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ABSTRACT

Chromatin immunoprecipitation coupled with
massive parallel sequencing (ChIP-seq) is increas-
ingly used to map protein–chromatin interactions at
global scale. The comparison of ChIP-seq profiles
for RNA polymerase II (PolII) established in different
biological contexts, such as specific developmental
stages or specific time-points during cell differenti-
ation, provides not only information about the
presence/accumulation of PolII at transcription
start sites (TSSs) but also about functional
features of transcription, including PolII stalling,
pausing and transcript elongation. However, anno-
tation and normalization tools for comparative
studies of multiple samples are currently missing.
Here, we describe the R-package POLYPHEMUS,
which integrates TSS annotation with PolII enrich-
ment over TSSs and coding regions, and normalizes
signal intensity profiles. Thereby POLYPHEMUS fa-
cilitates to extract information about global PolII
action to reveal changes in the functional state of
genes. We validated POLYPHEMUS using a kinetic
study on retinoic acid-induced differentiation and a
publicly available data set from a comparative PolII
ChIP-seq profiling in Caenorhabditis elegans. We
demonstrate that POLYPHEMUS corrects the data
sets by normalizing for technical variation between
samples and reveal the potential of the algorithm in
comparing multiple data sets to infer features of
transcription regulation from dynamic PolII binding
profiles.

INTRODUCTION

Based on a technological leap in the development of
sequencing technologies, we are currently facing a switch
from gene centric to global analyses. However, the con-
comitant development of bioinformatics tools that allow
for comparative functional analyses is lagging significantly
behind, such that a lot of presently available data have not
yet been exploited to gain maximal functional insight.
Chromatin immunoprecipitation coupled with massive
parallel sequencing (ChIP-seq) is one of these
technologies, which is increasingly used to define biologic-
ally relevant processes like (the dynamics of) chromatin
modifications and constituents at genome-wide scale, the
association patterns of (post-translationally altered) chro-
matin modifiers or chromatin interacting proteins, such as
transcription factors or RNA polymerases. Multiple com-
putational approaches dedicated to ChIP-seq have been
developed to (i) generate signal intensity profiles by
cumulating sequenced reads aligned to the genome and
(ii) identify significant ‘peaks’ over the reconstructed
profile (1).
For RNA polymerase II (PolII) the corresponding

ChIP-seq profile is the composite of at least two function-
ally different aspects; a strong and well-defined binding to
a given transcription start site (TSS) where PolII is
observed even in absence of transcriptional activity (2)
and a second composite pattern resulting from PolII
action subsequent to transcription initiation at a
given TSS, which comprises several regulated events
like transcript elongation, pausing and termination
(Supplementary Figure S1). Therefore, any comparative
study of transcriptional activities at distinct gene loci
should consider the global behaviour of read-count
signal intensities spread over the entire loci and not rely
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only on the comparison of PolII occupancies at TSSs.
Moreover, such a comparison should provide a
genome-wide read-out that helps to gain insight into the
regulated functional aspects of PolII subsequent to the
initiation of transcription. Finally, variations inherent to
the technology (i.e. sequencing depth) should be con-
sidered in the comparison of different data sets by
applying adequate normalization procedures as for the
differential expression analysis of mRNA-Seq assays (3).
Here, we describe POLYPHEMUS, an R package that

integrates ChIP-seq derived PolII binding site information
with gene annotation to identify coding regions associated
with transcriptional activity and compare changes of these
activities in biological contexts. For this, POLYPHEMUS
performs gene length standardization and read-counts in-
tensity of non-linear normalization of multiple data sets
before comparison with correct technical/experimental
variations, which could cause problems for comparative
data analysis. We show here through the analysis of
primary data and meta-analyses of published data sets
that POLYPHEMUS can be used as an integral part of
an analytical pipeline (Supplementary Figure S2) for the
comparative analysis of multiple PolII ChIP-seq data sets
to gain functional insight about the differential activity of
gene networks activities in different biological contexts.

MATERIALS AND METHODS

Overview

POLYPHEMUS is based on an integrative approach
which combines, in a user-directed manner, information
from several levels, as is schematically illustrated in
Supplementary Figure S3. (i) As the first step
POLYPHEMUS combines peak calling outputs from
PolII ChIP-seq experiments with coding region database
annotations; from this information, signal intensity
profiles are extracted, which reveal those coding regions
at which PolII was identified by ChIP-seq. (ii) The signal
intensity profiles are scanned with a sliding window, thus
producing smoothened sliding window intensity profiles.
(iii) To compare two distinct PolII ChIP-seq experiments
both their sliding window intensity profiles and (iv) the
coding region lengths are normalized. (v) Finally,
normalized profiles are displayed as a relative differential
enrichment for PolII association. The procedures
developed for peak calling/coding region data integration,
normalization and standardization are described in detail
below.

