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Recurrent processing during object recognition

Randall C. O’Reilly 1,2*†, Dean Wyatte1*†, Seth Herd 1, Brian Mingus1 and David J. Jilk 2

1 Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
2 eCortex, Inc., Boulder, CO, USA

Edited by:
Michael J. Tarr, Carnegie Mellon
University, USA

Reviewed by:
Rosemary A. Cowell, University of
California San Diego, USA
Maximilian Riesenhuber, Georgetown
University Medical Center, USA

*Correspondence:
Randall C. O’Reilly and Dean Wyatte,
Department of Psychology and
Neuroscience, University of Colorado
Boulder, Boulder, CO, USA.
e-mail: randy.oreilly@colorado.edu;
dean.wyatte@colorado.edu
†Randall C. O’Reilly and Dean Wyatte
have contributed equally to this work.

How does the brain learn to recognize objects visually, and perform this difficult feat robustly
in the face of many sources of ambiguity and variability? We present a computational
model based on the biology of the relevant visual pathways that learns to reliably recog-
nize 100 different object categories in the face of naturally occurring variability in location,
rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially
occluded inputs. Both the unified, biologically plausible learning mechanism and the robust-
ness to occlusion derive from the role that recurrent connectivity and recurrent processing
mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and
learning predicts that high-level visual representations should be shaped by error signals
from nearby, associated brain areas over the course of visual learning. Consistent with this
prediction, we show how semantic knowledge about object categories changes the nature
of their learned visual representations, as well as how this representational shift supports
the mapping between perceptual and conceptual knowledge. Altogether, these findings
support the potential importance of ongoing recurrent processing throughout the brain’s
visual system and suggest ways in which object recognition can be understood in terms
of interactions within and between processes over time.
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INTRODUCTION
One of the most salient features of the mammalian neocortex is
the structure of its connectivity, which provides for many forms of
recurrent processing, where neurons mutually influence each other
through direct, bidirectional interactions. There are extensive bidi-
rectional excitatory and inhibitory connections within individual
cortical areas, and almost invariably, every area that receives affer-
ent synapses from another area, also sends back efferent synapses
in return (Felleman and Van Essen, 1991; Scannell et al., 1995;
Sporns and Zwi, 2004; Sporns et al., 2007). We describe an explicit
computational model (LVis – Leabra Vision) of the function of
this recurrent architecture in the context of visual object recogni-
tion, demonstrating a synergy between the learning and processing
benefits of recurrent connectivity.

Recurrent processing, for example, has been suggested to be
critical for solving certain visual tasks such as figure-ground seg-
mentation (Hupe et al., 1998; Roelfsema et al., 2002; Lamme and
Roelfsema, 2000), which requires integration of information from
outside the classical receptive field. We demonstrate how recurrent
excitatory processing could provide a similar function in visual
occlusion, which requires the organization of image fragments
that span multiple receptive fields into a logical whole Gestalt and
involves the filling-in of missing visual information (Kourtzi and
Kanwisher, 2001; Lerner et al., 2002; Rauschenberger et al., 2006;
Weigelt et al., 2007; Wyatte et al., 2012a).

At a more local level, recurrent inhibitory processing produces
sparse distributed representations, implemented in LVis through
the use of a k-Winners-Take-All (kWTA) inhibition function
(where k represents the roughly 15–25% activity levels present

in neocortical networks; O’Reilly, 1998; O’Reilly and Munakata,
2000; O’Reilly et al., 2012). The sparse distributed representations
produced by these recurrent inhibitory dynamics have been shown
to produce biologically realistic representations in response to nat-
ural stimuli (e.g., O’Reilly and Munakata, 2000; Olshausen and
Field, 2004; O’Reilly et al., 2012). We show here that inhibitory
recurrent dynamics and sparse distributed representations make
our model more robust in the face of ambiguity, by testing
recognition performance with occluded visual inputs.

In the non-human primate neuroanatomy, object recognition
involves the flow of visual information through the ventral path-
way, originating in primary visual cortex (V1), continuing through
extrastriate areas (V2,V4), and terminating in inferotemporal (IT)
cortex (Hubel and Wiesel, 1962; Van Essen et al., 1992; Ungerleider
and Haxby, 1994). IT neurons exhibit robust object-level encoding
over wide ranges of position, rotation, scale, and lighting variabil-
ity (Logothetis et al., 1995; Tanaka, 1996; Riesenhuber and Poggio,
2002; Rolls and Stringer, 2006; Tompa and Sary, 2010; DiCarlo
et al., 2012). Object recognition in the human cortex operates in
a similar hierarchical fashion, with homologous object-selective
regions distributed throughout the lateral occipital cortex (LOC)
(Grill-Spector et al., 2001; Orban et al., 2004; Kriegeskorte et al.,
2008).

