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Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases

buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells

that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified

cells B30, B51, B63, and B65, and increases in B63–B30 and B63–B65 electrical synaptic coupling. To examine the ways in

which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was de-

veloped. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63,

B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs,

and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of

B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 in-

creased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features.

Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63–B30 coupling con-

tributed to regularity and bias, and B63–B65 coupling contributed to all BMP features. Each site of plasticity altered multiple

BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate

that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.

Memoriesarebelieved tobeencodedas setsof changes atmanysites
within neuronal networks, often referred to as engrams (Semon
1904; Josselyn et al. 2015; Josselyn and Frankland 2018). Indeed,
multiple loci of plasticityappear tobe acommonfeatureofmemory
in nervous systems (e.g., Cleary et al. 1998; Hammer and Menzel
1998; Hansel et al. 2001; Crow and Tian 2006; Strube-Bloss et al.
2011; Gao et al. 2012; Kalmbach and Mauk 2012; Mayford et al.
2012; Tsien et al. 2013; Jörntell 2016; Richards and Lillicrap
2019). However, how individual sites of plasticity contribute to
memory expression remains unknown. For example, which bio-
physical properties of which neurons contribute to a given behav-
ioral feature? Does each site contribute to one or multiple
behavioral features? How do multiple loci interact to allow expres-
sion of a memory? Are the contributions of multiple loci of plastic-
ity purely additive, or are they synergistic? Despite significant
advances in the tools available to identify as well as activate or sup-
press engrams (Tonegawa et al. 2015), many of the manipulations
required to address these questions are currently not experimental-
ly feasible. Thus, we used a biologically realistic computational
model to examine the contributions of previously identified sites
of learning-induced plasticity, individually and in combination,
to specific behavioral features altered by operant reward learning.

The present study developed a conductance-based model of a
central pattern generator (CPG) that mediates feeding in Aplysia.
The feeding CPG generates buccal motor patterns (BMPs), which
are patterns of neural activity that mediate rhythmic movements
of a food grasper during feeding. These movements consist of

a forward motion (protraction) followed by a backward motion
(retraction). The timing of a third motion (closure) relative to
this sequence is one of the main factors determining the type of
behavior emitted. BMPs have phases of activity corresponding to
protraction, retraction, and closure. At least two types of BMPs
are expressed and, in turn, these BMPsmediate different behaviors,
such as ingestion (iBMP) and rejection (rBMP; Weiss et al. 1986;
Morton and Chiel 1993a,b; Hurwitz et al. 1996; Evans and
Cropper 1998; Kabotyanski et al. 2000; Jing et al. 2004; Nargeot
et al. 2007; McManus et al. 2012). The connectome of the CPG is
at least partly characterized as are the biophysical properties of var-
ious cells, synapses, and sites of learning-induced plasticity (Jing
and Weiss 2001, 2002, 2005; Elliott and Susswein 2002; Cropper
et al. 2004, 2019; Baxter and Byrne 2006; Wentzell et al. 2009;
Mozzachiodi and Byrne 2010; Nargeot and Simmers 2011). For ex-
ample, operant reward learning increases the frequency and regu-
larity of ingestions in vivo and in vitro, and biases activity in the
CPG toward iBMPs (Brembs et al. 2002; Nargeot et al. 1997,
2007; Mozzachiodi et al. 2008). Correlates of operant reward learn-
ing include an increase in the excitability of neurons B30, B51,
B63, and B65, and increases in electrical coupling among
B30, B63, and B65 (Brembs et al. 2002; Nargeot et al. 1999a,b,
2009; Sieling et al. 2014). To examine the relative contributions
that these sites of plasticity make to altering motor output, a
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computational model of the circuit was developed that included
identified cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52,
B63, B64, and B65. Modeling a well-described system allowed us
to bridge the gap between changes in biophysical properties and
their ultimate effects on the features of motor output.

Results

Simulation of biologically relevant patterns of neural

activity
As a first step in examining the ways in which distributed sites of
learning-induced plasticity modify rhythmic activity, a conduc-
tance-based, reduced model of the Aplysia feeding CPG was devel-
oped (Fig. 1). The model consists of a subset of the neurons in the
feeding CPG that was sufficient to generate activity that resembles
physiological BMPs elicited in isolated ganglia. The current model
is an expansion of our previous efforts in modeling this system
(Kabotyanski et al. 1994; Ziv et al. 1994; Hayes et al. 2005;
Cataldo et al. 2006, 2009; Baxter et al. 2010).

Figure 2A illustrates the simulated activity observed in all 13
cells upon stimulation of CBI-2. Because both axonal and somatic
compartments of B31, B51, and B64 are depicted, a total of 16 trac-
es are shown. CBI-2 is a command-like neuron that receives sen-
sory input associated with the presence of food and that excites
many CPG elements. Tonic presentation of food elicits rhythmic
feeding in vivo and, similarly, tonic stimulation of CBI-2 evokes
rhythmic fictive feeding in vitro (Rosen et al. 1991; Hurwitz et al.
2005). Thus, tonic stimulation of CBI-2 was used to elicit rhythmic

activity in themodel. As indicated in Figure 2, themodel simulated
rhythmic patterns of activity. The relative phases of cellular activ-
ities were similar to empirical observations (e.g., Church and Lloyd
1994; Kabotyanski et al. 1998; Jing and Weiss 2001; Nargeot et al.
2002; Jing et al. 2003, 2004; Cropper et al. 2004; Nargeot and
Simmers 2011). Thus, the model reproduced the biphasic proper-
ties of BMPs, in which activity in protraction-phase neurons is al-
ways followed by activity in retraction-phase neurons. Moreover,
the overall frequency of rhythmic activity was similar to empirical
observations (Church and Lloyd 1994; Jing and Weiss 2001;
Hurwitz et al. 2003; Sieling et al. 2014).

The model simulated intrinsic features of cellular activity,
such as the plateau-like potential in B31 and the role of autaptic
transmission in its maintenance (Hurwitz et al. 1994, 2008; Saada
et al. 2009; Baxter et al. 2010). The model also reproduced proper-
ties of cellularactivity thatemergedue to the specificpatternof con-
nectivity in which the neurons are embedded. For example, the
model reproduced observations that activity in CBI-2 becomes
rhythmicdespite its tonic stimulation, and that the burst of activity
in CBI-2 occurs during the protraction phase (Hurwitz et al. 2005).
In addition, B52 was active at the end of each BMP and functioned
to terminate activity in cells active during the retraction phase
(Nargeot et al. 2002; Shetreat-Klein and Cropper 2004).