Identification of RNA PolII-enriched coding regions

As a first step, we identify chromatin sites to which PolII is
bound. For this, we use MeDiChI, a model-based decon-
volution approach originally developed by Reiss et al. (4)
to study ChIP-ChIP profiles and which has been adapted
for ChIP-seq data analysis (5). Whereas other peak caller
outputs can be used together with POLYPHEMUS,
MeDiChI provided an efficient manner to annotate sig-
nificant PolII-enriched regions thanks to a peak-shape
learning process that is performed before annotation of
enriched-regions [illustrated in Supplementary Figure S4
in comparison with the widely used peak caller
‘Model-based analysis of ChIP-Seq (MACS)’ (6)].

Subsequent to PolII binding site identification
POLYPHEMUS correlates peak positions with a coding
region annotation database for the organism of interest,
such as RefSeq (7). For this, the genomic locations of the
identified PolII peaks are compared with annotated
Transcription Start Sites (TSS) within a user defined
window (default ±300 bp) around peak centres. The
overlap identifies coding regions for which the ChIP-seq
analysis displays significant enrichment of PolII at the
TSSs. Together with the signal intensity wiggle files, this
information is used to extract read-count intensities along
the corresponding coding regions. To smoothen the PolII
ChIP-seq profile over the gene bodies, a user-defined
sliding window (default 250 bp) scans the concerned
coding regions to compute a median sliding-window in-
tensity (SWI). User-defined buffer regions (default 500 bp)
upstream and downstream of the concerned genes are
included in the analysis to include ChIP-seq-defined
PolII binding that extends beyond annotated coding
regions. Finally, the orientation of genes encoded by the
negative strand is inversed to facilitate the comparative
analyses in the subsequent steps.

Normalization of RNA PolII profiles

Before comparing the signal intensities within ChIP-seq
data sets, it is essential to know if their global amplitudes
are indeed comparable. Considering that the amplitude of
ChIP-seq profiles is directly proportional to the total
number of mappable reads (TMRs), previous studies
have normalized different samples by linear correction
with a scaling factor that adjusts for TMRs between
samples (8–12) (Table 1), following the assumption that
the differences in the TMRs uniformly affect the ampli-
tude of the profile. To assess whether this assumption is
valid, we displayed the SWI distribution pattern of

Table 1. Normalization approaches used for the analysis of RNA Polymerase II ChIP-seq profiles

Normalization method Approach Software
implementation

References

Sequencing depth TMRs uniformly equalized relative to the sample with the lower
number of reads

No (9,10)

Linear scaling The average reads count in a defined bin is divided by the TMRs No (7,8,11)
LOWESS Locally weighted polynomial least square regression applied to

estimate the mean and variance between the compared data sets
No (13)

Quantile/LOWESS Described in this study POLYPHEMUS
(R package)

This manuscript
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compared profiles as minus versus average (MA) trans-
formation plot, which is frequently used in microarray
data analysis (13). Importantly, we observed that the dif-
ferences in the TMRs can result in rather dramatic
non-linear deviation of the compared SWIs (for
example, see Figure 1B top and bottom panels), indicating
that a reliable comparison of ChIP-seq data sets with dif-
ferent TMRs could require in certain cases more
sophisticated procedures than linear scaling.

This issue has been addressed recently by applying
locally weighted polynomial least square regression
(LOWESS) to estimate the smoother line of the mean
and the variance of the observed data (14).
POLYPHEMUS has LOWESS functionality integrated,
but to include the possibility of comparing multiple
profiles, we implemented, in addition, a quantile normal-
ization option. The rationale for this is that while
LOWESS and quantile normalizations produce similar
results, there are two limitations when using LOWESS.
First, span conditions to obtain the best smoothening
(proportion of points used to compute) need to be empir-
ically evaluated, thus making automation impossible
and second, LOWESS requires high computation time,
which is a serious disadvantage when dealing with next-
generation sequencing data in a genome-wide context.
Note that the implementation of LOWESS normalization
in POLYPHEMUS follows a similar procedure as
described (14).

