plates were separated, and the gels

were fixed overnight in 30% methanol/10% glacial acetic acid

and stained overnight in Sypro Ruby dye (Molecular Probes™,

Thermo Fisher Scientific, Waltham, MA, USA). Differential gel

presentation was created within a custom-written image

processing program (i.e., Interactive Data Language, Remote

Sensing Image) to correct for scanning detector alterations for

the different wavelengths. Large differences in protein con-

tents were observed in some of these studies; therefore, global

corrections were inadequate. For this procedure, a nonscaled

color overlay of the Cy3 and Cy5 images was used to select a

region of interest (ROI) for use in the scaling function. The ROI

was selected based on the area of the gel in which there was

high signal-to-noise difference in Cy3 and Cy5 with minimal

background noise; this optimized the linear least-squares

approach using the scaling function. In general, the ROI rep-

resented <20% of the total image.

2.4. Mass spectrometry

Gel spots of interest were destained three times with 100 mL

25 mM ammonium bicarbonate (NH4HCO3)/50% v/v acetoni-

trile (ACN) for 15 minutes. The solution was then removed

and 100 mL of 100% ACN was added to dehydrate the gel

pieces. Thereafter, 1.6 mL of 20 ng/mL trypsin (Promega,

Fitchburg, WI, USA) in 25 mM NH4HCO3 was added to the gel

pellets and they were maintained at 4�C for 40 minutes. An

extra 2 mL of 25 mM NH4HCO3 was added, and the reaction

was incubated overnight at 37�C. Finally, 5 mL of 1% tri-

fluoroacetic acid in 50% aqueous ACN was added and gel
pieces were sonicated with 7 mL 1% formic acid for 15 mi-

nutes to release the tryptic peptides for the following MS-

based protein identification. The MS/MS analyses were per-

formed using a Q-TOF-2 system (Waters, Milford, MA, USA) to

identify the selected proteins. The tryptic peptides were

separated on a reversed-phase capillary C18 column (20 mm

id � 90 mm id) and directed to the electrospray source of the

mass spectrometer. The mass spectrometer was operated in

positive ion mode with a source temperature of 80�C and a

cone voltage of 45 V. A voltage of 3.2 kV was applied to the

source capillary. The time-of-flight analyzer was set in the V-

mode. The MS/MS spectra were obtained in the data-

dependent acquisition mode whereby the two multiple-

charged (i.e., þ2 and þ3) peaks with the four most abun-

dant ions were selected for collision-induced dissociation.

The MS/MS spectra were collected for each of these top four

ions. The parent ion was excluded if the same parent ion was

observed within 90 seconds. Collision energies were set to

10 V for the MS scan and 30 V for the MS/MS scan. Mass

spectra were processed using MassLynx 4.0 (Waters) to

export the .pkl files containing MS/MS peak lists. Protein

identification was performed using .pkl files on the online

MASCOT Server (http://www.matrixscience.com). The set-

tings of the MASCOT parameters were (1) digesting enzyme,

trypsin; (2) missed cleavage site, one; (3) variable modifica-

tion, carbamidomethylation (cysteine) and oxidation

(methionine, histidine, and tryptophan); (4) peptide toler-

ance, <300 ppm; and (5) mass values, MHþ and monoisotopic.

Only proteins with Molecular Weight Search scores above the

significance levels were considered to be positively identified.
2.5. Functional classification

Sequences of all identified proteins by MS were submitted to

KOGnitor (http://www.ncbi.nlm.nih.gov/COG/grace/kognitor.

