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Abstract: The textile industry is one of the largest water-polluting industries in the world. Due to an
increased application of chromophores and a more frequent presence in wastewaters, the need for an
ecologically favorable dye degradation process emerged. To predict the decolorization rate of textile
dyes with Lytic polysaccharide monooxygenase (LPMO), we developed, validated, and utilized
the molecular descriptor structural causality model (SCM) based on the decision tree algorithm
(DTM). Combining mathematical models and theories with decolorization experiments, we have
elucidated the most important molecular properties of the dyes and confirm the accuracy of SCM
model results. Besides the potential utilization of the developed model in the treatment of textile
dye-containing wastewater, the model is a good base for the prediction of the molecular properties of
the molecule. This is important for selecting chromophores as the reagents in determining LPMO
activities. Dyes with azo- or triarylmethane groups are good candidates for colorimetric LPMO
assays and the determination of LPMO activity. An adequate methodology for the LPMO activity
determination is an important step in the characterization of LPMO properties. Therefore, the
SCM/DTM model validated with the 59 dyes molecules is a powerful tool in the selection of adequate
chromophores as reagents in the LPMO activity determination and it could reduce experimentation
in the screening experiments.

Keywords: causality model; degradation; lytic polysaccharide monooxygenase; textile dyes

1. Introduction

Due to a constantly increasing application of dyes in different industries (textile, pulp
and paper), their presence in wastewaters is much more frequent than in the last decade.
Total colorant production is estimated to be 800,000 tons per year, of which more than 10%
enter the environment [1]. Textile dyes tolerate oxidizing agents and are light and water-
resistant. This property makes their degradation and decolorization a challenging task.

Conventional chemical and physical wastewater treatment methods are adsorption,
precipitation, coagulation, flocculation, chemical degradation, and biological remediation
(aerobic and anaerobic). Those conventional methods are often limited by high processing
costs and the possibility of transferring contaminants to solid waste [2]. In contrast to
conventional physical and chemical methods, enzymatic treatment of textile wastewaters
presents a cleaner, more environmentally friendly, and more economical approach. This
methodology uses enzymes for dye degradation and decolorization. The advantages of
enzyme-catalyzed reactions are substrate specificity, which means that they proceed faster,
do not have toxic characteristics, and rarely form by-products [3]. Many different enzymes
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are used in the textile industry, mostly: amylase [4], catalase [5], protease [6], cellulase [7],
and laccase [8]. Therefore, enzymatic wastewater treatment is an attractive alternative to
physicochemical processes due to the potential of enzymes in degrading dyes of diverse
chemical structures.

Fungi produce an extensive array of hydrolytic and redox enzymes that have wide
applications in industry, agriculture, and medicine. Many fungal enzymes can potentially
degrade pollutants to less toxic products. The recently discovered lytic polysaccharide
monooxygenases (LPMOs) are copper-dependent oxidoreductases that cleave recalcitrant
polysaccharides through an oxidative reaction [9]. The widespread occurrence in fungal
genomes points to its crucial role in biomass degradation [10]. However, up to now, only one
research by Fei et al. from 2021 pointed to dye decolorization by the LPMO/GDH-induced
Fenton system [11]. The results indicate that the addition of LPMO could significantly
enhance the degradation of dyes, due to the enhanced level of hydroxyl radicals achieved
by LPMO. The decolorization mechanism was investigated by the utilization of the dif-
ferent synthetic dye classes belonging to the: disazo, triphenylmethane, monoazo, and
anthraquinone dyes. Decolorization mechanisms showed that sites with higher electron
density could be more easily attacked by hydroxyl radicals. In addition, the bonds between
nitrogen atoms and polycyclic aryl groups were firstly cleaved, and then the decolorization
process occurred. It has to be emphasized the hydroquinone was found as metabolites of
tested dyes. Its important property is that it is an electronic transmitter, by which it can
further participate in the LPMO-induced Fenton reaction [11]. Ikram et al. evaluated the
degradation potential of eleven bacterial strains for azo dye methyl red. The optimum
degradation efficiency was obtained using Pseudomonas aeruginosa with 81.49% degradation
activity [12–14]. Similar results were confirmed by Khan et al. 2022. in their investigation
of the biological mineralization of methyl orange by P. aeruginosa [15]. They managed to
achieve an efficiency of 88.23% degradation within the optimal conditions that included
the following parameters: three-day time interval, pH 7, 0.5 g of glucose supplementation,
20 ppm dye concentration, 37 ◦C temperature, and 0.1 g of NaCl tolerable salt concentra-
tion. In contrast, their previous work reported that only 73 the 0.91% of decolorization
efficiency of Brown 706 Dye could be achieved [16]. The prediction of decolorization using
mathematical modeling and based on detailed and intrinsic molecule models is very chal-
lenging and computationally demanding. The presentation of the molecule by numerical
parameters, which are cold descriptors, enables effective modeling of relations between
molecule properties and its decolorization rate. Therefore, the models that are predictive
and nonlinear AI (artificial intelligence) are very useful. Those are models like deep neural
networks and random forest decision trees. However, it has to be emphasized that those
models although powerful predictors, lack transparency. Therefore, those can be applied as
“black box” models.