Quantile normalization. Quantile normalization relies on
the assumption that the majority of coding regions present
the same transcriptional activity across the compared
experimental conditions, which reflects a common PolII
association pattern to constitutively active genes.
Correspondingly, the quantile normalization adjusts the
distribution of SWIs for different samples to reach a
common distribution pattern (15), by the following
procedure:

For N ChIP-seq data sets with n PolII-enriched coding
regions, each of which comprising Z sliding windows:

(i) build a matrix M of size K�N, where each column
is a ChIP-seq data set (N) and where each row cor-
respond to the SWIs per coding region. Note that
the total number of rows are defined by
K ¼

Pn
i¼1 Zi

(ii) sort each column of M to give Msort

(iii) take the means across each row of Msort and scale
(i.e. divide) each SWIs with this value to get M0sort

(iv) get the final matrix Mnorm by rearranging each
colum of M0sort to have the same ordering than M

In contrast to LOWESS, this approach can be extended
to more than two samples, which, for instance, allows for
the comparison of samples from kinetic analyses. The
current POLYPHEMUS version handles multisample
normalization.

Comparing normalized ChIP-seq profiles. Subsequent to
normalization, compared profiles are expressed by the
ratios of their corresponding normalized SWIs. To
correct for variations between contiguous SWI ratios, we

fit the distribution of each coding region-specific ratios
with a LOWESS-smoothened line. Each ratio is then
interpolated to the fitted line, defined as fitted SWI ratios.

Defining TSS/gene body regions. Different types of tran-
scription regulation-relevant information can be extracted

Figure 1. Comparison of RNA PolII ChIP-seq profiles requires
non-linear normalization. Meta analysis of C. elegans PolII profiling
by ChIP-seq (10). (A) The signal tracks for chromosome V illustrate the
different samples which are compared in this study. Display of two
biological replicates (suffix ‘rep1’ or ‘rep2’) of samples from embryo
(E; blue tracing) or L1 larval (L1; red and pink tracings) stages. For the
biological replicate 2 of the L1 sample two technical replicates
(L1rep2A and L1rep2B) are displayed. TMR for these samples range
from 2–8 million. Upregulated (red arrow), constitutive (black arrow)
and downregulated (green arrow) PolII binding at given loci can be
intuitively detected by visual inspection of the profiles, as different
signal intensity scales are displayed (1:200 for the L1 high TMR
sample and 1:70 for samples with about 2 million TMR). (B) MA
plots. The fitted LOWESS curve (red line) in the prenormalized MA
plot for Erep2 versus Erep1 (top left) reveals the need for nonlinear
normalization before data comparison. LOWESS (top center) or
quantile normalization (top right) was applied to enable data compari-
son. MA plots for the technical replicate (L1rep2B versus L1rep2A)
and a biological replicate (L1rep2A versus L1rep1) are also illustrated
before or after LOWESS/quantile normalization.
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from PolII association at TSS and gene body regions when
studying gene regulation. Therefore, POLYPHEMUS has
been designed such that binding at the TSS and the
pattern observed along the coding region of a gene
provide separate readouts. This approach facilitates
gene classification according to local PolII activities,
such as stalling or productive elongation (illustrated in
Figures 3A and B and 5A and C). Inspired by previous
studies describing the PolII enrichment around TSS sites
of annotated genes (16–18), we have defined a 250-bp
distance from the TSS as being indicative of relevant
PolII-TSS binding (user-defined parameter in
POLYPHEMUS). The remaining part of the coding
region is defined as ‘gene body’.

Gene length standardization. To compensate for the highly
variable length of gene coding regions POLYPHEMUS
normalizes gene lengths. Consequently, an equal number
of data points define all coding regions, which is an essen-
tial prerequisite for comparative analyses. The procedure
is performed as following: for a given gene body composed
of Z sliding windows, where Zj corresponds to their pos-
itions in the coding region of interest, the body-length
standardization to a reference length L (in sliding
window units) is performed by the transformation

lj ¼
L

Z
zj

where lj correspond to the standardized positions of the
sliding windows in the gene-body. As each sliding window
presents a given SWI, such information is represented in
the context of their standardized positions (lj) and fitted to
a LOWESS-smoothened line, which is then used to inter-
polate the number of data points that will represent the
body gene characteristics for PolII binding.

Classification of PolII-occupied coding regions

POLYPHEMUS (i) combines identified PolII binding
sites with signal intensity profiles, (ii) normalizes sample
data sets for subsequent comparison and (iii) standardizes
different coding regions such that comparative
intracoding region and intersample analyses become
possible. Given the existence of efficient tools for data
clustering, we did not integrate such option into
POLYPHEMUS. Rather, POLYPHEMUS generates a
versatile matrix output (in addition to MA plots and in-
tensity tables), in which columns correspond to
normalized and standardized sliding window intensity
(SSWI) ratios and lanes to the corresponding coding
regions (Supplementary Figure S5). This matrix can be
uploaded in tools like MultiExperiment Viewer (MeV)
(19,20) to perform supervised or unsupervised gene clus-
tering analysis based on normalized SWI ratios covering
the corresponding coding regions, as exemplified below
and depicted in Figures 2, 3 and 5.