html) for eukaryotic orthologous group (KOG) classification

by a customized Perl script. Nearly all identified proteins can

be assigned a KOG number. A KOG number usually belongs to

one category, although some KOG numbers may belong to

more than one category. Thus, when counting the number of

total proteins with functional classifications, the proteins

associated with more than one category were counted more

than once. The protein ratio for each category was calculated

by dividing the number of proteins within a category by the

sum of assigned proteins from all categories.
3. Results

3.1. High-fructose diet-induced MetS in a rat model

To assess the efficacy of high-fructose consumption to induce

MetS in the rat model, we analyzed indicators of MetS such as

body weight, blood pressure, and several blood biochemistry

parameters. As shown in Table 1, after consuming a 60% high-

fructose diet supplement for 16 weeks, the SD rats had

significantly higher blood pressure, higher concentrations of

glucose, insulin, triglycerides, and cholesterol, compared with

the rats maintained on the control chow diet.

http://www.matrixscience.com
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Table 1e Bodyweight and biochemical parameters in the
control group versus the metabolic syndrome group.

Group Control MetS
(high-fructose diet)

Body weight (g) 540.8 ± 70.6 560.2 ± 100.1

Glucose (mg/dL) 116.0 ± 3.6 127.5 ± 5.0*

Insulin (ng/mL) 0.3 ± 0.13 0.8 ± 0.29*

Triglyceride (mg/dL) 78.1 ± 15.3 271.3 ± 124.9*

Cholesterol (mg/dL) 66.1 ± 11.6 107.6 ± 25.7*

Blood pressure (mmHg) 104.1 ± 3.0 129.2 ± 8.2*

TBARS (nmol

MDA/mg protein)

0.04 ± 0.01 0.08 ± 0.01*

The values are presented as the mean ± the standard deviation

(n ¼ 8).

*Indicates p < 0.05, compared with the control group. Statistical

analysis is based on the two sample t test.

MDA ¼ malondialdehyde; MetS ¼ metabolic syndrome;

TBARS ¼ thiobarbituric acid-reactive substances.

Figure 1 e Two-dimensional difference gel electrophoresis (2D-

(MetS) group (Cy 5) versus the control group (Cy3). Analysis of t
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trypsin, and analyzed using MALDI-TOF/MS-MS. Several protei
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3.2. Comparison of liver proteome between the control
and the high-fructose-fed rats

To gain insight into the molecular mechanism underlying

MetS in the high-fructose-fed rat model, we employed a 2-D

gel electrophoresis-based proteomics assessment to evaluate

the differential protein expression profiles of the liver tissue.

The liver was studied because it is the major metabolic organ

that responds to MetS induction in rats. As shown in Figures 1

and 2, total liver protein extracts were obtained separately

from the control and MetS rats, and 2-D gel electrophoresis

was used to display the hepatic protein expression patterns

and identify differences. After comparing the density of green

and red fluorescence, which indicates every individual protein

expressed in the liver tissue of the control and MetS rats,

respectively, 21 spots were examined. Of these, using the

merged fluorescent color, 10 spots were identified as having a

significant change of expression (p < 0.05) that was larger than

1.5-fold. The proteins with amerged yellow color indicated no
DIGE) analysis of the rat liver in the metabolic syndrome

he resulting 2D-DIGE gel images show 10 protein spots are

f these, eight protein spots are upregulated and two protein

were excised from preparative gels, in-gel digested with

ns are represented by spots. MALDI-TOF/MS-MS ¼ Matrix-

scopy-mass spectroscopy.
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Figure 2 e Two-dimensional difference gel electrophoresis (2D-DIGE) analysis of the rat liver in MetS group (Cy 3) versus

control group (Cy5). Analysis of the resulting 2D-DIGE gel images showed 10 protein spots are differentially expressed

between the MetS and control groups. Of these, eight protein spots are upregulated and two protein spots are

downregulated. Differentially expressed protein spots were excised from preparative gels, in-gel digested with trypsin, and

analyzed using MALDI-TOF/MS-MS. Several proteins are represented by spots. MALDI-TOF/MS-MS, matrix-assisted laser

desorption/ionization-time-of-flight/mass spectroscopy-mass spectroscopy.
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difference in expression between the control and high-