Themodel generated a variety of BMP types similar to that ob-
served empirically. The simulated patterns were classified as either
ingestion-like (iBMPs) or other types of pattern, which included
rejection-like (rBMPs) and intermediate patterns. As illustrated in
Figure 3, patterns were classified based on the relative overlap of ac-
tivity in B8 with the protraction versus the retraction phases (see
Materials and Methods). The examples in Figures 2, 3 indicate
that the model simulated various patterns of activity similar to fic-
tive behaviors (e.g., Jing andWeiss 2001; Jing et al. 2003, 2004), al-
though not all differences between pattern types were captured
(e.g., B4 exhibits higher activity during rBMPs, which was not ob-
served in the model). Thus, the model appeared to be a reasonable
abstraction of the feeding CPG and was used to examine the ways
in which the distributed representation of an engram alters net-
work activity.

Simulation of learning-induced changes in neural activity
At least three sets of cellular correlates of memory have been
characterized following operant reward learning: (i) a decrease in
the input conductance and increase in the excitability of pattern-
initiating neurons B30, B63, and B65 (Nargeot et al. 2009,
Sieling et al. 2014); (ii) a decrease in the input conductance and
increase in the excitability of B51, a pattern-selecting neuron
(Nargeot et al. 1999b; Brembs et al. 2002; Lorenzetti et al. 2008;
Mozzachiodi et al. 2008); (iii) an increase in the electrical coupling
between B63 and B30, and between B63 and B65 (Nargeot et al.
2009; Sieling et al. 2014). Figure 4 illustrates the implementation
of these sites of plasticity.

Learning-induced changes in the input conductance and ex-
citability of B30, B63, and B65 were simulated by modifying leak-
age conductances in these cells (Fig. 4A,C). Changes in the B63–
B30 and B63–B65 electrical synapses were stimulated by increasing
their coupling conductances (Fig. 4B). Finally, the learning-in-
duced change in B51 was simulated by decreasing the leakage con-
ductance of the cell (Fig. 4D; see Materials and Methods for details
on specific changes made to each cell and connection). We first
tested whether there is, in principle, at least one set of parameters
such that changes to known sites of plasticity are sufficient to reca-
pitulate the main features of operant reward learning. Indeed, ad-
justing the magnitude of the modifications described above by
trial and error was sufficient to yield increases in motor pattern fre-
quency, regularity, and bias toward iBMPs (see below), which are
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Figure 1. The connectome. The connectome of the model represents
the topology of monosynaptic connections among cells. Cells highlighted
in orange are generally active during the protraction phase of a BMP,
whereas cells highlighted in blue are generally active during the retraction
phase of a BMP (e.g., Kabotyanski et al. 1998; Jing and Weiss 2001; Jing
et al. 2003, 2004; Cropper et al. 2004; Nargeot and Simmers 2012).
Activity in closure motor neuron B8 (highlighted in green) shifts
between the protraction phase for rBMPs and the retraction phase for
iBMPs (see Fig. 3). Note, the network included one hypothetical excitatory
connection from B63 to B64 (not shown) because our previous modeling
studies indicate that some additional excitatory drive onto B64 is necessary
to elicit the retraction phase (Cataldo et al. 2006; see Materials and
Methods for details).
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changes induced by operant reward learning in vivo and in vitro
(Nargeot et al. 1997, 1999a, 2007, 2009; Brembs et al. 2002;
Mozzachiodi et al. 2008; Sieling et al. 2014).

Computational model of operant reward memory

recapitulates empirical observations
The implementation of simulated learning-induced changes led to
a substantial reconfiguration of rhythmic activity generated by the
simulated network (Fig. 2B). A more detailed analysis shows that
this reconfiguration reproduced features of learning that have
been observed empirically (Fig. 5). Empirical studies indicate that
operant reward learning increases the number of BMPs and biases
activity in the CPG toward expressing iBMPs (for reviews, see
Baxter and Byrne 2006; Mozzachiodi and Byrne 2010; Nargeot
and Simmers 2011). The control and operant memory conditions
were simulated 20 times each during a 6-min stimulus to CBI-2
and the resultant BMPswere classified as being either iBMPs or oth-
er patterns (Fig. 5A). Relative to the control simulations, the oper-
ant learning simulations had an increase in both the overall rate of
BMPs (from 1.71±0.08 to 3.78±0.13 BMPs/min; mean± standard
error) and in the rate of iBMPs (from 0.43±0.04 to 1.93±0.07
BMPs/min). Whereas in the control simulation ∼26% of the pat-
terns were ingestion-like, after implementation of the operant
memory that ratio increased to 51%. The model, therefore, repro-
duced both the increase in motor pattern rate and the shift in pat-
tern type bias that are characteristic of operant learning.

Another consequence of operant reward learning is an in-
crease in the regularity with which BMPs are expressed (Nargeot
et al. 2007, 2009). In naïve animals (or in vitro preparations), biting
(or fictive feeding) occurs sporadically. Learning regularizes this
behavior (or network activity). To evaluate theways in which com-

bined sites of plasticity affect the regularity of network activity,
inter-burst intervals (IBIs) were measured. In each condition, 15
simulations that had at least 10 BMPs were analyzed. The IBIs be-
tween 10 BMPs were measured in each simulation and a histogram
of the distribution of IBIs within each group of simulations was
constructed (Fig. 5B1). Finally, the coefficient of variation (CV),
which is equal to the standard deviation (SD) divided by the
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Figure 2. Simulation of BMPs. Activity was elicited by injecting a sustained 1.9 nA depolarizing current into command-like neuron CBI-2. The color code
of the voltage traces matches that in Figure 1. The variability among the simulated BMPs resulted from the noise that was included in all simulations. Here,
both the somatic and axonal compartments of B31, B51, and B64 (e.g., B31s and B31a, respectively) are illustrated. (A) Control simulation. (B) Simulated
activity after incorporating neuronal correlates of operant conditioning. See Figure 4 and text for details related to the implementation of these correlates.
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Figure 3. Methods for analyzing BMPs. Four measures of network activ-
ity were used. First, the overall number of BMPs was counted. Three sim-
ulated BMPs are illustrated here. Second, BMPs were classified as being
iBMPs or other pattern types, such as the depicted rBMPs (see Materials
and Methods). Third, the mean, SD, and CV of the inter-burst intervals
(IBIs) were calculated. The beginning of a burst was defined as the first
spike in B31a, which matches methods used to identify bursts in empirical
studies (e.g., Nargeot et al. 1997). Finally, activity maps were generated by
counting the number of spikes in each cell during 20 nonoverlapping 1 sec
time bins that ranged ±10 sec from the terminus of activity in B31a.
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mean IBI, was calculated for each simulation. A decrease in the CV
represents an increase in the regularity of network activity. The CV
in control simulations was 0.167±0.018, whereas implementing
the full ensemble of cellular correlates reduced the CV to 0.059±
0.002 (Fig. 5B). These results indicate that the combination of
learning-induced changes in B30, B51, B63, and B65 was sufficient
to increase the regularity of rhythmic activity generated by the sim-
ulated network. Therefore, there was at least one set of parameters
for which implementation of the combined sites of plasticity was
sufficient to reproduce the main features of operant reward learn-
ing in Aplysia (i.e., changes in frequency, bias, and regularity).