In this work therefore we present an alternative model based on a structural network
represented as a directed acyclic graph (DAG). The network is derived from deduction from
prior knowledge on chromophores/dyes molecule parameters and decolorization rates, and
inductively from experimental evidence by evaluation of conditional independence. Since
most molecular descriptors are highly intercorrelated, network pruning by d-separation for
de-confounding is required [17].

All decolorization mechanisms showed that sites with higher electron density could be
more easily attacked by hydroxyl radicals and the bonds between nitrogen atoms and poly-
cyclic aryl groups were likely cleaved first, ultimately leading to decolorization. Notably,
hydroquinone was found among the metabolites of tested dyes. As an electronic transmit-
ter, hydroquinone can further participate in the LPMO-induced Fenton reaction, which
could be the reason for the higher decolorization rate of disazo and triphenylmethane [11].

Prediction of decolorization based on detailed and intrinsic molecule models is very
challenging and computationally demanding. However, the presentation of the molecule
by numerical parameters, i.e., descriptors, enables effective modeling of relations between
molecule properties and decolorization rate. To this end, predictive nonlinear AI (artificial
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intelligence) models such as deep neural networks and random forest decision trees are
mostly applied. They are powerful predictors but lack transparency and are applied
as “black box” models. We present an alternative model based on a structural network
represented as a directed acyclic graph (DAG). The network is derived from deduction from
prior knowledge on chromophores/dyes molecule parameters and decolorization rates, and
inductively from experimental evidence by evaluation of conditional independence. Since
most molecular descriptors are highly intercorrelated, network pruning by d-separation for
de-confounding is required [17].

The pruned network SCM determines the adjustment set of molecular descriptors,
which blocks noncausal backdoor confounding. By using the obtained DAG network,
molecular descriptors can be identified which have a direct causal effect as the key parental
DAG nodes. The functional relationship between the enzyme activity and the key descrip-
tors is modeled as partial dependency plots by Bayes neural networks [18]. The individual
causal functions are depicted graphically as marginal probability distributions. Besides
functional models, the global classification decision tree model (DTM) is developed [19].
A set of the simplified (reduced) decision rules for the key causal molecular descriptors
is obtained, i.e., parent descriptors affecting LPMO activity. Our previous research exam-
ined the interaction of the phenolic molecular characteristics on the LPMOs activity. The
developed model was validated and utilized the molecular descriptor structural causality
model (SCM). Combining mathematical models and theories with experiments, the most
important molecular properties of the phenolic were elucidated and the accuracy of SCM
model results was confirmed [20].

Molecular characteristics of the dyes are important for the LPMOs activation and
overall efficiency of decolorization. Therefore, in this research, we have utilized a developed
SCM model for the prediction of the dyes decolorization efficiency and additionally tested
the accuracy of the model on the 59 different synthetic dyes belonging to the five classes:
triarylamine, anthraquinone, thiazine, oxazine, xanthene, phthalocyanine, metal complex,
indigo and azo dyes. The SCM model was additionally improved by the decision tree
algorithm base model (DTM), and the significance of the selected molecular descriptor was
tested for the investigated dyes classes.

2. Experimental
2.1. Enzyme

Lytic polysaccharide monooxygenase (LPMO-02916, 1.14.99.56.) from Neurospora
crassa (NcLPMO) was heterologously produced on Komagataella phaffii (syn. Pichia pas-
toris) as previously described and purified by sequential hydrophobic interaction and anion
exchange chromatography [21,22]. The enzyme concentrations were determined by measur-
ing the absorbance at 280 nm (ε280 = 46.91 mM−1 cm−1) using the molar absorption coeffi-
cient calculated from the mature amino acid sequence (http://web.expasy.org/protparam/
(accessed on 1 January 2020).