Figure 2. Analysis of differential chromatin-association of RNA PolII at different developmental stages requires data normalization. Comparison of
ChIP-seq data sets for larval and embryonic stages for (A) high TMR difference (L1rep2A versus Erep1: 8.5 versus 2.1 million reads) and (B) similar
TMR (L1rep1 versus Erep1: 2.0 versus 2.1 million reads). (Top panels) MA plots are shown before (‘Prenormalization’) and after normalization
(‘quantile’). (Bottom panels) SOTA (max cycles=9; cell variability, P=0.01) to classify PolII associated genes according to the ratios of the signal
intensities for each annotated gene in the two compared samples; shown is the SOTA before and after quantile normalization. The different
SOTA-predicted classes are catalogued according to their relative PolII binding characteristics: constitutive (C: �65%), downregulated (D:�20%)
and upregulated (U: �15%).
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RESULTS

Meta analysis of Caenorhabditis elegans RNA PolII
chromatin association characteristics at different
developmental stages

To test and validate our approach, we have applied
POLYPHEMUS to a publicly available C. elegans
(GEO accession number: GSE15628) data set that
contains ChIP-seq profiles for PolII binding performed
in the context of a study of PHA-4/FOXA transcription
factor binding in embryonic and starved L1 larval stages
(12). We chose this data set, as a plethora of controls are

provided for each PolII ChIP-seq sample. Specifically, the
authors have generated two biological replicates for
embryo and L1 larval stages. In addition, two technical
replicates are reported for one of the L1 biological repli-
cates. Hereafter, these different RNA PolII ChIP-seq
samples are referred as Embryo-rep1 (Erep1),
Embryo-rep2 (Erep2), Larvae L1-rep1 (L1rep1) and
L1-rep2A (L1rep2A) as well as L1-rep2B (L1rep2B;
Figure 1A). In addition, a signal intensity profile
obtained by compiling the mappable reads in L2A and
L2B (L1rep2A+B) is included for comparison
(Figure 1A).

Figure 3. Sub-classification of RNA PolII binding by TSS-gene body profiling. (A) Schematic representation of the conceptual PolII binding patterns
in a comparative analysis (Ut-Cb upregulated signal intensity at TSS, constitutive gene body; Ct-Ub, constitutive TSS and increased signal intensity
at gene body; U, global increase of the signal intensity; Dt-Cb, decrease in signal intensity at the TSS and constitutive pattern at gene body; Ct-Db,
signal intensity constitutive at TSS and decreased at gene body; D, global decrease of signal intensity). (B) Illustration of the different PolII binding
patterns from comparing L1rep2A with Erep1. CAST (similarity cutoff: 0.9) has been used to perform the initial classification, followed by an
intuitive association of classes into those depicted in (a). (C) Frequency of the different transcriptional binding patterns indicated in (a) from
comparing L1rep1 or L1rep2A with Erep1.
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Non-parametric normalization methods implemented for
proper comparison of RNA PolII ChIP-seq binding
profiles

As expected, the comparison of PolII signal intensity
profiles obtained for larval L1 and embryo stages reveals
different patterns (Figure 1A). Indeed, gains and losses of
PolII occupancy (red and green arrow, respectively)
signify differential transcriptional activities at the
associated coding region. Although visual inspection of
the illustrated ChIP-seq profile supports this interpret-
ation, a global comparison of all data points clearly
reveals the need for data normalization. Indeed, the
TMR differences between samples required a display of
the wiggle intensity profiles at different scales to allow for
a visual inspection (Figure 1A; compare L1rep2A: �8
million, scale 200, and L1rep1: �2 million reads, scale
70). Obviously, such an adjustment bears the risk that in
a comparison of samples apparent differences for the
observed peak intensities of a given PolII binding site
are due to technical variability (TMRs differences)
rather than the consequence of regulation.
While such comparative analysis strongly suggest the