Computational models of object recognition that implement
a feedforward, hierarchical version of the ventral pathway have
explained many aspects of the initial neural response properties
across these different brain areas (Fukushima, 1980, 2003; Wal-
lis and Rolls, 1997; Riesenhuber and Poggio, 1999; Masquelier
and Thorpe, 2007). Furthermore, when coupled with a supervised

www.frontiersin.org April 2013 | Volume 4 | Article 124 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2013.00124/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RandallO'Reilly&UID=48580
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DeanWyatte&UID=34621
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SethHerd&UID=48720
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BrianMingus&UID=68311
http://www.frontiersin.org/people/DavidJilk/85342
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive
mailto:randy.oreilly@colorado.edu
mailto:dean.wyatte@colorado.edu


O’Reilly et al. Recurrent processing during object recognition

learning procedure (e.g., support vector machines), these models
perform well at challenging computational tests of object recogni-
tion (Fei-Fei et al., 2007; Serre et al., 2007c; Mutch and Lowe, 2008;
Pinto et al., 2009). Thus, they establish that primarily feedforward-
driven neural responses properties based on the initial responses
of the ventral pathway are sufficient to solve reasonably challenging
versions of the object recognition problem (Serre et al., 2007a,b;
DiCarlo et al., 2012).

The LVis model builds upon this feedforward processing foun-
dation, and learns a very similar hierarchical solution to the object
recognition problem. In our tests on 100-way object classifica-
tion with reasonable levels of variability in location, rotation, size,
and lighting, LVis performs in the same general range as these
established feedforward models. Interestingly, it does so using a
single unified, biologically based learning mechanism that lever-
ages bidirectional recurrent processing between layers, to enable
signals from other modalities and brain areas to shape visual object
recognition during learning in important ways, supporting a form
of error-driven learning (O’Reilly, 1996; O’Reilly and Munakata,
2000; O’Reilly et al., 2012). Error-driven learning is almost cer-
tainly essential for solving hard computational problems (O’Reilly
and Munakata, 2000; Hinton and Salakhutdinov, 2006), and is a
central element in all of the above high performance object recog-
nition systems at the supervised learning stage. Furthermore, there
are indications that error-driven learning is actually doing most
of the work in object recognition models, as good performance is
possible even with random visual filters (Jarrett et al., 2009).

The recurrent connectivity in our LVis model leads to a clear
prediction: representations in other brain areas that project into
the object recognition pathway should shape the way it develops
through learning. Recent evidence indeed suggests that neurons
in IT cortex reflect significant higher-level “semantic” influences,
in addition to the expected stimulus-driven similarities among
objects (Kiani et al., 2007; Kriegeskorte et al., 2008; Mahon and
Caramazza, 2011). We show that recurrent processing within our
model provides a satisfying account of this data. Furthermore,
we show how recurrent processing provides a mechanism via
which this higher-level semantic information can be integrated
with visual information during object processing (Lupyan and
Spivey, 2008; Lupyan et al., 2010; Lupyan, 2012), providing a map-
ping between perceptual and conceptual representations (Gotts
et al., 2011).

Altogether, we argue that this model provides an integration of
diverse sources of data on the object recognition system and shows
how a small, unified set of biological mechanisms can potentially
solve one of the most difficult and important computational prob-
lems that the brain is known to solve (Marr, 1982; Pinto et al.,
2008). Our recurrent model (Figure 1) embodies these ideas,
and provides one way of extending our understanding of object
recognition beyond the initial, feedforward-driven responses.

Despite the multiple influences of recurrent processing cited
above, it also might not confer performance advantages in all
object recognition tasks. For example, objects presented isolated
and intact, without any source of degradation or ambiguity could
reasonably be resolved via feedforward processing. And indeed,
recurrent processing during relatively simple tasks has actually
been shown to incur small costs in raw performance, because

FIGURE 1 | Architecture of the LVis model.The LVis model is based on the
anatomy of the ventral pathway of the brain, from primary visual cortex (V1)
through extrastriate areas (V2, V4) to inferotemporal (IT) cortex. V1 reflects
filters that model the response properties of V1 neurons (both simple and
complex subtypes). In higher-levels, receptive fields become more spatially
invariant and complex, reflecting organizational influence from non-visual
properties like semantics. All layers are reciprocally connected, allowing
higher-level information to influence bottom-up processing during both the
initial learning and subsequent recognition of objects, and contain local,
recurrent inhibitory dynamics that limit activity levels across layers.

small errors in processing can become magnified over the course of
repeated recurrent interactions (O’Reilly, 2001). These small costs,
however, can pay dividends in more difficult object recognition
problems involving occlusion or generalization across non-visual,
semantic dimensions such as during semantic inference.