Activity maps reveal indirect effects of the engram
To examine the ways in which activity in all 13 cells of the CPG
was altered by implementation of the operant memory, activity
maps were obtained by averaging 100 BMPs from control simula-
tions (Fig. 5C1) and the same number from operant memory sim-
ulations (Fig. 5C2). The effects of plasticity were revealed by
subtracting the control activity map from the operant activity
map. This subtraction produced a “dynamic memory map” (Fig.
5C3), which highlighted changes in cellular activity throughout
the network.

The dynamic memory map indicates that the activity in all
cells was altered, regardless of whether a given cell was a direct tar-
get of modulation. Four main changes can be observed. First, the
firing rate of many neurons increased during late protraction,
near the transition from protraction to retraction. Second, the fir-
ing rate of several cells decreased during the early protraction
phase. Direct comparison of the activity maps (Fig. 5C1 vs. C2) re-
veals that this change was due to a shortening of the activity in
multiple cells. Third, the retraction phase primarily exhibited in-
creases in activity, which were likely mediated by the recruitment
of B51. Among other effects, this recruitment led to increased ac-
tivity of B8 during retraction, thereby biasing patterns toward
iBMPs. Fourth, the duration of activities increased during retrac-
tion, potentially due to a delay in termination of retraction (Fig.
5C3, reduced activity in the pattern terminator B52 at the 6–7
secwindow). These results indicate that implementation of amem-
ory engram led to population-wide reconfiguration, which com-
prised both direct and indirect effects of learning.

Intrinsic and synaptic plasticity make differential yet

dependent contributions to the engram
One of the advantages of modeling studies is the ability to selec-
tively incorporate individual sites of plasticity or various combina-
tions of plasticity and then assess their relative contributions to
changes in network activity. Here, comparisons were made in
two steps. First, simulations characterized the relative contribu-
tions of intrinsic and synaptic plasticity to rhythmic activity.
This analysis focused on pattern-initiating neurons B30, B63,
and B65. Second, the individual contributions of each site of plas-
ticity were evaluated.

Characterization of the relationship between modeled conductances
and passive properties of B30, B63, and B65
Due to the presence of electrical coupling among B30, B63, and
B65, changes in modeled conductances in one cell may affect the
passive properties of the other two cells. Therefore, independent
manipulation of each passive property (namely, input conduc-
tance and coupling ratio) required balanced changes to modeled
conductances (namely, leak conductance and coupling conduc-
tance) in all three cells. We characterized the relationship among
these variables by solving the equations for the input conductanc-
es and coupling ratios among B30, B63, and B65 over a range of
parameters of leak conductances and coupling conductances in
a three-neuron circuit (Fig. 6A; see Materials and Methods for
details).

Figure 6 shows the effects on each passive property of chang-
es to the two main modeled conductances affecting it. For refer-
ence, the relative positions of control and operant memory
values in the parameter space are also indicated. The slope of a
color band indicates the relative contribution of each parameter
for a given range of changes in the plotted passive property.
Input conductances were chiefly, but not exclusively, determined
by leakage conductance (Fig. 6D–F). Conversely, coupling ratios
were affected similarly by coupling conductance and leakage con-
ductance (Fig. 6B,C). Importantly, however, relative contributions
were not constant throughout the parameter space, as indicated
by the changing slopes of color bands, especially in the case of
coupling ratios. These results confirmed that the effects of all pa-
rameters must be accounted for when targeting specific sets of
changes to passive properties. Moreover, the characterization of
these relationships made it possible for the parameter space to
be searched for sets of values that achieve a given target set of
changes to the passive properties. This approach was used in all
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Figure 4. Implementing neural correlates of operant conditioning.
Empirical studies indicate that the memory engram of operant reward
learning is encoded as decreases in the input conductance of B30, B63,
and B65 (A); increases in the electrical coupling between B63 and B30,
and between B63 and B65 (B); increases in the excitability of B30, B63,
and B65 (C); and a decrease in the input conductance and an increase
in the excitability of B51 (D). In each panel, the black trace represents
the control simulations, whereas the red trace represents the simulated
neuronal correlate of the memory engram following operant condition-
ing. (A) The input conductances of B63 (A1), B30 (A2), and B65 (A3)
were measured by injecting a −0.5 nA, 2-sec duration current pulse (indi-
cated by bar below trace) into each individual cell. (B) Coupling coeffi-
cients were measured by injecting a −1 nA, 2-sec duration current pulse
into B63 (left trace) and measuring the voltage deflections in B30 and
B65 (traces to right; note change in scale among panels). (C ) The excitabil-
ities of B63 (C1), B30 (C2), and B65 (C3) were measured by injecting a
2-sec duration depolarizing current pulse into each cell. The magnitudes
of currents were adjusted to be subthreshold in the control simulation
(0.4 nA in B63, 0.73 nA in B30, and 0.74 nA in B65). Identical pulses
were injected after incorporating neuronal correlates of the memory
engram. (D) The input conductance (D1) and excitability (D2) of B51
were measured by injecting 1-sec duration current pulses; either a −0.5
nA pulse to measure input conductance, or a 0.25 nA pulse to measure ex-
citability. In all examples, the cells are embedded within the connectome
(see Fig. 1).
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subsequent analyses involving B30, B63, or B65 (see Materials and
Methods for details).

Input conductance and electrical coupling make unique contributions
to the engram
Next, the contributions of intrinsic and synaptic plasticity were
compared by examining whether any particular feature of operant
memory could be attributed to either form of plasticity in
pattern-initiating neurons B30, B63, and B65. Two sets of simula-
tionswere run. Thefirst set usedparameters thatmodified the input
conductances of B30, B63, and B65 to the same extent as the oper-
ant memory, but without affecting electrical coupling ratios. The
second set introduced operant memory changes to coupling ratios
without affecting input conductances. Neither set included chang-
es to B51. Relative to control, changes to input conductances alone
led to an increase in the overall rate of patterns (3.96±0.02 BMPs/

min), but also led to a decrease in the rate of iBMPs (0.10 ±0.03
BMPs/min; Fig. 7A). Conversely, changes to coupling ratios alone
resulted in a smaller increase in overall rate (2.30±0.05 BMPs/
min), combined with an increase in the rate of iBMPs (0.87± 0.09
BMPs/min; Fig. 7A). Both conditions led to reductions in the CV
(0.038±0.002 for changes to input conductances alone, and
0.065±0.005 for changes to coupling ratios alone; Fig. 7B). Thus,
each form of plasticitymade unique contributions to the ensemble
of features that characterize operantmemory. Decreasing the input
conductance of B30, B63, and B65 led to large increases in both the
rate and regularity of motor patterns, but did so at the cost of a sub-
stantial reduction in bias toward ingestion-like motor patterns.
Increases in coupling among these cells, on the other hand, seemed
to contribute to all three characteristics of operant memory.
However, coupling appeared to contribute more to regularity
than it did to rate or bias, given that regularity approached operant
values in the coupling-alone condition, unlike BMP rate or bias.
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referred to as a “dynamic memory map,” revealed the changes in average spiking for each cell in the network, regardless of whether they were direct
targets of modulation.