necessity of data normalization, only an analytical
approach, like the MA transformation of the profile-
associated SWIs may reveal whether a linear correction
or a more sophisticated approach suffices for correcting
the described differences. As shown in Figure 1B, even
biological replicates with small TMR differences can
exhibit an important offset behaviour in their MA plots
towards high signal intensity values; this aberration in-
creases with increasing TMR difference (Figure 1B;
compare top panel Erep2 versus Erep1 with a difference
of �1 million reads and bottom panel L1rep2A versus
L1rep1 with a difference of �6 million for the TMR).
Note that the MA plots of the technical replicates
L1rep2B and L1rep2A (�TMR: 26 749 reads) reveal a
well-centred pattern relative to the x-axis. The above
analysis reveals that in this particular situation, a linear
scaling approach is not suitable for normalization when
comparing samples, even if TMR differences are as low as
1 million. For this reason, we have implemented LOWESS
and quantile normalization as user-defined options in
POLYPHEMUS to generate cohorts with comparable
data distribution. (Figure 1B middle and right panels).

Monitoring differential chromatin association of RNA
PolII at different developmental stages

The main interest in comparing signal intensity levels of
PolII tracings is to infer differences in the transcriptional
features of related biological materials. Zhong et al. (12)
compared two different developmental stages in
C. elegans, larval L1 and embryo stages, to assess chro-
matin localization of the transcription factor PHA-4/
FOXA and correlate its locus-specific binding with the
regulation of gene expression. For this, they pooled the
PolII ChIP-seq data sets from biological replicates,
followed by linear TMR-based normalization of signal
intensity profiles. To evaluate the need for linear or
non-linear data normalization, when comparing such
samples from different developmental stages, we have

performed MA plots for high and low TMR differences
(Figure 2; L1rep2A versus Erep1, �TMR �6 million;
L1rep1 versus Erep1, �TMR �34 000). A major diver-
gence of data scatters towards high signal intensities is
obvious for the high �TMR samples (Figure 2A, top
left) but even at low �TMR, the MA plots reveal a
slight offset at both low and high signal intensities
(Figure 2B, top left). Both these aberrations were efficient-
ly corrected by quantile normalization (Figure 2A and B,
top right). Given that L1rep2A and L1rep1 are biological
replicates, a similar differential PolII binding pattern at
the TSS and along the gene bodies would be expected
when comparing them separately to the embryo data. To
validate this assumption, we applied the Self-Organizing
Tree Algorithm [SOTA; Euclidean distance; max
cycles=9; cell variability P=0.01 (21)] in MeV (20) to
classify PolII binding patterns with or without prior nor-
malization by quantile. Without normalization, the com-
parison between L1rep2A and Erep1 would indicate a
globally increased PolII binding to the majority of loci
(Figure 2A, bottom left); this is a consequence of the
overall higher signal amplitudes of the L1rep2A data set
(Figure 2A, top left). After quantile normalization, the
SOTA analysis visualizes the differential PolII binding
patterns in both cases. Indeed, around 2500 genes
(�20% of the analysed genes) revealed a downregulation
of PolII binding, whereas 2000 genes (�15% of the
analysed genes) showed an increase when the embryo
turns into a L1 larvae. Most notably, comparing Erep1
with either of the biological replicates L1rep1 or L1rep2
yielded similar results after quantile normalization.
Importantly, linear correction in case of high TMR differ-
ences (L1rep2A versus Erep1) produces aberrant readouts
as illustrated in Supplementary Figure S6A.

Classifying RNA PolII binding characteristics at
coding regions

The association of PolII with genes follows very complex
patterns, which reveal aspects of its chromatin association
and processivity; for instance, PolII may get bound to
promoters and remain stalled, it may engage in transcrip-
tion at low rate with high promoter occupancy or all
promoter-bound PolII may transcribe the corresponding
gene leaving an ‘empty’ promoter behind. Intermediates
between these extremes are likely to exist, given that
various effectors, such as PolII-modifying enzymes,
factors involved in elongation or ncRNAs regulate
PolII-mediated transcription (22).

PolII ChIP-seq profiles are assembled snapshots from a
large number of cells visualizing the regulated and
dynamic chromatin interaction of enzymes; for each cell,
they derive from one or more gene-specific PolII functions
that comprise events like promoter loading/TSS occu-
pancy, PolII stalling or travelling along the gene during
active transcription or transcription termination. Specific
features of a promoter/gene, such as bidirectionality,
may have additional impact on PolII binding characteris-
tics. Monitoring the patterns, dynamics and extent of
PolII association and correlating these data with PolII
function will reveal a readout of genome-wide PolII
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transcriptional activity in a given experimental or cell
physiological setting.