In short, our model provides a possible synthesis in the debate
about the relative contributions of feedforward and recurrent pro-
cessing in vision (Lamme and Roelfsema, 2000; Kveraga et al., 2007;
Vanrullen, 2007; Roland, 2010). For well-learned, unambiguous
stimuli, object recognition can operate rapidly in a feedforward-
dominant manner, consistent with rapid visual processing in some
experiments (Thorpe et al., 1996; VanRullen and Koch, 2003;
Liu et al., 2009). This feedforward-dominant processing can be
observed directly in the dynamics of our model as we show below.
However, the extensive recurrent connectivity found throughout
the ventral pathway can also play an important function in forming
robust representations needed for more complex object recogni-
tion problems that involve ambiguity, such as when objects are
occluded. This translates to longer overall latencies for the recog-
nition decision,but with the added benefit of a coherent and robust
interpretation of a visual scene that arises from the integration of
signals at different levels of the hierarchy (Lamme and Roelfsema,
2000; Kveraga et al., 2007; Roland, 2010).
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RESULTS
OBJECT RECOGNITION DATASET
Before exploring the ways in which recurrent processing impacts
the dynamics of object recognition, we briefly describe the basic
set of objects on which the network was trained and tested, which
we call the CU3D-100 dataset1. CU3D-100 is organized into 100
categories with an average of 9–10 exemplars per category and con-
trolled variability in pose and illumination (Figures 2A–D). The
dataset was designed to address problems with existing datasets
based on naturalistic images, such as the Caltech101 (Ponce et al.,
2006; Pinto et al., 2008). Naturalistic image datasets, while use-
ful for benchmarking the ability of object recognition systems
on realistic visual stimuli, are often underconstrained for study-
ing biological principles of object recognition such as invariance
or the recurrent processing effects that are of interest here. This is
because object exemplars are often present in a fixed pose and with

1http://cu3d.colorado.edu

additional background clutter that is can be correlated with the
object’s category, and foreground and background image elements
cannot be independently manipulated. The CU3D-100 dataset, in
contrast, uses a “synthetic” approach in which object models and
backgrounds can be controlled independently and then rendered
to bitmap images, allowing an experimenter to isolate and gain full
control over the parameters that govern the core challenge of the
object recognition problem (Pinto et al., 2008, 2009, 2011; DiCarlo
et al., 2012). Datasets that use 3D models are gaining popularity
in the literature, but are labor-intensive to create, and thus usually
only consist of a handful of object categories and exemplars (e.g.,
LeCun et al., 2004). To our knowledge, this is the first synthetic
dataset that approaches the size and scope of larger benchmark
datasets like Caltech101.

For the purposes of the present research, we rendered the object
models against uniform backgrounds as opposed to cluttered
backgrounds. Although background clutter is clearly more rele-
vant for real-world applications of object recognition, we think
that it is not realistic from a biological perspective to assume

FIGURE 2 |The CU3D-100 dataset. (A) Nine example objects from
the 100 CU3D categories. (B) Each category is further composed of
multiple, diverse exemplars (average of 9.42 exemplars per category).
(C) Each exemplar is rendered with 3D (depth) rotations and variability

in lighting. (D) In training and testing the models described here, the
2D images were converted to grayscale and subjected to 2D
transformations (translation, scale, planar rotation), with ranges
generally around 20%.
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that the upper levels of the ventral visual pathway (V4 and IT)
have to contend with the full impact of this background clutter.
This is because extensive research has indicated that early levels
of the visual pathway, specifically in area V2, contain specialized
figure-ground processing mechanisms that perform border own-
ership labeling (Zhaoping, 2005; Craft et al., 2007; Poort et al.,
2012). Thus, features belonging to the background are not grouped
with those associated with the foreground object, and this filtering
process enables higher-level areas to perform spatial and featural
integration processes without suffering as much interference from
irrelevant background features as would otherwise be the case in a
model lacking these figure-ground filtering mechanisms. Consis-
tent with this perspective, various sources of data indicate that IT
represents relevant objects without significant interference from
irrelevant background clutter (Baylis and Driver, 2001; Kourtzi
and Kanwisher, 2001; Lerner et al., 2002).

Thus, our goal with the present simulations was to enable the
model to achieve high levels of performance (i.e., above the 90%
generalization level) in the face of substantial levels of input vari-
ability, thus isolating the core challenge of object invariance with-
out introducing confounding sources of performance-degrading
factors such as background clutter. When models fail to recognize
realistic images containing clutter (performance typically plateaus
around 60–70%), one can never quite be sure whether the model is
simply not very good, or whether it actually might be a very good
model when given the benefit of figure-ground filtering that we
think the biological system enjoys. Given the performance-based
validation of our model on the core object recognition problem,
we can then incrementally “ratchet up” the difficulty of the prob-
lem to explore how manipulations along different dimensions, like
the occlusion (described in this paper) or background clutter (the
subject of ongoing research to be described in a subsequent paper)
affect performance.

We rendered objects with ±20˚ in-depth (3D) rotations
(including a random 180˚ left-right flip for objects that are asym-
metric along this dimension), and overhead lighting positioned
uniformly randomly along an 80˚ overhead arc, to generate con-
siderable lighting variability. Rendered images were then presented
to our model with in-plane (2D) transformations of 30% trans-
lation, 20% size scaling, and 14˚ in-plane rotations. We assessed
baseline performance of our model by reserving two exemplars
per category for testing, and using the rest for training (results
reflect averages over 10 random train/test splits). To capture an
observer’s ability to make multiple fixations on an object, which
can be used in an aggregate manner during the recognition process
(Ratcliff, 1978; Bradski and Grossberg, 1995; Ratcliff and McKoon,
2008), we also examined the performance benefits that result from
aggregating (majority voting) outputs over transformations of the
images (see Methods for details).

