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Abstract: We disclose a successive π-expansion of pyracylene
towards boat-shaped polycyclic scaffolds. The unique struc-
tural features of the resulting compounds were revealed by
X-ray crystallographic analysis. Depending on the extent of π-
expansion the compounds display intense bathochromically
shifted absorption bands in their UV/Vis spectra and are

prone to several redox events as documented by cyclic
voltammetry. The experimental observations are in line with
the computational studies based on density functional theory,
suggesting progressive narrowing of the HOMO–LUMO gap
and distinct evolution of the electronic structure and
aromaticity.

Introduction

The unique structural features associated with the electron-
deficient nature of fullerenes[1] stimulated vigorous research
efforts directed towards the development of non-planar
carbonaceous electron acceptors based on polycyclic aromatic
hydrocarbons (PAHs).[2,3] Such compounds both in their neutral
and reduced states serve as versatile model systems for
fundamental studies of electron delocalization and aromaticity[4]

and, at the same time, constitute versatile building blocks for
tunable n-type organic materials.[5] The incorporation of non-
benzenoid rings into the sp2-carbon framework is a particularly
attractive concept to endow PAHs with electron acceptor
properties and non-planarity.[2,6] Hence, the incorporation of π-
conjugated cyclopentadiene moieties, which are prone to
facilitated electron uptake driven by the aromaticity gain,
resulted in highly interesting electron-deficient systems.[3,7] By
this approach not only the electron affinity of the PAH scaffold
increases but also its geometry can efficiently be modulated
towards curved systems,[8] which, in turn, has a pronounced
effect on aggregation behavior and reactivity.[2,9]

Pyracylene (cyclopenta[fg]acenaphthylene, 1), initially re-
ported back in the late 1960s,[10] can be considered as a
paradigmatic example of an electron-accepting PAH comprising
5-membered rings (Figure 1).[11] Compound 1 is planar and with
its 12π-electron periphery and the localized central C=C bond
represents a formally antiaromatic fragment of fullerene C60.

[12]

Through further π-expansion of 1, the next, yet considerably
less explored, homologue dibenzopyracylene (indeno[1,2,3-
cd]fluoranthene, 2) was realized.[13] A molecular wheelbarrow
was assembled around the pyracylene platform and its behavior
on a copper surface was investigated by scanning tunneling
microscopy.[14] Recently, pyracylene was synthetically married
with azaacenes[15] or pyrene units to realize interesting
fluorophores.[16] To the best of our knowledge, further π-
expanded derivatives of 1 have not been realized to date.

We reasoned that a new type of carbonaceous electron
acceptors with appealing optoelectronic and structural proper-
ties shall be in reach through merging the electron deficient
pyracylene moiety with fully benzenoid hexa-peri-hexabenzo-
coronene (HBC).[17] While HBC has been decorated with a broad
range of lateral functionalities to adjust its properties for
particular applications,[18] its fusion with electron deficient
polycyclic π-systems remains comparably less explored.[19]
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Figure 1. Successive π-expansion from pyracylene 1 to dibenzopyracylene 2
and the HBC-pyracylene hybrid HPH.
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Hence, we report herein a successive π-expansion of
pyracylene to afford the very first example of an HBC-
pyracylene hybrid (HPH, Figure 1). The compound, which is
accessible through several high-yielding steps from commer-
cially available acenaphthene, features two facilitated reversible
reduction steps and strongly bathochromically shifted absorp-
tion bands. As revealed by X-ray crystallographic analysis the
HPH forms a unique boat-shaped geometry, which is rather
surprising, considering the absence of 7- or 8-membered rings
in its polycyclic framework.

Results and Discussion

The dibrominated fluoranthene derivative 3 was synthesized in
several steps from commercially available acenaphthene and
used as the key building block in this work (for synthetic details,
see the Supporting Information).[20,21] A two-fold Pd-catalyzed
ethynylation of 3 with 4-tert-butylphenylacetylene gave 4 in
61% yield (Scheme 1).[22] Subsequent Rh-catalyzed [(2+2)+2]
cyclotrimerization[23] of 4 with bis(4-tert-butylphenyl)acetylene
at elevated temperature in o-xylene delivered octaphenyl-

substituted dibenzopyracylene (OPP) derivative as an orange
solid in an excellent yield of 87%. In parallel, compound 3 was
subjected to Brønsted acid-mediated oxidative cyclodehydroge-
nation with DDQ/TfOH to achieve 3-fold cyclized 5 in nearly
quantitative yield.[24] In analogy to the synthesis of 4, the
dibromo compound 5 was ethynylated towards 6 and success-
fully converted in a Rh-catalyzed cyclotrimerization to the
tetraphenyl-substituted dibenzopyracylene (TPP) derivative.
Finally, both compounds OPP and TPP underwent cyclodehy-
drogenation upon treatment with DDQ/TfOH in CH2Cl2 at 0 °C
to afford the title compound HPH in quantitative yields, which
highlights the complementarity of both routes. More impor-
tantly, the successive approach via 5 selectively provides the
partially cyclized model compound TPP for further studies of
the optoelectronic and structural properties.