2.2. Dyes

This research work was performed on 59 different dyes (Table 1, producers MERCK
and Kemika) selected after the preliminary screening of 227 dyes. Diverse dye classes were
included, namely: triarylamine, anthraquinone, thiazine, oxazine, xanthene, phthalocya-
nine, metal complex, indigo, and azo dyes (Figure 1).

http://web.expasy.org/protparam/
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Table 1. Molecular descriptor values and corresponding DTM critical descriptors.

Molecule GATS6c ATSC8e AATSC3v AATSC7i IC4 ATSC6e I/Io
DTM

Decision

Methyl Orange 0.361 −0.171 −10.697 0.231 4.4 1.97 0.79 ATSC8e
Neolan gruen E-B 400% 0.691 4.06 9.176 −0.244 5.223 1.182 0.65 GATS6c

Basic Blue 1 0.666 0.635 −5.089 −0.309 4.703 0.045 0.58 GATS6c
Malachite Green 0.647 −0.159 −6.006 −0.298 4.663 0.194 0.54 GATS6c

Malachite oxalate Green 0.647 −0.159 −6.006 −0.298 4.663 0.194 0.5 GATS6c
Indigocarmin 0.767 1.13 −9.065 0.067 4.559 2.736 0.45 ATSC8e
Basic Blue 5 0.659 0.185 5.578 −0.177 5.326 0.029 0.43 GATS6c

Potassium Indigotrisulfonate 0.675 0.64 −9.937 0.113 4.875 6.033 0.43 GATS6c
Orbantin crveno 4BL 1.163 11.912 −8.834 0.033 5.295 −5.012 0.27 AATSC7i

Direct Blue 71 1.094 −1.669 −3.376 0.453 5.822 −0.867 0.25 ATSC8e
CibacetRot 3B 1.473 0.317 −0.213 −0.179 4.385 −1.895 0.2 AATSC7i

Fuchsin 0.531 −0.382 −7.857 −0.571 4.737 0.111 0.19 ATSC8e
Crystal Violet 0.591 −0.313 −7.137 −0.308 4.159 0.36 0.18 ATSC8e

Thionin 1.199 0.229 −7.186 −0.698 4.393 −0.228 0.18 AATSC7i
Basic Blue 3 (60%) 1.227 −0.617 12.15 0.119 4.543 −0.077 0.14 ATSC8e
Reactive Black 5 0.861 −4.2 −2.996 −0.148 5.254 3.782 0.14 ATSC8e

Gallocyanine 1.34 −0.616 −8.258 −0.002 4.684 −0.944 0.14 ATSC8e
Meldola’s Blue 1.456 −0.021 −5.727 0.212 4.682 −0.368 0.14 AATSC7i

Congo red 0.696 −0.945 −2.662 0.252 5.146 1.637 0.13 ATSC8e
Cuprophenyl grey 2BL 0.847 0.41 −4.807 0.268 6.236 3.328 0.12 AATSC7i
Diphenylechtblau 4GL 1.07 −2.134 −3.741 0.277 5.744 1.682 0.12 ATSC8e
beta-naphthol orange 0.928 0.335 −4.667 0.238 4.852 0.579 0.12 AATSC7i

Basic Blue 41 0.917 0.055 4.46 0.122 5.061 0.244 0.12 AATSC7i
Metilenblau 0.857 0.08 −7.51 0.227 3.905 −0.108 0.11 AATSC7i

Bromocresol Purple 0.756 0.357 −6.449 −0.631 4.836 −0.91 0.11 AATSC7i
Bromophenol blue 0.739 0.531 −6.513 −0.307 4.516 −0.601 0.11 AATSC7i

Victoria Blue B 0.615 −0.177 −3.964 −0.259 5.337 0.209 0.1 ATSC8e
Acid Blue 45 1.219 −0.548 −3.501 −0.195 4.564 −3.876 0.1 ATSC8e

Remazol Brilliant Blue R 0.861 −4.2 −2.996 −0.148 5.254 3.782 0.09 ATSC8e
Acid green 3 0.653 −1.767 −0.957 −0.148 5.681 1.259 0.09 ATSC8e

Lanaynrein? rot 2BL 1.113 −0.361 −3.896 −0.256 5.176 −0.603 0.08 ATSC8e
Brilliant cresyl blue 1.024 −0.056 1.547 0.008 4.635 −0.282 0.08 AATSC7i

Solarrot B 0.897 −0.924 −5.142 0.078 5.628 −0.038 0.08 ATSC8e
Azure A 0.963 0.151 −7.67 −0.093 4.39 −0.162 0.08 AATSC7i

Reactive Blue 2 1.04 −5.485 −3.569 −0.246 5.236 −0.989 0.07 ATSC8e
Bromocrezol-green 0.764 1.565 −2.266 −0.184 4.836 −0.18 0.07 AATSC7i