The mean recognition rate on novel test items for the LVis
model was 92.2% with the highest level of majority voting, which
is well above the chance level of 1% for 100-way simultaneous
discrimination, and indicates that the network is capable of per-
forming quite well at the basic task of recognizing a large number
of object categories in the face of extensive variability in the
input images. With no voting, the generalization performance was
79.6%, and with 2D-only voting it was 86.5%.

We also developed two other comparison networks that have
the same architecture as the LVis model, but lack recurrent process-
ing mechanisms, which are used to assess the comparative impact
of recurrent processing. These models used standard purely feed-
forward backpropagation learning (Rumelhart et al., 1986) – the
error-driven learning in the Leabra model is a mathematical
approximation of that in backpropagation (O’Reilly, 1996), so this
is the most reasonable point of comparison for a purely feedfor-
ward network. The first backpropagation network (Bp Distrib)
used standard parameters (i.e., 0 mean weights with 0.5 uni-
form random variability, learning rate of 0.01), which provided
an unbiased starting point for learning and ended up produc-
ing highly distributed representations across the hidden layers, as
is typical for backpropagation networks. Its performance on the
object recognition test was slightly worse than the LVis model,
obtaining 88.6% correct with full majority voting, 82.4% with
2D-only voting, and 77% with no voting. The second backprop-
agation network (Bp Sparse) attempted to capture the ability of
the LVis model to develop relatively sparse representations due to
the presence of recurrent inhibitory competition within its lay-
ers (O’Reilly, 1998). We hypothesized that strong negative initial
bias weights (−3.0) and inputs that were pre-processed with the
same kWTA inhibitory competition as used in the LVis inputs,
would produce sparse patterns of activity across all layers and
drive learning in a more robust manner. This sparse parameteri-
zation improved the performance of the backpropagation network
significantly, resulting in 94.6% correct with full majority voting,
90.7% with 2D-only voting, and 86.53% with no voting. Over-
all, this level of performance was comparable to other standard
feedforward object recognition models on this dataset, as will be
reported in another publication.

RECURRENT PROCESSING UNDER OCCLUSION
Our first test of the role of recurrent processing in object recogni-
tion focuses on the case of partial occlusion of images. To algorith-
mically and parametrically manipulate occlusion in an automated
fashion, we use a method similar to the “Bubbles” approach (Gos-
selin and Schyns, 2001) in which selected portions of an image are
spatially masked via filtering operations. Specifically, we partially
occluded portions of object images with varying numbers of ran-
domly positioned circular “blob” filters softened with a Gaussian
blur around the edges (Figure 3). This minimizes the introduction
of novel edge artifacts, which is important given that the model
does not have figure-ground mechanisms that code the ownership
of each edge as belonging to the target object or the occluder (e.g.,
Zhaoping, 2005; Craft et al., 2007). Thus, this manipulation tests
the ability to complete an underspecified input signal – which
the brain undoubtedly does during occluded object recognition
(Kourtzi and Kanwisher, 2001; Lerner et al., 2002; Rauschenberger
et al., 2006; Weigelt et al., 2007; Wyatte et al., 2012a) – but without
interference from features belonging to the occluder. This assumes
there is at least partial separability of the border ownership cod-
ing and grouping- or completion-related processing, which has
been suggested to be the case in the figure-ground segregation
literature (Poort et al., 2012; Scholte et al., 2008). While V1- and
V2-level mechanisms such as those related to illusory contour per-
ception (Lee and Nguyen, 2001; Seghier and Vuilleumier, 2006; see
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FIGURE 3 | Blob-based occlusion. (A) Images were occluded by applying a
filter that was set to 1.0 within a circle of radius 5% of the image size (i.e., 5%
of 144 pixels or 7 pixels) and then fell off outside the circle as a Gaussian
function. The final effective size of the filter was 42×42 pixels. The filter was
used as a two-dimensional weighting function between the object and the

background gray level such that image regions that fell within the circle region
at the top of the filter were completely occluded with the background gray
level. (B) Examples of different occlusion levels. Percent occlusion
parameterized an equation that specified the number of times to apply the
filter (see Methods). Additional occlusion examples are shown in S4.

also Biederman and Cooper, 1991) could potentially assist with
filling-in parts of the occluded objects, with higher-levels of occlu-
sion, there is enough visual information missing that lower-level
continuation-based mechanisms would likely fail to add much.
A comprehensive model of the early levels of visual processing
in V1 and V2 that includes border ownership coding and illu-
sory contour continuation would be necessary to determine the
relative contribution of each of these mechanisms with realistic
visual occlusion, but we argue that our methods provide a reason-
able approximation for the impact of naturally occurring forms of
occlusion on the upper levels of the visual pathway (e.g., V4 and
IT), which are the focus of the present research.