fructose-fed groups. Green indicated higher protein expres-

sion in the control group, and red indicated higher protein

expression in the MetS groups. Green and red protein spots

were removed from the gels and subjected to ESI-MS/MS

proteomics. As summarized in Table 2, these differentially

expressed proteins, which may be responsive to the patho-

genesis of MetS, fall into five categories, based on their func-

tional properties, which includes (1) carbohydrate

metabolism/synthesis: fructose-1,6-bisphosphatase 1

(FBPase) and the pyruvate dehydrogenase complex compo-

nent E2 (PDC-E2); (2) fatty acid metabolism/synthesis: fatty

acid synthase (FAS) and acyl-coenzyme A synthetase 1

(ACSM1); (3) antioxidants: glutathione S-transferase alpha 3,

peroxiredoxin I; (4) molecular chaperone: 78 kDa glucose-

regulated protein (GRP78); and (5) others: bifunctional ATP-

dependent dihydroxyacetone kinase/FAD-AMP lyase (ribo-

flavin-cyclic-40,50-phosphate-forming), glial fibrillary acidic

protein (GFAP), and Rho GDP-dissociation inhibitor 1
(RhoGDI1). Among the proteins, ASCM1 and Rho GDP-

dissociation inhibitor 1 are downregulated by the high-

fructose diet, and the other eight proteins are upregulated.
4. Discussion

Metabolic syndrome encompasses carbohydrate and lipid

metabolismdisorders. The present study used a ratmodel fed a

high-fructose diet that reflected the clinical parameters present

in human MetS patients such as abnormal lipid concentration

in plasma coupled with high blood pressure and insulin resis-

tance. Our liver proteome analysis revealed that enzymes

involved in gluconeogenesis such as FBPase, a regulatory

enzyme in gluconeogenesis that is elevated by obesity and di-

etary fat intake, is induced by the high-fructose diet. Fructose-

1,6-bisphosphatase 1 is an important gluconeogenic enzyme

that catalyzes the hydrolysis of fructose 1,6-bisphosphate to

fructose 6-phosphate and phosphate [14]. A potential basis for

http://dx.doi.org/10.1016/j.jfda.2016.03.005
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Table 2 e The differential expression of liver proteins in rat in the theme group versus the control group.

No. Protein name Protein ID MW (Da) Function Regulation

1 Fatty acid synthase P12785 272,650 Fatty acid biosynthetic process Up

2 78 kDa glucose-regulated protein P06761 72,347 Unfolded protein binding Up

3 Dihydrolipoyllysine-residue

Acetyltransferase component of

pyruvate dehydrogenase complex,

mitochondrial

P08461 67,166 Acetyl-CoA biosynthetic process

from pyruvate, glycolysis

Up

4 Acyl-coenzyme A synthetase,

mitochondrial

Q91VA0 64,760 Fatty acid metabolism Down

5 Bifunctional ATP-dependent

dihydroxyacetone

kinase/FAD-AMP lyase

(riboflavin-cyclic-40,50-phosphate-forming)

Q4KLZ6 59,444 Glycerol metabolic process Up

6 Glial fibrillary acidic protein P47819 49,957 Cell-specific marker Up

7 Fructose-1,6-bisphosphatase 1 P19112 39,609 Cellular response to insulin

stimulus, fructose 6-phosphate

metabolic process, gluconeogenesis

Up

8 Rho GDP-dissociation inhibitor 1 Q5XI73 23,407 GTPase activator activity Down

9 Glutathione S-transferase alpha 3 B0BNI1 23,961 Aromatic amino acid family metabolic

process, transferase activity

Up

10 Peroxiredoxin I Q63716 22,109 Cell redox homeostasis,

oxidation reduction,

response to oxidative stress

Up

ATP ¼ adenosine triphosphate; MW ¼ molecular weight.
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theaugmentedhepatic expressionofFBPase is toaccommodate