Orbacid R 0.761 2.2 −5.174 −0.049 5.423 0.228 0.07 AATSC7i
Toluidine Blue 0.982 0.14 −8.79 −0.18 4.436 −0.253 0.07 AATSC7i
Acid Violet 43 1.176 0.792 −3.758 −0.116 5.083 −4.591 0.06 AATSC7i

Tris (2) 0.729 0.071 0.801 −0.155 3.322 −0.079 0.06 AATSC7i
Cuprophenylreinblau 2BL 0.973 −2.945 −4.35 0.091 5.77 −2.56 0.06 ATSC8e

Lanasynrein gr BL 1.071 −0.118 −5.891 −0.091 4.736 −7.915 0.06 AATSC7i
Neolan Blue 3R 1.071 −0.118 −5.891 −0.091 4.736 −7.915 0.06 AATSC7i

Lanaset Gr B 0.907 −3.633 −0.471 −0.198 5.195 −2.521 0.05 ATSC8e
Lanaset Braun B 1.342 −0.093 −1.984 −0.215 5.089 −0.2 0.05 AATSC7i

Acid Violet 9 0.944 −2.707 −3.534 −0.152 5.889 −0.198 0.05 ATSC8e
Cuprophenylbraun 2RL 0.927 −0.016 −3.093 −0.255 5.547 −0.007 0.04 AATSC7i

Neolan Black WA extra N 1.185 −2.163 −0.679 0.029 5.037 −2.737 0.04 ATSC8e
Reactive Blue 7 0.972 0.112 −5.99 −0.467 4.054 −0.167 0.04 AATSC7i
Rhodamine B 1.176 0.792 −3.758 −0.116 5.083 −4.591 0.04 AATSC7i

Neolan Yellow RE 0.959 0.004 −4.26 −0.253 5.053 2.604 0.03 AATSC7i
Orbodisperz marine S-BL 1.198 3.051 5.66 −0.045 5.157 0.95 0.03 AATSC7i
Cuprophenyl marine BL 0.731 −0.611 −7.352 0.1 6.016 0.313 0.03 ATSC8e

Irgalanbraun 2GL 0.859 5.513 −7.265 −0.286 5.395 1.342 0.02 AATSC7i
LanasetGelb 4 GN 0.859 5.513 −7.265 −0.286 5.395 1.342 0.01 AATSC7i

Cuprophenylrot BL 0.762 −0.966 −2.273 0.209 5.529 2.026 0.01 ATSC8e
Alizarin S 1.157 −1.655 −2.011 −0.216 4.418 0.1 0.01 ATSC8e

Lanasynobraun GRL 0.643 −4.319 −5.771 −0.393 5.337 7.44 0.01 ATSC8e
Sulforhodamine B 1.413 −0.736 8.627 0.105 4.824 6.331 0.01 ATSC8e

GATS6c—2D Geary coefficient of lag 6 weighted by Gasteiger charge; ATSC8e—2D Broto-Moreau autocorrelation
of lag 8 (log function) weighted by electronegativity; ATSC6e—2D Broto-Moreau autocorrelation of lag 6 (log
function) weighted by electronegativity; AATSC3v—averaged and centered Moreau-Broto autocorrelation of lag
3 weighted by van der Waals volume; AATSC7i—averaged and centered Moreau-bro to the autocorrelation of lag
7 weighted by ionization potential.
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Figure 1. Chemical structure of the dyes investigated with their distinguished chromophore groups:
(a) triarylamine, (b) anthraquinone, (c) thiazine, (d) oxazine, (e) xanthene, (f) phthalocyanine,
(g) metal complex, (h) indigo and (i) azo dyes.

2.3. Sample Preparation and Screening

Stock solutions of dyes were prepared in 2.0 mL microcentrifuge tubes by adding
10 mg of the respective dye to 1 mL of demineralized water. Samples of dye solutions
were centrifuged (14,000× g, 3 min), and the supernatant was used. Dye solutions were
diluted to obtain approximately 1.0–2.0 absorbance units at the maximum wavelength
in the UV-Visible spectrum. Stock solutions of dyes were prepared and stored in 96-well
deep-well master plates sealed with plate sealing film and stored at room temperature in
the dark.

All decolorization measurements were performed in 96-well microplate wells. For the
decolorization experiments, 30 µL of stock dye solution was mixed with 200 µL of buffer
(100 mM MES buffer at pH 6.0. The reactions were initiated by adding 20 µL of enzyme
solution (NcLMPO). Enzyme concentrations were 0.05 mg/mL per well plate.