To directly measure the impact of recurrent processing in the
LVis model for these partially occluded images, we assessed the
extent to which the network was able to reconstruct a more com-
plete representation of the occluded image (Figure 4). For each
cycle of network activation updating during the processing of a
given input image, we computed the cosine (normalized inner
product) of the activity in each layer of the network compared
to the final activity state of each such layer for that object when
the object was unoccluded. Thus, this analysis reveals the extent
to which the network is able to reconstruct over cycles of process-
ing an internal representation that effectively fills-in the occluded
parts of the image, based on prior learning about the object. To
determine the role of recurrent processing in this process of recon-
struction, we compared the standard LVis model with one where
the strength of the top-down connections was reset to zero, thus
removing the ability of higher-level representations to feed back
and provide top-down knowledge of object properties based on
prior learning. However, this comparison model still benefits from
inhibitory recurrent processing, which we will see later plays a
critical role in enhancing robustness to occlusion.

As Figure 4 shows, the recurrent connections play an important
role in filling-in missing visual information, with their effect being
greatest in magnitude when images are highly occluded (e.g., 50%
occlusion). The IT layer in our model almost universally produces

a complete object representation, with smaller completion effects
observable in extrastriate layers. This finding is in accordance with
object completion effects described in the literature, which indi-
cate that their effects are largest in higher-level visual areas (e.g.,
IT, LOC), thus representing the perceived object, with lower-level
areas representing mainly visual information that is present in the
stimulus itself (Rauschenberger et al., 2006; Weigelt et al., 2007).

Next, we address the question of whether this recurrent filling-
in process can actually lead to better recognition performance for
occluded objects. In Figure 5, we see some indication of an advan-
tage from the LVis networks over the backpropagation networks,
especially in the case of the Bp Distrib network, which suffers dra-
matically from the effects of occlusion. The Bp Sparse network
holds up much better, and an advantage for the LVis model is only
observed for the higher-levels of occlusion, where it does become
quite substantial on a percentage basis.

Given the differences in level of top-down filling-in for the
intact LVis model relative to the one without top-down feed-
back connections, we initially expected to also see this difference
reflected in the overall level of performance of these two networks.
However, no such difference is evident in the results, which we
have validated in multiple ways. To explain this puzzling result, it
is important to ask whether in general a top-down signal can be
more accurate than the bottom-up signal that activates it in the
first place. Specifically, in the absence of other sources of informa-
tion (e.g., from other modalities or prior context), the higher-levels
of the network depend upon an initial feedforward wave of acti-
vation for their initial pattern of activity, and it is this activity
pattern that then is sent back down to the lower-levels to support
further filling-in. But if the initial feedforward activation is incor-
rect, this would presumably result in an incorrect top-down signal
that would support the wrong bottom-up interpretation of the
image, and thus reinforce this incorrect interpretation further. In
other words, top-down support can be a double-edged sword that
cuts both ways, and by recognizing this, we can understand why it
does not produce a net increase in overall recognition accuracy.
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FIGURE 4 | Recurrent interactions between adjacent layers during
cycles of updating for 0, 10, and 50% occlusion cases of an object. By
computing the cosine of the activity pattern for each layer compared to
what would be expected when processing an unoccluded object, the
network interactions that give rise to the named output can be observed.
(A,B) When inputs are relatively unambiguous, the network converges
rapidly with only a short latency between the first IT responses and
activation of the correct output (ca. 10 cycles). (C) The correct output can
still be resolved when inputs are highly ambiguous, but only after
considerable recurrent interactions between layers that serve to fill in

missing information reinforce the overall network state. In this case, the
latency between the first IT responses and activation of the correct output
is longer (ca. 15 cycles), in accordance with the recurrent interactions
between layers, which take time to stabilize. Also note that the V2/V4
state does not fully complete, but the IT and Semantics patterns are
identical to the unoccluded case, indicating that the higher-levels of the
network complete, while the lower-levels do not (“amodal completion”).
Recurrent excitatory feedback plays a critical role in this completion effect,
as is shown in comparison with a network having no top-down feedback
weights – this effect is more apparent with higher-levels of occlusion.

To explain why the LVis model without top-down feedback
connections also performs better than the Bp Sparse network at
these higher occlusion levels, we attribute the advantages to the
inhibitory competition present in the LVis networks that extends
beyond the initial responses within a given layer. This form of
recurrent inhibition dynamically adjusts to the level of excita-
tion coming into a given layer, and thus in the highly occluded
cases the inhibitory level can decrease correspondingly, enabling
more activity overall to propagate through the network. In con-
trast, the strong negative bias weights that give rise to the sparse
activities in the Bp Sparse network are in effect prior to the first
responses, and thus may result in under-activation of the units for

high levels of occlusion. Thus, we find evidence for the importance
of recurrent inhibitory competition in providing dynamic renor-
malization of network response over a wide range of input signal
strengths (Carandini and Heeger, 2012).