increased fructose catabolismand favor energy storage inhigh-

fructose-fed rats. In addition, PDC-E2, an enzymecomponent of

the multienzyme pyruvate dehydrogenase complex, was

elevated inourMetS induced rats. The pyruvate dehydrogenase

complex is responsible for pyruvatedecarboxylation toproduce

acetyl-CoA, which is the basic building block of fatty acids. It is

reasonable that after high-fructose consumption, the extra

energy influx increases both gluconeogenesis (we observed the

upregulation of FBPase) and lipid synthesis. In accordance with

this idea, the key enzymes for lipid synthesis such as fatty acid

synthase (FAS) were elevated in MetS rats Fatty acid synthase

may have a role in regulating body weight and in the develop-

ment of obesity [15,16]. Expression of the FAS gene and FAS

activity are increased by insulin in cultured human adipocytes,

which suggests that insulin may modulate their function [17].

Moreover, higher levels of FAS mRNA and protein were

observed in insulin-resistant large adipocytes, compared with

small adipocytes in wild-type mice [18,19], which is consistent

with our finding that insulin resistance is coupled with

increased FAS protein. Recent studies have reported that inhi-

bition of FAS in rodents induces profound weight loss and

reduced food intake, suggesting that FAS may be involved in

obesity through regulation of feeding behavior and energy ho-

meostasis [15,20]. In our rat model, the high-fructose diet

significantly increased abdominal fat pad weight and serum

triacylglycerol concentration (78.1 ± 15.3 mg/dL in the control

rats, 271.3± 124.9mg/dL in high-fructose-fed rats). It is possible

that increased FAS expression enhances the synthesis of fatty

acids and the consequent deposition of lipid in adipose tissue,

alongwith fatty acid release into the circulation, as observed in

the MetS rats. We also observed reduced ACSM1 expression in

rats fed a high-fructose diet. Acyl-coenzyme A synthetase 1

belongs toa large familyof enzymes that catalyze theactivation

of fatty acids by coenzyme A to produce acyl-CoA, the first step
in fatty acid metabolism. As previously reported, mice lacking

ACSL1 specifically in adipose tissue have defects in adipose

fatty acid oxidation [21]. It is possible that high-fructose con-

sumption leads to excess fatty acid synthesis by FAS and re-

duces fatty acid metabolism by ACSM1, thus causing

hyperlipidemia in the rat model.

Glucose-regulated protein was discovered as a cellular

protein induced by glucose starvation [22]. It is a member of

the HSP70 protein family that is primarily present in the

endoplasmic reticulum (ER). It functions as a major chap-

erone that is involved in many cellular processes such as

protein folding and assembly, marking misfolded proteins for

proteosomal degradation [23], regulating calcium (Ca2þ) ho-
meostasis, and serving as a sensor for ER stress [24]. Exces-

sive fat storage stimulates ER stress in liver and adipose

tissue, which subsequently activates inositol-requiring

enzyme 1 (IRE-1) and the downstream kinase, c-Jun NH2

-terminal kinase (JNK), through the ER stress signaling

pathway. Active JNK can phosphorylate the insulin receptor

substrate (IRS)-1 on Ser307, thus inhibiting tyrosine phos-

phorylation of IRS-1 and the downstream insulin signaling

pathway, thereby resulting in insulin resistance [25]. Our

result showed increased GRP78 in the MetS rat, which cor-

relates with insulin resistance, was consistent with the

findings of other research groups.

In this study, we have identified two antioxidant proteins,

glutathione S-transferase and peroxiredoxins, that were up-

regulated with the high-fructose diet. Some reports have

mentioned the effects of antioxidants as being protective

against oxidative stress. Evidence is fast growing that oxida-

tive stress is important not only for normal cell physiology but

also for many pathological processes such as atherosclerosis,

neurodegenerative diseases, and cancer [26e28]. Reactive

oxygen species (ROS) participate in carcinogenesis at all stages

such as initiation, promotion, and progression. Nevertheless,

http://dx.doi.org/10.1016/j.jfda.2016.03.005
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studies of the expression and activity of glutathione S-trans-

ferases during diabetes are inconclusive. Both increased and

decreased hepatic expression of glutathione S-transferases

have been reported in vitro and in vivo. A similar situation

exists for peroxiredoxins, a family of antioxidative proteins.