Computational model of operant memory

www.learnmem.org 240 Learning & Memory



Contributions to memory are mediated by unique reconfigurations
of network activity
Can the contributions of each form of plasticity be attributed to
specific changes in cellular activities? Dynamic memory maps
(Fig. 7C) revealed that, similarly to the complete operant memory,
bothmanipulations reconfigured activity throughout the network.
BMPs generated under each condition recapitulated a subset of the
changes induced by operant memory (Fig. 5C3). Specifically, im-
plementation of modifications to input conductance alone (Fig.
7C1) recapitulated both the increases in firing rate of several neu-
rons during late protraction and the decreases during early protrac-
tion (e.g., compare B8, B20, B34, B63, and B65 in Fig. 7C1 and Fig.
5C3), but did not recapitulate the increases in spike rate during re-
traction or the lengthening of that phase (e.g., compare B52 and
B64 in Fig. 7C1 and Fig. 5C3). In contrast, the coupling-alone con-
dition (Fig. 7C2) recapitulated only the decreases in the activities of
several cells during early protraction. Given that both conditions
led to substantial regularization of rhythmic activity and activity
decreases during early protraction (Fig. 7B,C), it seems likely that
shortening the windows during which protraction neurons may
be active played a role in controlling BMP regularity. By exclusion,
then, the increases observed during late protraction likely contrib-
uted to the higher overall BMP rate induced by decreasing input
conductance.

Effects of intrinsic and synaptic plasticity are mutually dependent
Experimental investigations suggest that the input conductances
of B30, B63, and B65 contribute to motor pattern rate but not reg-
ularity, and that coupling contributes to regularity but not pattern
rate (Sieling et al. 2014), in contrast to themore interrelated effects

obtained with the model. To explore this difference, we examined
to what extent the effects of one form of plasticity depend on the
other over a wide parameter space. The characterized relationships
between passive properties and modeled conductances in these
three cells (Fig. 6) were used to obtain sets of parameters that yield-
ed a range of combinations of changes to input conductance and
coupling ratio (see Materials and Methods for details).
Simulations were run for 95 unique sets of parameters, and the
rate and CV of patterned activity were measured. The input con-
ductances of all three cells were modified simultaneously and to
the same extent, aswere the B63–B30 and B63–B65 coupling ratios.
Figure 7D displays the overall rate of motor pattern generation for
each combination of changes. As indicated by the black dashed
lines on top of the surface plot, manipulating either passive prop-
erty while keeping the other at control values altered the BMP rate.
However, the effect of changes in coupling ratio depended on the
input conductance—as the latter increased or decreased, the effects
of the former on pattern rate were diminished (e.g., white dashed
line). The effect of input conductance on rate also diminished as
the coupling ratio increased, but to a lesser extent. The regularity
of rhythmic activity could only be assessed for the 60 (out of 95)
unique sets of parameters that yielded simulations that produced
at least 10 BMPs in 6 min (Fig. 7E). As was the case with BMP
rate, changes in either passive property were sufficient to modify
the CV when the other property was maintained at control values,
but the effects of both input conductance and coupling ratio on
regularity were diminished in specific regions. Moreover, whereas
the BMP rate plot was smooth, the CV plot displayed various peaks
and valleys, which may indicate a more complex relationship in
which unique combinations of changes have unique effects on reg-
ularity. These results demonstrated that there can be, in principle,
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regions in parameter space in which rate and regularity are primar-
ily affected by one passive property but not the other.

Individual sites of plasticity uniquely contribute to features

of rhythmic activity
We next examined the contributions made by individual sites of
plasticity in isolation. This analysis was performed by simulating
six additional conditions, each including only changes either to
the input conductance of one cell or to the coupling ratio between
two cells. The effects of each condition onmotor pattern rate, bias,
and regularity are displayed in Figure 8. Compared to control val-
ues, implementing changes to the input conductance of B51 in-
creased the rate of iBMPs (1.40±0.07 BMPs/min) while slightly
decreasing the overall rate of patterns (1.49± 0.07 BMPs/min)
and leading to effectively no change in regularity (CV=0.163±
0.013). Unexpectedly, modifying the input conductances of B30,
B63, or B65 individually had strikingly distinct effects. The
B30 change led to increased regularity (CV=0.079±0.005), a small
increase in iBMP rate (0.59±0.06 BMPs/min), and no effective
change in overall rate (1.77±0.05 BMPs/min). Modifying B63,
on the other hand, increased the overall rate of BMPs (3.35±0.13

BMPs/min), decreased the rate of iBMPs (0.12±0.03 BMPs/min),
and caused no clear change in regularity (CV=0.192±0.053).
Implementing changes to the input conductance of B65 led to de-
creases in overall rate (1.39±0.07 BMPs/min), iBMP rate (0.10±
0.03 BMPs/min), and regularity (CV=0.356±0.065). Thus, chang-
es to B65 had effects that were opposite to those of the complete
engram on all three features of operant memory. Finally, altering
the B63–B30 and B63–B65 coupling ratios led to similar effects
on two out of three features. For B63–B30 coupling, there was an
increase in regularity (CV=0.096±0.012) and a small increase in
rate of iBMPs (0.63±0.05 BMPs/min), but the overall rate of pat-
terns (1.80±0.08 BMPs/min) was unchanged. These changes
were similar to those observed when manipulating the input con-
ductance of B30 alone. Conversely, for B63–B65 coupling, rate of
iBMPs (0.68± 0.06 BMPs/min), regularity (CV=0.086±0.009),
and overall rate of patterns (2.26±0.02 BMPs/min) were all in-
creased. These results indicated that, like the combined changes ex-
amined in the previous subsection, each specific site of plasticity
mademostly unique contributions to the total set of features of op-
erantmemory. Furthermore, althoughmost individual effects were
in the same direction as the effects of the complete engram, effects
in the opposite direction on at least one of the behavioral features
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of memory were common. Last, in at least one case there was evi-
dence of synergism among sites of plasticity (i.e., the contributions
of combined sites of plasticity could exceed the sum of the individ-
ual contributions of each site). Although B30 had the only input
conductance change that increased regularity (Fig. 8B, CV=0.079
±0.005), implementing changes to the input conductances of
B30, B63, and B65 in combination led to a greater increase in reg-
ularity than B30 alone (Fig. 7B, CV=0.038±0.002).