Taken together, these results show that both of the major forms
of recurrence present in the LVis model can have important
functional benefits: the top-down excitatory connectivity from
higher areas supports filling-in of missing information compared
to a network without this top-down recurrence. This could be
important for many different cognitive tasks, where the missing
information would be useful. However, absent other more infor-
mative sources of input, this top-down recurrence does not result
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FIGURE 5 |Test of recognition under partial occlusion conditions. (A)
Mean recognition performance (with 2D voting – see methods and
supplemental material for raw results) for trained objects, comparing full
recurrent processing in Leabra with and without feedback (Leabra NF=no
feedback) and purely feedforward backpropagation (Bp Sparse= sparse
parameters, Bp Distrib=distributed parameters). Recurrent processing in
Leabra facilitates robust recognition under partial occlusion. The Leabra model
without feedback performs equivalently, suggesting that it is specifically

inhibitory processing that explains this robustness. (B) Mean recognition for
novel test objects, comparing between the same models as A. The advantage
of Leabra’s recurrent connectivity is similarly apparent during generalization.
(C,D) Results as a percentage of the Leabra performance – the slope of the
lines in A and B masks the substantial effect sizes present – For trained
objects, Bp Sparse performs as low as 66% compared to Leabra, and Bp
Distrib as low as 31%. Again, results were qualitatively similar for novel test
objects.

in an overall improvement in recognition accuracy. Nevertheless,
here we do see the advantage of the inhibitory recurrent dynamics,
for renormalizing activations in the face of weaker occluded inputs.

RECURRENT CONNECTIVITY AND LEARNED OBJECT
REPRESENTATIONS
Another prediction from the recurrent connectivity of our model
is that top-down signals should shape lower-level representations.
For example, Kriegeskorte et al. (2008) showed that visual rep-
resentations in inferotemporal (IT) cortex reflect semantic influ-
ences, for example, a distinction between living and non-living
items. Importantly, this organizational property of IT cortex was
unable to be explained in terms of bottom-up visual similarities,
and was further unaccounted for by various feedforward models
including those that learn “IT-level” visual features (Kiani et al.,
2007). Other areas in the ventral pathway have also been shown to
reflect action-based representations, possibly due to interactions
with dorsal areas associated with object manipulation and tool
use (Culham and Valyear, 2006; Mahon et al., 2007; Almeida et al.,
2010; Mahon and Caramazza, 2011). Other evidence for top-down

influences from prefrontal cortex to IT have been found during
delayed responding categorization tasks (Freedman et al., 2003).

We hypothesized that these non-classical organizational prop-
erties of IT cortex are due to constraints imposed by recurrent
connectivity with other neural systems over the course of learning.
Simply put, recurrent connectivity allows error-driven learning
signals about object properties to be circulated between neural
systems, causing the similarity structure of non-visual systems to
be reflected in visual areas. Semantic relationships between object
categories have been suggested to be maintained by the anterior
temporal pole (Patterson et al., 2007), which sends descending
feedback to high-level ventral areas, and is thus a candidate struc-
ture responsible for the semantic organization observed in IT
responses.

We were able to demonstrate these ideas in our model by
providing top-down semantic inputs to the IT layer (Figure 6A),
with a similarity structure derived from pairwise similarities for
each of the 100 object categories obtained from latent semantic
analysis (LSA; Landauer and Dumais, 1997). Figure 6A shows
that the IT layer of our model comes to reflect this semantic
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FIGURE 6 | Semantic effects in LVis. (A) Top-down semantic influences on
inferotemporal (IT) cortex representations in the model, in terms of distance
matrix plots showing the normalized dot product (cosine) distance between
semantic or IT representations (yellow=more similar). The semantics contain
a categorical structure (intuitive categories indicated by dotted white squares)
with some hierarchical organization, for example, among furniture, kitchen,
lighting, and tools. The IT layer with semantic influences reflects a blend of
these semantics and bottom-up visual similarities. The correlation between
the IT layer with semantics and the actual semantics is 0.72, IT layer without
semantics and the semantics is 0.57, and between the IT layers with and
without semantics is 0.79. (B) Trajectory of the Semantics layer when a

bicycle image was presented to a network that was not trained on bicycles,
showing cosine similarities of the current semantics activation pattern to the
canonical semantics for indicated categories. The network interprets the
bicycle as a motorcycle (closest trained category), but the semantics layer
representation actually has bicycle as its second closest pattern, indicating
that it can infer veridical semantic properties from visual appearance. The
dotted gray line indicates the mean similarity of the input semantics to the
semantics of all other categories, which was 0.25 for the categories tested
here. (C) Similar results for a pliers image, which was also not trained. (D)
Guitars did not exhibit obvious visual similarity to semantically related trained
items, and thus, the model was unable to infer their semantic properties.

structure, as a result of influences from the top-down projections
from semantic representations to IT. Importantly, learned object
representations remain relatively distinct, and object recogni-
tion performance is unaffected. Thus, recurrent processing allows
the visual properties of objects and non-visual semantic proper-
ties to be concurrently represented in the same neural substrate
by simultaneously satisfying multiple bottom-up and top-down
constraints during learning.