Peroxiredoxins are capable of protecting cells from ROS

toxicity and regulating signal transduction pathways that in-

fluence cell growth and apoptosis [26]. In vitro, the peroxir-

edoxin genes IeIV are overexpressedwhen hydrogen peroxide

(H2O2) concentrations in cells are elevated [29]. Bast et al [30]

reported that expression of peroxiredoxin I is up-regulated

in cultured insulinoma cells exposed to various stress agents

such as diabetogenic compounds such as alloxan and strep-

tozotocin. Consistent with these data, we have seen that the

high-fructose diet-fed rats exhibited a higher expression of

antioxidant proteins. It is reasonable that development of

MetS may be coupled with ROS production, which in turn in-

duces the antioxidant proteins.

Glial fibrillary acidic protein is an intermediate filament

protein that is expressed by numerous cell types of the

central nervous system such as astrocytes and ependymal

cells. Glial fibrillary acidic protein immunoreactivity was

detected in rat and in human hepatic stellate cells (HSCs),

which exhibit neural/neuroendocrine features. In the rat

liver, GFAP increases in the acute response to injury and

decreases in the chronic response [31]. The activation of

HSCs involves the conversion of quiescent cells into prolif-

erative, contractile, and fibrogenic myofibroblasts. Glial

fibrillary acidic protein expression in the liver is an early

marker of stellate cell activation [32]. Liver inflammation is

the hallmark of early-stage liver fibrosis, and ultimately re-

sults in HSC activation and extracellular matrix deposition

[33]. We did not study tissue histology; however, it is possible

that hyperlipidemia induced by high-fructose diet enhances

lipid deposition in the liver, and activates the inflammation
Figure 3 e Proposed signaling transduction pathway, which is

reticulum. The up arrows indicate upregulation and the down
signal transduction pathways that activate stellate cells and

induces the expression of GFAP.

Rho GDP-dissociation inhibitor, an intracellular signaling

effector, is responsive to sequester Rho GTPases in their

inactive GDP-bound states. Rho GTPases have been implicated

in diverse cellular functions and are potential therapeutic

targets in inflammation, cancer, and neurologic diseases

[34,35]. It is possible that a high-fructose diet may down-

regulate the expression of RhoGDI1, and thus activate Rho,

which may contribute to the inflammation state in MetS rats.

Bifunctional ATP-dependent dihydroxyacetone kinase/

FAD-AMP lyase was first discovered in rat liver extracts [36],

and is the only known enzymatic source of the unusual flavin

nucleotide riboflavin 40,50-cyclic phosphate (FMN). Inducible

nitric oxide synthase (iNOS), which is an inflammation

marker, has reduced activity on the loss of the FMN binding

ability. It is possible that high-fructose diet-induced FAD-AMP

lyase provides FMN to facilitate the inflammation-enhancing

function of iNOS. However, the physiological influence of

FAD-AMP lyase on MetS still needs to be further confirmed.
5. Conclusions

In summary, our results provide molecular mechanisms that

underlie the abnormal blood biochemistry of MetS. We also

identified many new targets within the liver for future inves-

tigation (Figure 3). Our results show that ER stress, inflam-

mation, and oxidation-related proteins are expressed

coincidently with the onset of insulin resistance and may be

implicated directly in hepatic complications of insulin resis-

tance, insulin signaling attenuation, and/or lipoprotein dys-

regulation. Further characterization of these proteins and

their potential involvement in the link between insulin

resistance and metabolic dyslipidemia is needed.
interfered by high fructose induction. ER ¼ endoplasmic

arrows indicate downregulation.
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