These findings suggest that: (1) each site of plasticity in the
engram contributed only a portion of the overall changes in net-
work output; (2) part of the effects of individual sites could be op-
posite in direction to the effects of memory; (3) combined sites of
plasticity could modulate each other’s contributions and display
synergism; and (4) memory emerged from the combined effects
of all sites of plasticity.

Taken together, these investigations suggested that intrinsic
and synaptic plasticity made differential contributions to operant
memory through differential reconfigurations of network activity.
Notably, these contributions appeared to consist of unique
combinations of changes to multiple behavioral features simulta-
neously, each of which could be in the same or opposite direction
as those induced by the complete engram. Moreover, the contri-
butions of intrinsic and synaptic plasticity seemed to be mutually

dependent—that is, one form of plasticity could modulate the
contributions of the other.

Discussion

Comparison with previous models of the feeding CPG
Several previous studies described models of the Aplysia feeding
neural network that can simulate aspects of feeding. Some of these
previous models were abstract in design (Kupfermann et al. 1992;
Deodhar and Kupfermann 2000), whereas others adhered to bio-
logical constraints (Ziv et al. 1994; Susswein et al. 2002; Cataldo
et al. 2006; Hurwitz et al. 2008). The present model was an exten-
sion of our previous studies of the Aplysia feeding circuit
(Kabotyanski et al. 1994; Ziv et al. 1994; Susswein et al. 2002;
Cataldo et al. 2006, 2009; Baxter et al. 2010), and represents the
most comprehensive model to date. Several aspects of the model,
however, are still incomplete. For example, the present model
did not include all of the neurons known to be elements of the
CPG nor the possibility of additional sites of plasticity in identified
neurons and yet unidentified neurons.Moreover, empirical studies
have yet to provide complete details of the biophysical properties
of many neurons and synaptic connections. Nevertheless, simula-
tions indicated that the present model network captured salient
features of rhythmic activity in the feeding neural network. For ex-
ample, the subset of neurons in the model could simulate the gen-
esis of BMPs and the switch between different types of patterns.

Roles of individual and combined sites of plasticity
Simulations in this study suggested that sites of intrinsic and syn-
aptic plasticity can make unique contributions to memory. These
contributions weremediated by differential reconfiguration of net-
work activity, and consisted of unique sets of concurrent changes
to multiple behavioral features. In addition, each change could
be in the same or in the opposite direction of the changes induced
by the complete engram. Furthermore, changes induced by intrin-
sic and synaptic plasticity were found to be mutually dependent.
These findings support a view of memory expression as a distribu-
ted process that emerges from a complex set of reciprocally modu-
lating sites of intrinsic and synaptic plasticity.

The model indicated that the currently identified sites of one
type of learning-induced plasticity could, at least in principle, ac-
count for observed changes in the behavioral features of feeding
examined here. However, this finding does not imply that the
known sites constitute the complete engram for several reasons.
First, it is possible for multiple sites of plasticity to contribute to
the same behavioral effect. Indeed, in the model, each of the three
examined behavioral features received contributions, ranging from
large to small, from several individual sites of plasticity. Second,
multiple loci may have redundant roles, which would contribute
robustness to thememory trace. Decreasing the input conductance
of B30 or increasing the B63–B30 coupling yielded similar changes
to all three features of network activity in the model, suggesting
that redundant components could be present in the engram.
Third, not all sites recruited as part of an engramneed to contribute
to thememory. Findings from themodel suggested that each site of
plasticity led to a unique set of changes in BMP features, often in-
cluding effects that were in the opposite direction of changes in-
duced by the complete engram. Moreover, one site, the decrease
in input conductance of B65, appeared to lead solely to such oppo-
site effects when examined in isolation. It is possible that B65
could contribute to other features of memory that were not
examined.

In operant learning behavioral features can be selected regard-
less of whether they are useful. Indeed, the training paradigm
used in operant reward learning in Aplysia feeding merely makes
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Figure 8. The relative contributions of individual sites of plasticity in
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Computational model of operant memory

www.learnmem.org 243 Learning & Memory



reinforcement contingent upon ingestion responses. Thus, the
highest number of rewards would be obtained by a high rate of in-
gestions, regardless of how regular are the intervals between feed-
ing responses. Nevertheless, feeding responses become highly
regular following training (Nargeot et al. 2007). Why, then, is reg-
ularity selected at the behavioral level? One possibility is that reg-
ularity is enhanced due to some unknown behavioral relationship.
Alternatively, it could be a by-product of memory allocation at the
neuronal level.

Results from the model indicate that individual sites of
plasticity make unique sets of contributions tomultiple behavioral
features. Moreover, further contributions can arise from the inter-
actions amongmultiple loci, such as synergistic enhancement of a
feature. Thus, the engram appears to be a combinatoric code of
plasticity loci in which addition or removal of a single locus can
have effects that exceed its owndirect contributions. One potential
mechanismofmemory allocation involves the occurrence of activ-
ity in a neuron at a given critical time (Athalye et al. 2018; Josselyn
and Frankland 2018). This mechanism requires some form of coin-
cidence detection between activity and a critical event. Such a
mechanism has been shown to mediate the changes induced by
operant learning in B51, which require activity-dependent Ca2+ in-
flux into the cell and concurrent activation of dopamine receptors
(Lorenzetti et al. 2008). A similar motif in other cells may explain
why neurons such as B65, which does not appear to make any di-
rect contribution to memory, are recruited into the engram.
Neurons B30, B63 and B65 display some level of activity in most
motor patterns. Thus, their recruitment into the engram may be
automatic following operant training. If that is the case, their
synergistic effect on regularity would explain why this behavioral
feature emerges after training. Several predictions can be made
from this interpretation. First, a training paradigm designed to
exclusively reward irregular feeding responses should fail to en-
hance irregularity and still lead to highly regular ingestions.
Second, hyperpolarizing or buffering Ca2+ in B30 and B65 during
training should prevent their recruitment into the engram and
lead to a high rate of irregular BMPs. Third, several other neurons
in the CPG that are reliably active during motor patterns should
also be recruited as part of the engram.

Roles of intrinsic and synaptic plasticity
Plasticity of the intrinsic properties of neurons is at times portrayed
as secondary in the more dominant view of synaptic plasticity as
the primary site of memory, in which case the roles of intrinsic
plasticity in modulating synaptic plasticity are emphasized.
However, evidence from invertebrates and vertebrates supports in-
trinsic plasticity as a site of memory in its own right (Hansel et al.
2001; Mozzachiodi and Byrne 2010; Titley et al. 2017). The find-
ings reported herein suggest not only that intrinsic and synaptic
plasticity make differential and complementary contributions to
memory, but also that these forms of plasticity may reciprocally
modulate each other’s contributions. Thus, expression of memory
may require combinatoric engagement of intrinsic and synaptic
plasticity, without which certain effects may not be achievable.