In addition to enabling our model to capture this important
data, the shaping of IT representations according to semantic
structure enables the model to bidirectionally map between purely
visual and purely semantic similarity spaces (Gotts et al., 2011).
Importantly, semantic similarity spaces have been shown to be
distinctively non-visual (Kriegeskorte et al., 2008) and might very
well contradict them. Thus, the relative position of IT cortex in the
ventral visual hierarchy uniquely allows it to represent a balance of
visual and non-visual properties and serve as an important trans-
lation point between these knowledge domains. This bidirectional
perceptual-conceptual translation might underlie findings from
the categorization literature in which semantic and/or conceptual
knowledge about visual categories can cause them to be perceived
as perceptually similar or different, regardless of their intrinsic

visual similarity (Lupyan and Spivey, 2008; Lupyan et al., 2010;
Lupyan, 2012). We tested our model’s ability to perform percep-
tual to conceptual mapping by reserving a set of 6 object categories
during training (bicycle, pliers, chair, guitar, machine gun, and
chandelier) and recording the semantic activation associated with
these untrained categories.

Figures 6B–D demonstrates the model’s ability to produce
semantic patterns that reflect the visual properties of objects from
the reserved categories in relation to the other trained categories.
For example, bicycles activated the semantics for motorcycle, and
pliers tended to activate the semantics for either wrench or screw-
driver. The resulting activation patterns were also similar to the
ground-truth semantics for the untrained categories, indicating
that the model could infer the veridical semantic features from
visual appearance alone. Similar results were obtained for the
other categories except for guitars, which failed to reliably activate
semantically related items (instead, they weakly activated kitchen
sink, hot air balloon, etc.). This overall pattern of results indicates
that the model can infer the semantics of a novel object from
its appearance, assuming the object contains visual features that
are consistent with semantically related categories. Guitars pre-
sumably failed this test of semantic generalization because their
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visual features do not appear in other music-related categories
(e.g., drums, pianos, synthesizers). Despite this failure, this find-
ing seems reasonable – if a novel object is really quite different in
appearance from known objects, like a “Greeble” (Gauthier and
Tarr, 1997), it might be difficult to infer its purpose from visual
properties alone.

DISCUSSION
We have described a biological model of the ventral visual path-
way that demonstrates several important ways in which a recurrent
processing architecture could contribute visual object recognition.
We showed that top-down connections can fill in missing informa-
tion in partially occluded images. In addition, recurrent inhibitory
competition in our model contributed additional robustness in the
face of high levels of occlusion, through dynamic renormalization
of activation levels. We also showed how top-down connectivity
shapes the learned representations in our model to reflect seman-
tic, as well as visual, information, in agreement with recent data
(Kriegeskorte et al., 2008). This dual mapping between seman-
tic and visual information enables the network to understand
the semantic implications of visual features, properly generaliz-
ing semantic information based on bottom-up visual features of
novel object categories. All of these results derive from principles
developed as a general theory of the neocortex (O’Reilly, 1998;
O’Reilly and Munakata, 2000; O’Reilly et al., 2012), which empha-
sizes the importance of the brain’s ability to solve hard problems
with powerful error-driven learning, and more generally specifies
how relatively simple recurrent processing dynamics can give rise
to more advanced cognitive phenomena.

Our results demonstrate how the dynamics that arise from
recurrent connectivity can be important for vision across multiple
timescales. First, these dynamics contribute in a meaningful way to
the brain’s robustness to visual degradations like partial occlusion
by reinforcing probable “hypotheses” about the underlying stim-
ulus through rapid recurrent processing. For example, an image
of an occluded fish will weakly activate neural populations that
are tuned to fish features (e.g., the dorsal fin, the tail, etc.) as well
as neural populations that are tuned to other visually similar, but
irrelevant, features (Wyatte et al., 2012b). Our model suggests that
the brain could resolve this ambiguity via excitatory top-down
connections by amplifying and filling-in neurons that are tuned to
additional features that are consistent with the bottom-up inputs,
but may not have been present in the actual stimulus. Competitive
influences are equally important, which serve to suppress spurious
activations that do not constitute valid category representations.
This idea has been previously described in well-understood bio-
logical models of feedforward object processing such as HMAX
(Riesenhuber and Poggio, 2002; Serre et al., 2007a) which con-
tains a maximum operation that selects the most active feature
across competitors for subsequent processing. While the efficacy
of the maximum operation has been explored in the context of
object clutter (Riesenhuber and Poggio, 1999; see also Wyatte et al.,
2012b for a similar investigation using the LVis model), it has yet to
be seen whether the same operation would be useful for the partial
occlusion manipulation that we have explored here in which fea-
ture activation is vastly restricted. Thus, a comparison of different
types of models on occluded object recognition tasks would be

useful to determine the relative importance of mechanisms such
as the maximum operation, compared to top-down amplification
and filling-in.

Our results indicate that the result of recurrent processing over
time is a consistent, and often object-complete representation at
the IT-level. We found that these recurrent dynamics could also
be a double-edged sword, and did not necessarily result in over-
all increases in recognition accuracy despite their ability to fill in
missing or ambiguous information – if the top-down signal was
inaccurate, then the system could equally be led astray in its over-
all interpretation. Overall, these recurrent dynamics are similar
to other attractor networks that “clean up” noisy representations
from perceptual processing modules and produce top-down bias-
ing effects (e.g., McClelland and Rumelhart, 1981; Mozer and
Behrmann, 1990; Kveraga et al., 2007). Our results show how these
same principles can be realized in a unified, large-scale model of
biological object recognition operating on real visual inputs.