Absorbance spectra from 300 to 900 nm of homogeneous dye solutions in a 96-well
microplate were recorded using a plate reader (EnSpire Multimode, Perkin Elmer, Waltham,
MA, USA) at room temperature. Control samples without enzyme solution (dyes in buffer)
were performed in parallel under identical conditions. All the microplates in experiments
were incubated at ambient temperature (23 ◦C), without shaking, and in complete darkness.
Measurements were done within 24 h (at 0 h and 24 h).

Decolorization of the dyes was measured by reading the absorbance of the samples
at the maximum absorbance wavelength for each dye. Dye decolorization was calculated
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as a percentage of the initial value, taking each untreated dye mixture as a control. The
percentage decolorization was calculated according to the following expression:

decolorization (%) = (A0−At)/A0)·100 (1)

where A0 is the absorbance value of the initial dye solution and At is the absorbance value
at time t.

2.4. Calculation of Molecular Descriptors

The chemical and structural information of the dye molecules served as input strings
for simplified molecular-input line-entry systems code (SMILES) for the Pharmaceutical
Data Exploration Laboratory (PaDEL) software. For each molecule evaluated, there are
1444 1D-, 2D- and 431 3D descriptors and 12 types of fingerprints. The descriptors and
fingerprints are calculated using The Chemistry Development Kit with additional descrip-
tors and fingerprints, such as atom type, electron topological state descriptors, Crippen’s
logP and multiple regression, extended topochemical atom (ETA) descriptors, McGowan
volume, molecular linear free energy relation descriptors, ring counts, count of chemical
substructures identified by Laggner, and binary fingerprints and count of chemical sub-
structures identified by Klekota and Roth [23]. The decolorization rate of each dye and the
corresponding descriptors form a 36 K numerical value database. To avoid statistical bias
due to numerous interrelations between the descriptors, the significant functional relations
between the descriptors and decolorization rate are inferred by two independent methods
using multivariate linear and nonlinear models. They enable the quantification of interac-
tion (strength of prediction) and validation for predicted untrained samples [24]. Linear
relations and elastic-net regularized generalized linear LASSO models were evaluated [25].
The nonlinear interaction (individual and mutual synergism) between descriptors and
decolorization rate were evaluated by extreme gradient boosting (XGB) random forest of
decision trees [25,26].

The open-source software R was applied for all model evaluations and statistical
inferences [27]. Inference of the dimensions of significant descriptors subspace by the linear
and nonlinear models are the same having a dimension of five. The minimal dimensions are
evaluated by minimizing RMSE (root mean square error) by out-of-sample cross-validation.

3. Results and Discussion

Enzymatic degradation and decolorization is safe and attractive methodology when
compared to conventional methods as it has an eco-friendly approach, non-toxic charac-
teristics, and the ability to produce less sludge. Many different enzymes are used in the
textile industry, mostly: amylase, catalase, cellulase, and laccase. One of the most important
enzyme applications in wastewater treatment is in the decolorization of textile toxic dyes.
Approximately 10,000 dyes and pigments are annually produced worldwide. The total
colorant production is estimated to be 800,000 tons per year, from which more than 10%
enters the environment. Physical and chemical methods such as adsorption, coagulation
and flocculation, oxidation, filtration, and electrochemical methods used in color removal
from wastewater are expensive and suffer from different operational problems. In addition,
bacterial anaerobic reduction of azo dyes generates colorless amines that are generally more
toxic than the starting compounds. Therefore, wastewater treatment based on the enzyme
laccase presents an attractive solution due to the potential of these enzymes in degrading
dyes of diverse chemical structures. In addition, laccases are considered to be “eco-friendly”
enzymes since they work with an air and produce water as the only by-product. Therefore,
this work is focused on optimizing the usage of enzymes in the degradation of textile dyes.

Synthetic dyes used in the textile, leather, automobile, wood, pulp and paper, and
other industries are often harmful or toxic compounds that represent a worldwide ecolog-
ical problem. Wastewater processing for the removal of such dyes is one of the biggest
consumers of water, energy, and harmful chemicals. Due to the worldwide growing costs
for wastewater treatment processes, it is necessary to find the possible substitution of
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conventional physical and chemical processes by economically and ecologically favorable
bioprocesses using enzymes. The goal of this substitution is lower demands for energy,
water, chemicals, and time of wastewater treatment. Synthetic dyes represent the majority
of industrially used dyes. Those materials replace natural dyes for their better-colorizing
properties, more appropriate market value, and wider range of colors. More than 105

kinds of dyes are commercially available, and more than 7 × 105 tons of dyestuff gets
produced per year. The textile industry alone is one of the largest water polluting industries
in the world. When used in industrial plants, the structural diversity of dyes enter and
unfortunately exit the facility, which makes them a possible threat to the environment and
human health. Therefore, many researchers aim to perform enzymatic decolorization of
different dyes [12–14].