A recent study empirically evaluated the contributions of
changes to the input conductance of B30, B63, and B65 or their
electrical coupling by artificially adding currents that mimic these
changes to cells from a naïve preparation (Sieling et al. 2014).
Consistent with the results reported here, decreases to input con-
ductance led to an increase in the rate of motor patterns, and in-
creases in coupling led to an increase in BMP regularity.
However, the study found that decreases in input conductance
had no effect on the regularity with which motor patterns oc-
curred, in contrast to the effects of the equivalent manipulation
in the computational model. The analysis in Figure 7E shows

that there are regions in parameter space in which the effects of in-
put conductance on regularity are greatly diminished. One possi-
bility, then, is that the biological system occupies such a region,
which the model did not reproduce under control parameters. A
second possibility is that this difference may be explained by the
fact that the current iteration of the model does not fully capture
irregularity in the system. Variability in which neuron among
B30, B63, and B65 has the earliest onset of activity for a given mo-
tor pattern is present in naïve animals and is reduced by operant
conditioning (Nargeot et al. 2009). Although these three neurons
are capable of initiating BMPs in the model, all simulations in
the present study hadmotor patterns evoked by the same tonic in-
put to CBI-2, and B63 was consistently the first activated neuron
among the three cells in both control and operant memory simu-
lations. Thus, expansion of themodel to better reflect sources of ir-
regularity in the system could improve the ability to simulate
learning-induced changes throughout the neuronal population.

In intact, freely behaving animals, the absolute rate of feeding
is a function of several variables, includingmotivational state (e.g.,
food deprivation), chemical and tactile stimulation. Some of these
variables converge on neurons such as CBI-2 and other CBIs, and
neurons in the buccal ganglia. Indeed, Rosen et al. (1991) show
that both rate and regularity of motor patterns can be modified
by varying the intensity of CBI-2 stimulus. This is also true of
the model—higher magnitude of CBI-2 current injection leads to
higher frequency and regularity (data not shown). The overall
rate observed in our simulations under control conditions approx-
imated that observed in naïve isolated ganglia in operant condi-
tioning experiments (e.g., Sieling et al. 2014). One limitation of
this study is that all patterns were elicited by tonic stimulation of
CBI-2 with a fixed intensity. In the biological system, motor pat-
terns can be initiated by many other neurons, including other
CBIs and pattern initiating neurons in the buccal ganglia (e.g.,
B31, B63). This study did not explore whether the same relation-
ships among sites of plasticity would bemaintained when patterns
are initiated by other means. Expansion of the model to include
other CBIs and pattern initiating neurons will allow for similar
questions to be addressed.

Relationship with biomechanical models
In addition toneuronalmodels describing theCPG, such as the one
reportedherein, biomechanicalmodels of theAplysia feeding appa-
ratus have also been developed (Drushel et al. 1998, 2002; Lyttle
et al. 2017). Thesemodels can describe the positions and forces ex-
erted by the muscles in the animal’s buccal mass, thereby using
motor output to illuminate function (e.g., Novakovic et al. 2006).
The conductance-based CPGmodel described in the present study
could be combined with such a biomechanical model. This would
make it possible to quantify relationships between cellular and
synaptic properties of the network and ultimate motor output
and function. Examining the contributions of individual sites of
plasticity in this combined model would allow for a more detailed
perspectiveof thebehavioral roleof eachplasticity locus.Moreover,
if implementation of the currently known engram proves in-
sufficient to produce all motor changes observed experimentally,
novel potential sites of plasticity could be predicted by the model.

Limitations of the model
The present model was designed in part to determine whether
it is in principle possible for the currently known sites of operant
memory to reproduce the main features of operant learning.
Although the answer is affirmative, whether additional sites are
necessary in vivo, or with different parameter sets, is still un-
known. Furthermore, how robust these changes are in the face of
potential interferences by other memories or perturbations
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remains unclear. Moreover, there is no current experimental evi-
dence on whether there is redundancy in sites of plasticity playing
similar roles, as can be expected from a robust system. Whereas
many other pattern-initiating and pattern-selecting neurons
would be in a position to play a role in operant memory, only a
few neurons have been examined thus far. Indeed, dopamine,
which mediates operant conditioning (Nargeot et al. 1999c), can
modulate the activity of many neurons throughout the network
(Neveu et al. 2017). Therefore, as empirical studies identify new
sites of plasticity, the present model can be expanded to include
these new sites and test their specific contributions to network
function and reconfiguration.

The model did not include descriptions of modulatory pro-
cesses or themolecular processes that underlie the induction of op-
erant learning-related changes in cellular properties. Empirically,
the learning-induced sites of plasticity are characterized post train-
ing, and thus represent the expression of the memory engram.
Currently, few data are available regarding the underlying molecu-
lar mechanisms and dynamics of inducing memory during oper-
ant learning (Lorenzetti et al. 2008; Mozzachiodi et al. 2008).
Thus, the present model mimicked the established sites of plastic-
ity that are known to be present following learning (see Fig. 4). A
future goal is to analyze induction processes and incorporate
them into the model.

Materials and Methods

Developing the model
The feeding neural network has been analyzed extensively and
is known to consist of at least 50 identified neurons including sen-
sory neurons, interneurons, and motor neurons in the buccal and
cerebral ganglia (Susswein and Byrne 1988; Church and Lloyd
1994; Cropper et al. 2004, 2019). Additional neurons likely are as
yet unidentified. Our goal was to develop a reduced model of the
CPG component of the network that was sufficient to capture
the salient features of the genesis of BMPs for ingestion and rejec-
tion of food. The reduced model included 13 cells: CBI-2, B4, B8,
B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65 (Fig. 1).
CBI-2 is a command-like neuron that elicits fictive feeding
(Rosen et al. 1991; Hurwitz et al. 2005). B8 is a closure motor neu-
ron (Morton andChiel 1993b). The remaining cells are elements of
the CPG (Susswein and Byrne 1988; Plummer and Kirk 1990;
Hurwitz and Susswein 1996; Hurwitz et al. 1997, 2003, 2005,
2008; Kabotyanski et al. 1998; Jing and Weiss 2001, 2002, 2005;
Susswein et al. 2002; Jing et al. 2003, 2004; Dembrow et al. 2004;
Proekt et al. 2007; Wu et al. 2007, 2010; Sasaki et al. 2008, 2009,
2013; Saada et al. 2009; Saada-Madar et al. 2012; Dacks and
Weiss 2013). Previous modeling studies predicted that additional
excitatory drive onto B64, mediated by a hypothetical “z cell,”
was required for patterns to transition from the protraction to
the retraction phase (Cataldo et al. 2006). Although at least one
promising candidate for this role has now been described (i.e.,
the complex multifunctional neuron CBI-5; Sasaki et al. 2007,
2008), modeling studies have yet to explore its necessity and suffi-
ciency for phase transitions. Therefore, a hypothetical excitatory
synaptic connection from B63 to B64 was included in our reduced
model as a parsimonious alternative.