The π-expanded pyracylenes OPP, TPP and HPH are orange,
red and purple solids, respectively, which are soluble in
common organic solvents. None of the compounds shows
fluorescence both in the solution and the solid state, which is in
agreement with the previous studies on pyracylene-based
scaffolds.[25]

Further information about the solid-state properties of the
compounds was provided by X-ray crystallography (Figure 2).
Hence, single crystals were grown via slow gas phase diffusion
of MeOH into a saturated solution of the compound in toluene
(for OPP) or 1,2-dichlorobenzene (for HPH and TPP) at rt. The
successive cyclization when going from OPP to HPH increas-
ingly induces a boat-shaped conformation of the polycyclic
scaffold (Figure 2A). This observation is in accordance with the
previously reported flexibility of dibenzopyracylene (2).[26] While
the pyracylene moiety in OPP is nearly planar and the whole
molecule 17.4 Å wide, a significant bowl depth of 3.79 Å arises
in HPH which is, due to the bent geometry, just 15.6 Å wide (for
the definition of the structural elements used to estimate the
discussed parameters, see the Supporting Information).

Interestingly, exclusively the boat-shaped HPH molecules
were found in the unit cell of HPH, while the conceivable chair-
shaped conformation with the HBC flanks pointing to the
opposite directions with respect to the pyracylene core were
not observed. This finding is in agreement with the same
relative energy of both conformations as revealed by density
functional theory (DFT) calculations at the CAM-B3LYP level of
theory (for details, see the Supporting Information). Hence, the
exclusive occurrence of the boat-shaped conformation in the
solid state can be most likely ascribed to the crystal packing
forces. In the crystal packing the individual molecules of HPH
interact through their convex surfaces with the shortest π···π
distance of 3.34 Å between the central naphthalene moieties.
Further Caryl� H···π interactions with a distance of 3.61 Å are
observed at the periphery of the molecules (Figure 2C).[27]

Within the unit cell the adjacent molecules are entangled in
groups along the b axis to form a unique network-like pattern
(Figure 2E).

The carbon-carbon bonds in HPH can be separated into two
categories regarding their lengths. The vast majority of the bonds
are in the range from 1.37 Å to 1.43 Å, representing the C=C
bonds arranged within the aromatic benzenoid units. In contrast,

Scheme 1. Synthetic strategy towards HPH and its congeners OPP and TPP.
a) DDQ, TfOH, CH2Cl2, 0 °C, 15 min, N2; b) 4-tert-butylphenylacetylene, CuI,
[Pd(PPh3)4], NEt3, 100 °C, 18 h, N2; c) 4-tert-butylphenylacetylene, CuI, [Pd-
(PPh3)4], NEt3/THF/toluene (5 :1 : 1), 100 °C, 18 h, N2; d) bis(4-tert-
butylphenyl)acetylene, [RhCl(PPh3)3], o-xylene, 135 °C, 52 h, N2. DDQ=2,3-
dichloro-5,6-dicyano-1,4-benzoquinone; TfOH= trifluoromethanesulfonic
acid; THF= tetrahydrofuran.
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significantly longer bonds with 1.44 Å to 1.50 Å are found
between the individual benzenoid units, corresponding to C-
(sp2)� C(sp2) single bonds. These observations are in accordance
with the X-ray data of parent dibenzopyracylene with the longest
bonds located within the 5-membered rings linking the
naphthalene and benzene subunits.[26] The interior C(sp2) carbons
of the central naphthalene moiety in HPH are weakly pyramidal-
ized as indicated by the sum of the C� C� C bond angles reaching
358.9° (Figure 2D). Consequently a π-orbital axis vector (POAV)[28]

of 2.10° is determined at these carbon atoms. For comparison, a
comparable POAV value of 2.59° was reported for (20,0) single-
walled carbon nanotube with a diameter of 15.6 nm.[29] The POAV
analysis of the partially cyclized TPP resulted in two distinct values
of 1.37° and 2.04° for the uncyclized and the cyclized half,
respectively. As expected, in uncyclized OPP with its planar
structure no pyramidalization is observed (0.04°).