Conceptually, the separate monitoring of PolII binding
at the TSS and the gene body may display one of three
ChIP-seq profiles for any given gene (Figure 3A): (i) TSS
and coding region are deprived of RNA PolII, (ii) only the
TSS is occupied and (iii) both TSS and gene body are
occupied, or any intermediate thereof. Applied to a com-
parative situation, like induced gene activation, patterning
the ChIP-seq profiles will differentiate between (i) situ-
ations where only the TSS shows higher occupancy in
one of the data sets but no differences over the coding
region (‘Ut-Cb’ for upregulated TSS-constitutive body);
(ii) only the gene body that displays higher occupancy in
one data set and no changes are seen at the TSS (‘Ct-Ub’
for constitutive TSS-upregulated body); (iii) both the TSS
and the body show higher PolII occupancy in one data set
(‘U’ for upregulated); (iv) the TSS is deprived of PolII in
one data set without any changes over the coding region
(‘Dt-Cb’ for downregulated TSS-constitutive body); (v)
the body shows higher occupancy in one data set and no
differential behaviour at the TSS (‘Ct-Db’ for constitutive
TSS-cownregulated body); and finally (vi) both the TSS
and the body are deprived of PolII in one data set (‘D’ for
downregulated).

While some of the above scenarios can be revealed by
SOTA analysis (Figure 2A and B, bottom panels), a clas-
sification approach that does not predefine the number of
classes can lead to a more refined set of PolII association
patterns. To this end, we used the Cluster Affinity Search
Technique [CAST; Euclidean distance; threshold affinity
value=0.9 (23)] that is implemented in MeV (20).
Figure 3B illustrates the CAST analysis for the compari-
son between L1rep2A and Erep1 after quantile normaliza-
tion. This unsupervised clustering generated some 40
classes that can be intuitively reorganized in the
above-described conceptual patterns. The upregulated
and downregulated PolII binding events previously
revealed by SOTA analysis are now retrieved as additional
subclasses (U: �9–13%; Ut-Cb: �2–3%; Ct-Ub: �2%; D:
�8–9%; Dt-Cb: �0.5%; Ct-Db:�1% in Figure 3C). Note
that applying CAST separately to the two biological rep-
licates revealed essentially the same classification, as pre-
viously demonstrated using SOTA.

RNA PolII binding characteristics during F9 cell
differentiation

That POLYPHEMUS is designed to compare multiple
data sets makes it the method of choice to analyse
temporal PolII binding kinetics at a genome-wide level.
To this aim, we used the well-characterized retinoid-
induced F9 mouse embryonal carcinoma (EC) cell differ-
entiation model [reviewed in ref. (24)]. Samples were col-
lected during the first 48 h of all-trans retinoic acid
(ATRA) treatment and processed for ChIP-seq analysis
of PolII binding (Figure 4A; Supplementary File S1 for
details). Alignment of the sequenced reads against the
mouse genome (mm9) yielded 4–6 million TMR for all
samples (Figure 4B). As expected, MA plots for all time
points relative to vehicle presented variable degrees of

offset behaviour, revealing the need for normalization;
the corresponding multicomparison quantile normaliza-
tion is depicted in Figure 4C (bottom panel).
We used supervised clustering to classify genes into dif-

ferent patterns of relative PolII binding during cell differ-
entiation. The corresponding SOTA [Euclidean distance;
max cycles=9; cell variability P=0.01 (21)], reveals im-
portant changes during differentiation (Figure 5A). The
relative abundance of the various PolII chromatin
binding classes changes rapidly during differentiation,
revealing a highly dynamic recruitment/dissociation and/
or processivity of PolII (Figure 5B). Two hours after
ATRA treatment approximately 900 genes show increased
PolII binding (P-value confidence: 0.05; Supplementary
Figure S7). At 6 h, the proportion of genes with higher
PolII binding pattern is subdivided in two groups, the
upregulated group or ‘U’ characterized by significant

Figure 4. Analysis of the kinetics of RNA PolII binding during differ-
entiation (A). Illustration of differentiation system. F9 teratocarcinoma
cells were treated with ATRA for 48 h to induce primitive endodermal
differentiation. Samples were collected at 0, 2, 6, 24 and 48 h and
ChIPed with anti-PolII antibodies for ChIP-seq analyses. (B) Table
illustrating the TMR per data set. (C) MA plots of data sets before
and after quantile normalization. All samples were normalized relative
to the 0 h control sample. Note that, as in the case of the C. elegans
data sets (Figures 2 and 3) all data sets require non-linear normaliza-
tion, as is obvious from the LOWESS fitted line (red) in the
prenormalization MA plots.
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PolII ratio levels at the TSS as well as the gene body (558
genes) and that characterized by significant PolII ratio
levels preferentially at the TSS (Ut-Cb; 529 genes). At
24 h, the number of genes revealing upregulated RNA
PolII binding decrease dramatically (approximately 200
genes are classified as ‘U’ and approximately 700 genes
as ‘Ut-Cb,’ respectively). However, this trend is reversed
48 h after ATRA treatment. At this time, more than 2500
genes display significant PolII levels (relative to 0 h) pref-
erentially localized at the TSS (Ut-Cb). This biphasic PolII
recruitment pattern correlates with two transcription