The model was developed using SNNAP (Simulator for Neural
Network and Action Potentials, version 8.1). The operation and ca-
pabilities of SNNAPare described elsewhere (Ziv et al. 1994; Av-Ron
et al. 2006, 2008; Baxter and Byrne 2007). Specific details of the
equations and parameters that were used in the present study are
included in the SNNAP input files, which are available at the
ModelDB website (http://modeldb.yale.edu/261489). These input
files are annotated ASCII text files, and can be viewed using a
text editor.

Empirical data provide some biological constraints for the re-
duced model such as the pattern of monosynaptic connections
and electrical coupling among the cells (the connectome), homo-

synaptic plasticity, the firing properties of individual cells in re-
sponse to stimuli, cellular patterns of activity during BMPs, and
sites of learning-induced plasticity. In general, each cell was repre-
sented by a single compartment. However, cells B31, B51, and B64,
which express plateau-like potentials, were exceptions. These three
cells were modeled with two compartments: a somatic compart-
ment and an axonal compartment. The somatic compartment in-
cluded slow conductances that mediated plateau potentials. The
axonal compartment included fast conductances that mediated
spiking. This strategy of separating the slow and fast conductances
followed an approach described by Vavoulis et al. (2007).

Because the neurons constituting the reduced model are a
subset of the complete CPG circuit, we needed to adjust the param-
eters of individual neurons and synaptic connections to obtain re-
alistic firing properties and BMP generation using physiologically
reasonable, but not necessarily exact, values. Parameters were ad-
justed by trial and error. Briefly, in each of the 13 cells, action
potentials were mediated via a fast Na+ conductance and a delayed
K+ conductance. The spike threshold was adjusted by either hyper-
or depolarizing shifts in the inflection point of the Boltzman func-
tions that defined the voltage-dependence of the membrane con-
ductances (see SNNAP input files for details). To reproduce the
unique spiking properties of specific neurons, additional conduc-
tances, such as an A-type K+ conductance or an H-type current,
were included as needed. Similarly, the properties of synaptic con-
ductances were designed to match the unique attributes of each
monosynaptic connection. Thus, the conductance-based model
approximated the unique firing properties of identified cells (e.g.,
tonic spiking, delayed spiking in response to stimuli, frequency ad-
aptation, plateau potentials, rebound excitation), the pattern of
electrical coupling among cells, and the properties of each mono-
synaptic connection (e.g., homosynaptic plasticity, fast and slow
postsynaptic potentials, increasing versus decreasing synaptic con-
ductances, voltage-dependent synaptic conductances). Parameters
were further adjusted so that the simulated network generated in-
gestion and rejection BMPs that resembled those recorded physio-
logically. Given that themodel could produce biologically relevant
patterns of activity (see Fig. 2), we considered it sufficient to inves-
tigate the general issue of how multiple sites of learning-induced
plasticity contribute to changes in network activity.

Because of inherent variability in synaptic and membrane
conductions, models whose function relies heavily on precise val-
ues of parameters may be unrealistic (Prinz et al. 2004; Grashow
et al. 2010; Marder 2011; Gutierrez et al. 2013). As an attempt to
address this issue, stochastic fluctuations were included in all sim-
ulations. In SNNAP, any conductance, including membrane, syn-
aptic and electrical-coupling conductances, can include noise.
For example, a general equation for a membrane current is

I = (�g + R)APB(V − E)
∏

f [REG], (1)

where �g is the maximum conductance, A and B are Boltzman func-
tions for activation and inactivation, respectively, V is membrane
potential,E is the equilibriumpotential and

∏
is the product of var-

iousmodulator functions (f[REG]). Noise is introduced by R, which
is a randomnumber from aGaussian distribution ofmean zero and
SD proportional to �g. Equations for synaptic current and current
due to electrical coupling also included the R variable. Noiseless
simulations were only used to obtain exact input values for certain
analytical solutions (see last subsection of Materials andMethods),
all other simulations included equal amounts of noise. All conduc-
tances in themodel included noisewith an SD equal to 25%, and R
was updated every 2 msec. By including noise, the model was
shown to be robust to fluctuations in parameter values.

Classifying simulated BMPs as either fictive ingestion

(iBMPs) or other patterns
To classify simulated BMPs as being either iBMPs or other BMP
types, the present study followed criteria that were established pre-
viously (Nargeot et al. 1997). The protraction phase was defined as
spike activity in the axonal compartment of B31 (B31a), and the
beginning of the retraction phase was defined as the termination
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of spike activity in B31a (see Fig. 3). Spike activity in B8 defined clo-
sure. A simulated BMP was classified as being an iBMP if ≥50% of
the activity in B8 occurred after the termination of spike activity
in B31a (i.e., during the retraction phase). BMPs that did not
meet this criterion were classified as “others,” which included
(1) intermediate patterns, in which B8 activity partially overlapped
with both the protraction and retraction phases, but the majority
of activity in B8 occurred during the protraction phase; (2) fictive
rejection (rBMP), in which activity in B8 and B31a co-terminated;
and (3) incomplete patterns, in which one of the three phases was
lacking (e.g., B8 was not active at any point).

Measuring behavioral features of operant reward memory
Empirical studies describe at least three outcomemeasures of oper-
ant learning. First, learning increases the frequency of biting in
vivo, and increases the frequency of BMPs in vitro (Brembs et al.
2002; Nargeot et al. 2007, 2009; see also Nargeot et al. 1997;
Mozzachiodi et al. 2008). Second, learning biases activity in the
CPG in vitro toward the expression of iBMPs (Nargeot et al.
1997, 1999b; Brembs et al. 2002; Mozzachiodi et al. 2008). Third,
learning increases the regularity of biting in vivo and of BMPs in
vitro (Nargeot et al. 2007, 2009). These outcome measures were
used in the present study.

Characterizing the regularity of simulated rhythmic

activity
Empirical studies indicate that in naïve animals, biting behavior
occurs sporadically (Brembs et al. 2002; Nargeot et al. 2007,
2009). Similarly, in naïve isolated buccal ganglia preparations,
the expression of BMPs is sporadic (Nargeot et al. 1997, 2007,
2009). One of the outcomes of learning is the regularization of bit-
ing in vivo andBMPs in vitro (Nargeot et al. 2007, 2009). In the pre-
sent study, regularization of simulated BMPs was characterized by
calculating the coefficient of variation (CV) of the inter-burst inter-
val, where CV=SD/mean (see Figs. 3, 5). This method has been
used previously to characterize the regularity of behaviors and spik-
ing and/or bursting activities (e.g., Büschges et al. 2000; Moortgat
et al. 2000a,b; Prut and Perlmutter 2003; Johnston et al. 2013).