To assess the local aromaticity within the fused polycyclic
frameworks of OPP, TPP and HPH, nuclear independent chemical
shift (NICS)[30] values were determined by using the geometry
optimized structures (Table 1 and the Supporting Information).
The 6-membered rings in all compounds are clearly aromatic as
documented by the negative NICS values. In contrast, the cyclo-
pentadiene-like moieties display positive NICS values, which
indicates their antiaromatic character. Interestingly, the antiaro-
matic character of these moieties as expressed by the NICS(0)
values slightly increases with the successive π-expansion when
going from OPP (+8.32) over TPP (+10.3) to HPH (+11.1). The
considerable difference between the NICS(+1) (+2.47) and

NICS(� 1) (+6.99) values determined for the 5-membered rings in
fully cyclized HPH is in line with its bent geometry (for further
details, see the Supporting Information).

Based on the atomic positions derived from X-ray crystallo-
graphic analysis the harmonic oscillator model of aromaticity
(HOMA)[31] was applied to the individual rings of OPP, TPP, and
HPH. In this model the experimental C� C bond lengths are
compared with the optimized bond lengths of aromatic reference
compounds. Hence, the HOMA value for a particular ring ranges
between 0 and �1, whereas +1 represents perfect aromaticity
and lower values indicate decreased aromatic character. Further-
more, negative HOMA values suggest antiaromaticity. The
obtained HOMA values for fully cyclized HPH are summarized in
Table 1 (for OPP and TPP, see the Supporting Information). As

Figure 2. (A) Successive induction of the boat-shaped geometry evolving from OPP (top) over TPP (center) to HPH (bottom) as revealed by X-ray
crystallographic analysis (50% probability level, H-atoms and solvent molecules omitted). (B) Top view of HPH. (C) Short contacts in the solid state of HPH
highlighted in red. (D) Relevant bond angles within the central pyracylene moiety of HPH. (E) Solid-state packing of HPH.

Table 1. Summary of the NICS(X), X= +1, 0, � 1, and HOMA values of
HPH.

ring[a] NICS(X) HOMA

+1 0 � 1

A � 7.04 � 3.13 � 4.36 +0.90
B +2.47 +11.1 +6.99 � 0.33
C � 9.79 � 6.93 � 8.27 +0.82
D � 4.00 � 0.34 � 4.42 +0.49
E � 11.0 � 9.10 � 11.3 +0.92
F � 4.41 � 1.16 � 5.30 +0.29
G � 9.03 � 7.70 � 10.6 +0.93

[a] Ring labels are shown in Figure 2B.
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already suggested by the NICS values, the hexagonal rings A, C, E
and G in HPH with their formal Clar sextets possess an increased
aromatic character as suggested by the HOMA values between
+0.82 and +0.93. The remaining hexagons are basically non-
aromatic according to their HOMA values ranging from +0.29 to
+0.49. Interestingly, the 5-membered ring appears antiaromatic
according to its HOMA value of � 0.33, which nicely corresponds
to its positive NICS value. From the HOMA values of OPP, TPP, and
HPH it can be concluded that the antiaromatic character of the
fused cyclopentadiene moiety continuously increases with the
progressing cyclization of the surrounding π-systems (see the
Supporting Information). This evolution is in line with the trends
suggested by the NICS values.

The UV/Vis absorption spectra of OPP, TPP and HPH in CH2Cl2
feature progressive redshift reflecting the impact of the consec-

utive cyclization and π-expansion of the polycyclic system (Fig-
ure 3A). Hence, λmax evolves from 445 nm (for OPP) over 539 nm
(for TPP) to 587 nm (for HPH), which indicates a continuous
narrowing of the optical band gap from 2.64 eV to 1.98 eV
(Table 2). In comparison, the lowest energy absorption of parent
dibenzopyracylene in ethanol is reported to occur at 410 nm with
a clearly visible vibronic structure.[13]

To gain insight into the origin of the observed absorption
bands, a time-dependent density functional theory (TD-DFT) study
was performed at the CAM-B3LYP level of theory. The calculations
overall nicely reproduce the experimental spectra (Figure 3B) and
verify that the lowest energy absorptions of OPP, TPP and HPH
are characterized by a major contribution of the HOMO!LUMO
transition (for further details, see the Supporting Information). The
continuous redshift when going from uncyclized OPP to fully π-
expanded HPH originates from the increased spatial extension of
the orbitals which leads to the observed narrowing of the HOMO-
LUMO gap from 3.15 eV to 2.42 eV (Figure 4).

Cyclic voltammetry (CV) was used to evaluate the redox
properties of the π-expanded pyracylenes OPP, TPP and HPH
(Figure 5 and Table 2). For uncyclized compound OPP no redox
events were observed within the potential range from � 2.5 V to
+1.5 V in CH2Cl2 or THF. In contrast, the partially cyclized species
TPP exhibited a single reversible oxidation at +0.70 V (vs.
ferrocene/ferrocenium (Fc/Fc+)) in CH2Cl2. For fully cyclized HPH
two reversible oxidations at +0.61 V and +0.84 V were observed
(Figure 5A). Further electrochemical analysis of both compounds
HPH and TPP in THF revealed two reversible reduction processes
for each derivative. While the partially cyclized compound TPP isFigure 3. UV/Vis absorption spectra of OPP (blue), TPP (black) and HPH (red).