peaks previously reported for F9 cell differentiation (25).
Note that in contrast to PolII recruitment, the number of
genes that lose PolII binding (relative to the 0 h) remained
rather constant, suggesting that the majority of loci are
‘poised’ for transcription activation by early or constitu-
tive recruitment of PolII.

Notably, SOTA classification not only identifies recruit-
ment, loss and constitutive binding of PollI, but it shows
binding patterns that diverge between TSS and the body
of the coding regions, as illustrated for Nanog, Stra8 and
Cdv3 (Figure 5C). The PolII ChIP-seq signal intensity

Figure 5. Dynamic chromatin association patterns of RNA PolII during ATRA-induced differentiation. (A) POLYPHEMUS (QUANTILE)-
normalized ATRA-treated data sets were classified relative to the nontreated control using SOTA (max cycles=9; cell variability P=0.01). The
associated heat maps to the SOTA analyses illustrate the presence of upregulated (red), constitutive (black) and downregulated (green) PolII binding
at identified loci based on at least 2s distance away from the global mean behaviour (Supplementary Figure S7). (B) The SOTA analysis of (A) was
classified according to the occupancy of TSS, gene body or both and the number of coding regions per classes is depicted. The nomenclature is as in
Figure 3. (C) Three examples illustrate the highly dynamic chromatin association of PolII during F9 cell differentiation. The signal intensity profiles
(top panel) are compared with the normalized gene representation (middle panel). The corresponding qPCR validation performed at the TSS and at a
defined region of the coding sequence is depicted in the bottom panel. The POLYPHEMUS representation (middle panel) displays the coding region
in the X-axis (the TSS and the Body regions are delimited) and the fold induction of PolII binding levels at a given time point of ATRA treatment
relative to the non-treated control.
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profiles demonstrate that, whereas the presence of tran-
scriptional activity on such regions is evident, the differ-
ences between time points are rather difficult to assess
(Figure 5C, top panels). With POLYPHEMUS, the
relative differences between time points become readily
apparent (Figure 5C, middle panels). Using quantitative
real-time PCR (qPCR) of ChIPed PolII binding sites at
the TSS or a position inside the corresponding coding
region reveals a good correlation with the computational
analysis by POLYPHEMUS (Figure 5C, bottom panels).
For example, the PolII levels present at the coding region
of Nanog appeared to be strongly induced in the first 2 h of
ATRA treatment and steadily decreasing thereafter. This
aspect was revealed both by ChIP-qPCR analysis and
POLYPHEMUS, while it is not evident from the
original signal intensity profiles. Similarly, ChIP-qPCR
for Stra8 and Cdv3 correlated with POLYPHEMUS com-
putation revealing a maximal recruitment of PolII to the
TSSs at 24 h of ATRA treatment. Additional features of
PolII association along gene loci are apparent from the
analysis and warrant further attention for mechanistic
analyses, such as a progressive increase (Nanog, 24 and
48 h), decrease (Cdv3, 6 and 24 h) or U-shaped (Nanog,
2 h; Stra8, 2, 24 and 48 h in contrast to the 6 h pattern)
binding of PolII along the coding region. Such features are
likely revealing functional aspects of (regulated) PolII
binding to chromatin and/or features of (regulated) tran-
scription in the context of chromatin structure and regu-
latory machineries.

DISCUSSION

ChIP sequencing is the current method of choice to define
and compare genome-wide chromatin binding patterns of
regulatory factors, enzymes, non-coding RNAs and
chromatin-modifying/transcriptional machineries, as well
as posttranslational modifications of chromatin constitu-
ents and coregulatory factors, irrespective of whether they
bind directly or indirectly to chromatin. In the majority of
cases, different data sets serve as a way to identify chro-
matin regions occupied by several components, but the
relative signal intensities associated to the chromatin
regions of interest are in most of the cases neglected. As
signal intensity profiles are generated from the number of
reads that overlap in a given window, there is a direct
correlation between the TMR and the amplitude of the
signal intensity profile. Previous studies addressing the in-
fluence of sequencing depth on the accuracy of binding site
annotation showed that the number of identified sites
increase with increasing TMR and provided evidence of
factor-specific saturation levels. For PolII, saturation at
promoter regions is attained beyond 3 million TMR,
while it is not reached even at 20 million TMR for the
transcription factor STAT1 (26).