3.1. Establishment and Validation of SCM Models for the Prediction of the Molecular Properties
Important for the Enzymatic Degradation of Days

The aforementioned molecular descriptors were used to establish SCM models for
all 59 dyes. The decolorization rate and corresponding descriptors form a 36K numerical
values database. Model regularization data in which p >> n are challenging and prone
to statistical bias. In this work (p = 1875 and n = 59), statistical bias was avoided by the
methodology described in Section 2.4.

The relative importance of the key molecular descriptors was calculated as observed
marginal distribution, i.e., as partial dependence plots presented in Figure 2. [18]. The dyes
decolorization by LPMO was correlated to the six key molecular descriptors: GATS6c—2D
Geary coefficient of lag 6 weighted by Gasteiger charge, ATSC8e—2D Broto-Moreau auto-
correlation of lag 8 (log function) weighted by electronegativity, ATSC6e—2D Broto-Moreau
autocorrelation of lag 6 (log function) weighted by electronegativity, AATSC3v—averaged
and centered Moreau-Broto autocorrelation of lag 3 weighted by van der Waals volume,
AATSC7i—averaged and centered Moreau-bro to the autocorrelation of lag 7 weighted
by ionization potential, IC4—4-ordered neighborhood information content. In Figure 2,
the shaded regions represent the standard deviation between model and experimental
results. GATS6c molecular descriptor has the nearest shade region and represents the most
significant molecular properties influencing chromophore degradation by the LPMO. The
ability of textile dye molecules to accept electrons is influenced by the electron donor or
electron acceptor substituents attached to the aromatic ring [27], which is discussed in the
next section.

The SCM model is validated and compared to the ordinary least squares OLS model.
The linear model predictors are members of the set of 6 key descriptors (ATSC6e, IC4,
GATS6c, ATSC8e, AATSC3v, AATSC7i), while the nonlinear SCM model is based on the
adjustment set of the three direct causals (parental) descriptors (IC4, GATS6c, ATSC8e).
The model prediction accuracies are evaluated by the root mean square errors (RMSE) on
100 resampled (bootstrapped) data sets. For each model training with the bootstrapped sets
with replacement, about one-fifth (20%) of the molecules are treated as “new” molecules.
The obtained simulated RMS distributions are depicted as boxplots in Figure 3a. The
median RMSE values of predicted decolorization rates for OLS and SCM are 0.14 (14%)
and 0.03 (3%), respectively. The considerable increase in SCM accuracy is due to the
elimination of confounding by using the adjusted descriptor set, and decision trees account
for nonlinearity. Accuracies of the rate predictions for individual molecules are presented
in Figure 3b, which shows the average predictions and the corresponding standard error
for each molecule. About 15% of the whole molecule set had increased errors of 10% of the
decolorization rate. Although at the population level, the SCM models had high accuracy,
for some specific molecules, the accuracy decreased due to unbalanced sampling of LPMO
activities (available are only a few molecules with high decolorization rate listed in Table 1).
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Figure 2. Observed marginal distributions as partial dependency plots of dyes decolorization by
LPMO depending on the key molecular descriptors. GATS6c—2D Geary coefficient of lag 6 weighted
by Gasteiger charge, ATSC8e—2D Broto-Moreau autocorrelation of lag 8 (log function) weighted
by electronegativity, ATSC6e—2D Broto-Moreau autocorrelation of lag 6 (log function) weighted by
electronegativity, AATSC3v—averaged and centered Moreau-Broto autocorrelation of lag 3 weighted
by van der Waals volume, AATSC7i—averaged and centered Moreau-bro to the autocorrelation of lag
7 weighted by ionization potential, IC4—4-ordered neighborhood information content.

Figure 3. (a) Predictions of LPMO dye decolorization efficiency by the linear ordinary least squares
OLS model, and (b) the structural causal model SCM.

3.2. Utilisation of SCM and DTM Models for the Prediction of the Molecular Properties Important
for the LPMO Degradation of Days

To better understand the mechanism of decolorization of textile dyes, the key descrip-
tors of each tested dye were calculated (Table 1).