A: experimental (CH2Cl2, rt). B: TD-DFT calculated (CAM-B3LYP/6-31G(d)).

Table 2. Experimental and optoelectronic data for OPP, TPP and HPH.

λ [nm] Eg
opt [eV][a] E1/2 [V][b] ECV [eV] EDFT [eV]

[e] band gap [eV][e]

λmax λend E(� 1/� 2) E(� 1/0) E(0/+1) HOMO[c] LUMO[d] EA IP

OPP 445 470 2.64 – – – – – 2.22 5.95 3.73
TPP 539 582 2.13 – (� 2.06) � 1.59 (� 1.66) +0.70 (+0.80) � 5.50 � 3.21 2.36 5.46 3.10
HPH 587 627 1.98 � 1.82 (� 1.86) � 1.46 (� 1.51) +0.61 (+0.72) � 5.41 � 3.34 2.46 5.47 3.01

[a] Calculated according to hcλend
� 1, λend estimated from the intersection of a tangent line to the lowest energy absorption band of the UV/Vis spectrum

with the x-axis.[37] [b] measured in CH2Cl2 (in THF). [c] HOMO energies calculated from EHOMO,CV= � (E(0/+)+4.8) eV. [d] LUMO energies calculated from ELUMO,

CV= � 4.8 eV-E(� /0), under the assumption that the potential of Fc/Fc+ is � 4.8 eV vs. vacuum.[38] [e] DFT calculated values (CAM� B3LYP/6-31G(d)).

Figure 4. HOMO and LUMO of OPP (left), TPP (center), HPH (right) with their
corresponding energy values (B3LYP/6-31G(d)).[32]
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reversibly reduced at � 1.66 V and � 2.06 V, its fully cyclized
congener HPH undergoes two facilitated electron uptakes at
� 1.51 V and � 1.86 V. In other words, the π-expansion when going
from TPP to HPH results in an anodic shift of 150 mV and 200 mV
of the first and second reduction event, respectively (Figure 5B). In
comparison, the reversible oxidations and reductions of hexa-tert-
butyl-substituted HBC were reported to occur at +0.99 V, +1.42 V
(in CH2Cl2) and � 2.10 V, � 2.40 V (in THF), respectively.[33] Parent
pyracylene (1) with its formally antiaromatic 12π-electron system
undergoes under comparable conditions two reductions at
� 1.56 V and � 2.14 V accompanied by a single oxidation at
+0.75 V.[34,35] From these data it can be concluded that upon π-
expansion the redox features of the pyracylene core remain largely
unaffected, which is also documented by the predominant
localization of the LUMO on the pyracylene moiety in OPP, TPP
and HPH (Figure 4).

More importantly, the π-expansion leads to the occurrence of
a second oxidation step in HPH and considerably reduced
potential difference between the two reduction events from
580 mV (for 1) to 350 mV (for HPH), which points towards better
charge stabilization within the π-expanded polycyclic framework.
The evolution of the redox properties is in good agreement with
the calculated vertical ionization potentials (IPs) and electron
affinities (EAs) summarized in Table 2. For example, an increase of
0.24 eV is observed for the EA values when going from uncyclized
OPP to HPH. Overall, both compounds HPH and TPP can be
considered as moderate electron acceptors comparable to, for
instance, 9,10-anthraquinone (Ered,1: � 1.27 V; Ered,2: � 1.80 V) or
cyclopenta[hi]aceanthrylene (Ered: � 1.56 V).[3d,36]

Conclusion

In conclusion, we established a reliable, high yielding synthetic
route towards π-expanded pyracylenes. As revealed by X-ray
crystallographic analysis, the successive π-expansion leads to a
pronounced boat-shaped geometry of the polycyclic scaffold,
which has a considerable impact on the electronic structure
and the aromaticity. In the same time a progressive bath-
ochromic shift of the UV/Vis absorption bands accompanied by
a consecutive narrowing of the HOMO-LUMO gap is observed.
The compounds undergo several redox events which become

facilitated with the increasing extent of π-expansion. The
experimental observations are in line with the computational
studies based on density functional theory and identify the
compounds as promising chromophores with multi-stage redox
amphotheric properties.

Experimental Section
Experimental details and characterization data can be found in the
Supporting Information. Deposition Number(s) 2165129 (3, for
structure see the Supporting Information), 2165130 (4, for structure
see the Supporting Information), 2165131 (OPP), 2165132 (TPP),
and 2165133 (HPH) contain(s) the supplementary crystallographic
data for this paper. These data are provided free of charge by the
joint Cambridge Crystallographic Data Centre and Fachinforma-
tionszentrum Karlsruhe Access Structures service.
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