One of the most exciting features of ChIP-seq ana-
lyses is the possibility to compare different conditions
linked to a particular biological/mechanistic question,
such as the dynamics of transcription factor binding
to its cognate targets during a biological process (cell
differentiation, oncogenic transformation, developmental

processes, etc.). The problem in such a comparison is the
variability of the technique itself. We demonstrate this
issue in a meta-analysis of an extensive data set from
C. elegans in which two different developmental stages
were compared (12). While the technical replicates con-
firmed the high reproducibility of the sequencing technol-
ogy, a comparison between biological replicates revealed
that even rather small TMR differences can lead to sig-
nificant non-linear offset behaviour of the corresponding
data sets in a comparative MA plot, emphasizing the need
for data normalization before comparison. We show
that linear normalization inadequately addresses the
problem, while the non-parametric normalization proced-
ure integrated in the POLYPHEMUS package reliably
correct for the aberrant data scattering. Moreover, we
demonstrate that the dynamic chromatin association of
PolII during cell differentiation can be accurately moni-
tored after data normalization with POLYPHEMUS.
In addition to defining global patterns of binding sites,

ChIP-seq profiles contain a wealth of additional informa-
tion. In particular for PolII, the ChIP-seq signal intensity
profiles originate from a plethora of regulatory inputs at
the TSS and the travelling of the enzyme along the entire
transcription unit. Indeed, both transcription initiation
and transcript elongation are highly regulated events
(22,27,28). At the TSS PolII recruitment, chromatin modi-
fication and structure, preinitiation complex formation
and a multitude of other regulatory events control phe-
nomena like PolII binding, stalling or promoter escape,
while events such as post-translational modification, asso-
ciation of elongation factors and non-coding RNAs,
regulate the travelling and transcript production. ChIP-
seq profiles provide readouts for several of these phenom-
ena by revealing among others aspects like promoter clear-
ance, PolII pausing or dissociation. POLYPHEMUS
facilitates such analyses, as it generates and visualizes
normalized ChIP-seq signal intensity profiles at the TSS
and along the gene body as exemplified in Figure 5C
(middle panels). Indeed, we were surprised by the
gene-specific variability of these profiles, which are likely
to reflect the regulatory events affecting PolII–chromatin
interaction in a dynamic, gene- and cell-specific manner.
We are aware of the possibility that some functional
aspects of PolII action may readout in the ChIP profiles
through indirect effects; in this respect, PolII mobility
(PolII stalling versus travelling, travelling speed, integra-
tion in chromatin-associated complexes, etc.) may alter
the efficiency by which it is crosslinked to a given locus.
As for normalization of gene expression data obtained

by microarray technologies, quantile normalization by
POLYPHEMUS relies on the assumption of a common
RNA PolII-binding distribution at the majority of genes
investigated, which is maintained across the compared
experimental conditions (29). Interestingly, a recent
study applied quantile normalization for correcting differ-
ences in TMR profiles associated with RNA-seq assays
and demonstrated an improved decrease in the bias of
monitoring differential gene expression relative to qRT-
PCR ‘gold standard’ measurements when compared with
other linear correction approaches (3).
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With the rapid development of technologies that
provide dramatically increasing sequencing depths,
protein–chromatin interaction studies will evolve to inte-
grate quantitative aspects of binding/enrichment along the
genome. This study illustrates the necessary steps for such
analyses in the case of RNA PolII. The general concepts
underlying POLYPHEMUS can be extrapolated to other
chromatin interactor studies, such as histone modification
profiling. Furthermore, the POYPHEMUS pipeline can
be combined with other computational efforts like those
focused on promoter identification (18,30). Future
versions may include additional statistical normalization
methods that requiring less assumptions concerning data
distribution, like ANOVA-type models (31), with the aim
of expanding its use to other protein–chromatin
interactors.

AVAILABILITY

POLYPHEMUS is currently available at http://igbmc.fr/
Gronemeyer_Polyphemus and on the CRAN network
(http://cran.r-project.org/web/packages/polyphemus/). A
Bioconductor-compliant package of POLYPHEMUS is
being assembled and will be available in spring 2012.

ACCESSSION NUMBER

ChIP-seq data for the temporal characterisation of RNA
Polymerase II binding on the F9 model system (5) has
been deposited in GEO under accession number
GSE30539.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–7, Supplementary File 1.
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