Decolorization was performed on the 59 dye molecules selected after a preliminary
investigation of 227 dyes. Investigated dyes have different molecular structures and belong
to the six dyes classes: triarylamine, anthraquinone, thiazine, oxazine, xanthene, phthalo-
cyanine, metal complex, indigo, and azo dyes. Dyes containing azo and triarylmethane
chromophore groups (Methyl Orange, Nolan Gruen E-B 400%, Basic Blue 1, Malachite
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Green and Malachite Oxalate Green) had the highest decolorization rates from 0.79 to 0.5
after 24 h (Table 1). The high decolorization efficiency of these dyes in the presence of
LPMO can be correlated with the reducing potential of these dye molecules [28,29]. The
ability of such compounds to accept or donate electrons is influenced by electron-donating
or electron-withdrawing substituents attached to the chromophore molecules. Due to
the dissimilarity of the electronegativity between different atoms in the chromophore
groups, permanent polarization is present. Polarized C atoms enhance the probability of
the reaction with the enzyme active site and contribute to the increment in decolorization
efficiency [27,30]. From these results (Table 1), dyes containing triarylmethane and azo
chromophore groups preferentially interacted with the LPMO and could be potentially
used for colorimetric LPMO activity assays.

Decision tree analyses indicate that the most important descriptors for dyes containing
triarylmethane chromophore groups are GATS6c and ATSC8e (Table 1, Figure 4). GATS6c
and ATSC8e represent molecular electronegativity and Gasteiger charges. This result con-
firms the previous assumption about the importance of Gasteiger charge distribution across
the dye molecules [20,27]. Molecules with higher electron density gradient distribution
like triarylamine, indigo, and azo dyes could be more easily attacked by hydroxyl radicals
and efficiently degraded. The previous investigations propose cleavages between nitrogen
atoms bonds and polycyclic aryl groups, ultimately leading to decolorization. Dyes with
anthraquinone chromophores were less prone to degradation (from 19% to 1%). This is
much less than some other results reported in the literature. For example, Ikram et al.
evaluated the degradation potential of eleven bacterial strains for azo dye methyl red and
achieved the optimum degradation efficiency by using Pseudomonas aeruginosa [12–14].
Their optimal result was 81.49% degradation activity. Such results were increased in the
research conducted by Khan et al. 2022 [15]. By using the same microorganism P. aeruginosa,
their efficiency was 88.23% degradation when investigating methyl red, and 73.91% of
Brown 706 (Khan et al. 2021 [16]).

Figure 4. A minimal decision tree for prediction of decolorization. ATSC8e—2D Broto-Moreau auto-
correlation of lag 8 (log function) weighted by electronegativity, GATS6c—2D Geary coefficient of lag
6 weighted by Gasteiger charge, AATSC7i—averaged and centered Moreau-bro to the autocorrelation
of lag 7 weighted by ionization potential.

As an electronic transmitter, hydroquinone can further participate in the LPMO in-
duced Fenton reaction, which could be the reason for the anthraquinone and oxazine
decolorization. Notably, dyes with higher electron density sites could be more easily at-



Molecules 2022, 27, 6390 10 of 13

tacked by hydroxyl radicals, and the bonds between nitrogen atoms and polycyclic aryl
groups were likely cleaved first, ultimately leading to decolorization [11].

However, it is not possible to explain the decolorization efficiency of all dyes by dif-
ferences in dyes classes and distribution of charges. This can be observed from the model
results and the importance of the AATSC7i- averaged and centered Moreau-Broto auto-
correlation of lag 7 weighted by ionization potential. Ionization potential is an important
molecular property for oxidoreductase activation [20].

In the overall analyses of the numerous 1d and 2d descriptors two descriptors (AATSC3v—
averaged and centered Moreau-Broto autocorrelation of lag 3 weighted by van der Waals
volume and IC4—4-ordered neighborhood information content) have an important in-
fluence on the LPMO. This descriptor includes properties like volume and number of
the functional groups in the chromophore molecules and their interaction with LPMO.
The high decolorization efficiency can be correlated with the properties of triarylamine
chromophores and several methoxy groups, as well as the carbonyl groups present in
the anthraquinone and indigo dye classes, which potentially interact with the active site
copper in LPMO. Important molecular properties for the LPMO activation are present in
the structures of thiazine and oxazine, as well as in the pyrrolidine ring of anthraquinone.
In previous investigations, it was indicated that the deprotonation of the pyrrolidines
ring promotes stronger binding to the active site of the copper atom. As a general trend,
molecules with higher denticity and higher ionic strength could be bound to the active site
copper atom of LPMO more easily and increase the degradation efficiency [28].