Creating activity maps of simulated rhythmic activity
Activity maps were used to characterize the level and timing of
spike activity for cells in the network. Activitymapswere generated
for a period of time ±10 sec relative to the transition from protrac-
tion to retraction in a BMP (see Fig. 3). This 20 sec epochwas divid-
ed into 20, 1 sec, nonoverlapping bins. The number of spikes
during each bin was counted in each cell and averaged over 100
BMPs. This measure represented the mean firing frequency (Hz)
of each cell during a BMP. These activitymapswere used to analyze
differences in activity in control simulations versus simulations
that included learning-induced plasticity (see Figs. 5, 7). All analy-
ses of simulated activity were performed by custom routines in
MATLAB.

Implementing learning-induced plasticity
Aswas the casewithall conductances (see above), conductances im-
plicated in learningwerenot constrainedbyspecificvalues reported
in the literature (either before or after learning). Instead, modifica-
tions to specific conductances were made by trial and error until
simulations reproduced the main features of operant reward learn-
ing, namely changes in motor pattern rate, regularity, and bias to-
ward iBMPs (Nargeot et al. 1997, 1999a, 2007, 2009; Brembs et al.
2002; Mozzachiodi et al. 2008; Sieling et al. 2014). Previous empir-
ical studies characterized at least three sets of correlates of operant
reward learning: (i) a decrease in the input conductances and in-
crease in the excitability of cells B30, B63, and B65 (Nargeot et al.
2009; Sieling et al. 2014); (ii) a decrease in the input conductance
and increase in the excitability of cell B51 (Nargeot et al. 1999b;
Brembs et al. 2002; Lorenzetti et al. 2008; Mozzachiodi et al.
2008); (iii) an increase in the B63–B30 and B63–B65 electrical cou-

pling coefficients and conductances (Nargeot et al. 2009; Sieling
et al. 2014). In the present study, the learning-induced changes in
the input conductance and excitability of B30, B63, and B65 were
simulated by decreases in leakage conductance (see Fig. 4A,C).
The leakage conductances were decreased from control values of
100 nS in B30, 40 nS in B63, and 80 nS in B65 to 80, 20, and 60
nS, respectively. Learning-induced changes in B51 were likewise
simulated by decreasing the leakage conductance of the cell from
control values of 100 nS in the somatic compartment (B51s) and
80 nS in the axonal compartment (B51a) to 80 nS in B51s and 64
nS in B51a (see Fig. 4D). Decreasing the leakage conductance was
a parsimonious method that proved sufficient for decreasing input
conductance and increasing excitability in all four cells. Finally,
learning-induced changes in electrical coupling were simulated
by increasing the coupling conductances between B63 and
B30 from 6 to 7 nS, and between B63 and B65 from 6 to 8 nS (see
Fig. 4B).

Implementing individual sites of plasticity in isolation

and combination
Modifying the leakage conductance of B51 did not lead to changes
in any other known sites of plasticity. Thus, the excitability of B51
could readily be manipulated in isolation. Conversely, because
B30, B63, and B65 are electrically coupled, changing the leakage
or coupling conductances in any of these cells can affect multiple
sites of plasticity. Therefore, manipulation of any single site or set
of sites of plasticity without affecting others required searching the
parameter space of leakage and coupling conductances for a com-
bination of parameters that met this goal. This was achieved by
solving the equations for all input conductances and coupling ra-
tios in an idealized circuit consisting of only the three cells with
their respective coupling conductances and leakage conductances
(Fig. 6A). This approach allowed for all input conductances and
coupling ratios to be characterized as a function of all leakage con-
ductances and coupling conductances (Fig. 6B–F). The three-
neuron circuit was made to approximate the passive properties of
B30, B63, and B65 when they are embedded in the complete net-
work by including an additional conductance in each cell, termed
gothers. This conductance represented the net conductance resulting
from voltage-dependent conductances and electrical coupling to
all other neurons omitted in the three-neuron circuit (Fig. 6A).
Thus, the input conductances (Gin) and coupling ratios (CR) in
the three-neuron circuit were given by the following equations:

GinB30 = gleakB30 + gothersB30

+ 1
1

gesB63B30
+ 1

gleakB63 + gothersB63 + 1
1

gesB63B65
+ 1

gleakB65 + gothersB65

, (2)

CRB63B30 = gesB63B30
gleakB30 + gothersB30 + gesB63B30

, (3)

GinB63 = gleakB63 + gothersB63 + 1
1

gesB63B30
+ 1
gleakB30 + gothersB30

+ 1
1

gesB63B65
+ 1
gleakB65 + gothersB65

, (4)

CRB63B65 = gesB63B65
gleakB65 + gothersB65 + gesB63B65

, (5)

GinB65 = gleakB65 + gothersB65

+ 1
1

gesB63B65
+ 1

gleakB63 + gothersB63 + 1
1

gesB63B30
+ 1

gleakB30 + gothersB30

, (6)

where gleak represents the leakage conductance in one cell and ges
represents the coupling conductance among two cells. The value
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of gothers for each neuron was estimated by performing a series of
simulations of the complete network in which all three neurons
were voltage clamped to the same values over a range from −100
mV to 40 mV. Because B30, B63, and B65 were clamped to the
same voltage, there was no current due to coupling among these
cells. Current due to the intrinsic leakage conductance was then
subtracted from the total current in each cell, yielding a net current
resulting exclusively from conductances that were to be omitted in
the three-neuron circuit. Finally, a linear fit of the current–voltage
relationship in hyperpolarized values was used to obtain gothers for
each neuron. Simulations used to estimate gothers did not include
noise, so as to obtain exact values. Input conductances and cou-
pling ratios resulting from analytical solutions using these values
were systematically compared with direct measurements from hy-
perpolarizing current injection simulations. Observed discrepan-
cies were minimal, and these discrepancies were further shown
to be due to small contributions by nonlinear voltage-dependent
conductances.

To obtain specific target combinations of coupling ratios and
input conductances, Eqs. 2–6 were solved iteratively. Initially, all
parameters were set to control values (i.e., gleakB30=100, gesB63B30=
6, gleakB63=40, gleakB65=80, gesB63B65=6, all values are in nS). Each it-
eration consisted of three steps. First, Eqs. 2 and 3 were solved for
gleakB30 and gesB63B30. Second, these values were used to solve Eq.
4 for gleakB63. Third, values obtained in the previous steps were
used to solve Eqs. 5 and 6 for gleakB65 and gesB63B65. This process
was repeated until input conductances and coupling ratios con-
verged on the target values. This occurred in 6–8 iterations in
most cases, and deviations were generally less than 2.5 ×10−12%
from the target. Estimation of gothers and solutions to all equations
were computed by custom routines in MATLAB.
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