It was previously discussed that a strong decolorization effect was observed for dyes
with triarylamine chromophores, especially Neolan Gruen E, Basic Blue 1, Malachite Green,
Malachite oxalate (Table 1). The bidentate property of oxalate could also be the reason
for the strong decolorization effect. For oxalate, a chelating effect is the most obvious
conclusion. The bidentate molecule oxalate most potently binds to the active site of
LPMO, possibly through an optimal bidentate binding to the copper [31]. Additionally,
triarylamine chromophores have molecular structures with three methoxy groups (Figure 1).
Molecules with several methoxy groups have a higher potential to reduce the active site of
oxidoreductase enzymes [32].

3.3. Effect of Textile Dyes Molecular Descriptors on LPMO Activity

The influence of the molecular descriptors on LPMO decolorization was evaluated
by two graphical-based methods, an observational data decision tree model (DTM) and
a directed acyclic graph (DAG) of the structural causal model (SCM). A simplified (regu-
larized) DTM model is generated by the aggregation of randomly generated trees (forest)
as presented in Figure 4 [19]. The DTM is a predictive model, and the importance of
the molecular descriptors is inferred from the efficiency of the data splitting algorithm
regardless of confounding and causal interdependencies. The DTM graph (Figure 4) shows
the decisive positive and negative effects of long-range autocorrelation molecule charge
distributions evaluated by ATSC8e and GATS6c.

The directed acyclic graph (DAG) of causality is depicted in Figure 5. The graph is in-
ferred by the PC algorithm for evaluation of the conditional probabilities and the structural
directed causal associations [33]. This approach is applied to discern the complexity of
the descriptor interaction and their causality effects on the decolorization rate. Causalities
of the molecular descriptors and LPMO activity is determined by evaluation of the di-
rected acyclic graph (DAG) and d-separation algorithm. The immediate causality effects on
LPMO activity are approximated by OLS proportionality coefficients α between numerical
values for deactivation by GATS6c and IC4 and the positive activation by ATSC8e. The
presented DAG has three direct endogenous causal descriptors (ATSC8e, GATS6c, IC4), two
exogenously implied indirect causal descriptors (AATSC3v, AATSC7i), and a non-causally
related collider (ATSC6e). The DAG sensitivity analysis revealed by OLS estimation of the
α coefficients depicted in Figure 5 indicates that LPMO activity is mostly determined by
the positive effect of ATSC8e (α = 0.013) and the negative effect of GATS6c (α = −0.31).
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For the evaluation of functional causality relations, each open backdoor path has to be
adjusted, while the ATSC6e descriptor is a collider on the side pathway. Determination of
the d-separated pathways and corresponding adjustments are evaluated using the DoWhy
python GithHub package [17].

Figure 5. Directed acyclic graph (DAG) of the structural causal model of the rate of LPMO decol-
orization rate. Depicted are linear path coefficients corresponding to the decolorization as direct
(parental) descriptors.

The graph depicts autocorrelation topological structure coefficients (ATSC8e, ATSC3v,
and AATSC7i) as exogenous factors with long-range interaction. AATSC3v and AATSCC7i
are indirect causes that affect GATS6c and IC4, while ATSC8e has a direct positive ef-
fect on decolorization (LPMO reactivity). It is 8-lag distributed electronegativity that
indicates the importance for bonding strength between the dye molecule and LPMO
enzyme [11,31,34,35]. The effect of ATSC6e is in the presence of ATSC8e redundant, which
is observed as indeterminant marginal distribution in Figure 2 and is depicted as a collider
in the corresponding DAG decolorization.

4. Conclusions

The lytic polysaccharide monooxygenases (LPMOs) play a key role in fungal biomass
degradation. For efficient degradation, LPMOs have to utilize adequate electron donors.
Therefore, in this work, 58 potential electron donor molecules were evaluated from different
classes of synthetic dyes/chromophores, namely: triarylamine, anthraquinone, thiazine,
oxazine, xanthene, phthalocyanine, metal complex, indigo, and azo dyes. Based on the
chromophore’s molecular properties and LPMO dye degradation results, the molecular
descriptors structural causality model (SCM) was developed and optimized. In addi-
tion, a decision tree algorithm-based model (DTM) was applied for the determination
of LPMO degradation efficiency, and results were used for the prediction of the molec-
ular properties important for enzymatic degradation. The results obtained show that
such models can efficiently predict the degradation rate of textile dyes, supporting the
potential of chromophore molecules for electron donation and LPMO activation before
experimental evaluation. Moreover, a similar approach can be applied in many other
industrial applications.
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