Recurrent inhibitory dynamics are equally important for
resolving degraded inputs during object recognition. Our results
suggest that the inhibitory mechanisms present in our model
dynamically adjust to the amount of excitation coming into a given
area, which can cause weak signals to be perceived as amplified
via normalization that increases their dynamic range. Normaliza-
tion has been proposed as a canonical neural computation found
within many brain regions spanning multiple sensory modalities
(Carandini and Heeger, 2012) and is also an integral part of recent
high performance computer vision models that are loosely based
on the biology of the visual system (Pinto et al., 2009, 2011). How-
ever, a neural mechanism has not been definitively associated with
normalization. While our model demonstrates that this computa-
tion can be accomplished by recurrent inhibitory dynamics, other
models have found similar results can be produced with excitatory
feedback (Heeger, 1992, 1993). Regardless of the implementation,
these results collectively point to the importance of recurrent pro-
cessing mechanisms that extend past the first responses in brain
areas in resolving degraded inputs during object recognition.

While the iterative recurrent processing exhibited by our model
can ultimately converge on the complete pattern of neural activ-
ity that corresponds to the correct category of an occluded
stimulus, this processing can take quite some time to converge
when the stimulus is heavily occluded (Figure 4C, compared to
Figures 4A,B). Thus, our model makes the experimental predic-
tion that interrupting the processing of heavily occluded inputs
should impair recognition more than interrupting the process-
ing of relatively unoccluded inputs due to there being a higher
probability of preventing network convergence on a stable rep-
resentation. Recent psychophysical studies from our lab that use
backward masking to disrupt ongoing recurrent processing are
consistent with this prediction (Wyatte et al., 2012a).

Recurrent processing at longer timescales that extend across the
course of learning allow disparate brain areas that project into the
ventral pathway, such as higher-level semantic areas (Kriegesko-
rte et al., 2008), to shape perceptual representations. “IT-level”
features extracted via feedforward unsupervised learning mecha-
nisms have failed to account for these semantic influences (Kiani
et al., 2007), suggesting that they represent dimensions that are not
reflected in raw visual similarities. Our recurrent model accounts
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for this data and we also demonstrate how this higher-level orga-
nization of visual responses can be used to translate between
perceptual and conceptual representations in which categories are
formed according to non-visual metrics (Gotts et al., 2011).

Indeed, recent research has suggested that conceptual knowl-
edge of visual categories can cause them to be perceived as per-
ceptually similar or different, regardless of their intrinsic visual
similarity (Lupyan and Spivey, 2008; Lupyan et al., 2010; Lupyan,
2012). What is less known, however, is whether this conceptual
influence is present in perceptual representations themselves or
due to a similarity metric computed by post-perceptual, deci-
sion processes (Chen and Proctor, 2012). While most data on
object categorization suggest that IT cortex is tuned to shape-
based properties shared across categories while neurons in pre-
frontal cortex represent more abstract, categorical properties
(Freedman et al., 2001, 2003), recent data indicate that IT neu-
rons do indeed exhibit abstract, categorical properties during
certain timeframes of their full response (Meyers et al., 2008;
Liu et al., 2009). Are these categorical properties simply feed-
back “echoes” from prefrontal categorization circuits or can
conceptual knowledge modify the shape-based tunings of IT
neurons?

Our results indicate that recurrent processing indeed modi-
fies perceptual representations by allowing non-visual information
from nearby associated brain areas to be incorporated into learn-
ing signals. This simple mechanism is likely responsible for a broad
range of effects, such as action-related response properties in the
ventral stream (due to connectivity with dorsal areas involved
in object manipulation and tool use; Culham and Valyear, 2006;
Mahon et al., 2007; Almeida et al., 2010; Mahon and Caramazza,
2011) and task-relevant IT neural tunings (due to connectivity
with higher-level cognitive systems; Sigala and Logothetis, 2002;
Nestor et al., 2008). Valence and emotion have also been shown
affect perceptual processing, likely due to feedback from the amyg-
dala and other limbic structures (Vuilleumier, 2005; Lim and
Pessoa, 2008; Padmala and Pessoa, 2008), but so far no studies to
our knowledge have investigated organizational changes in sensory
areas. Overall, we suggest studies that investigate organizational
structure (e.g., Kriegeskorte et al., 2008) are a fruitful domain for
future research on object learning.

The detailed time course of feedforward, feedback, and
inhibitory events that lead up to visual perception has been the
subject of considerable debate in the literature. Research has sug-
gested that object identity can be read out from IT neural pop-
ulations in as little 80–100 ms (Oram and Perrett, 1992; Keysers
et al., 2001; Hung et al., 2005) with the general conclusion that
these responses must be driven solely by the initial feedforward
spikes since the spikes must pass through 4 cortical areas (V1,
V2, V4, and IT) with inter-areal latencies on the order of 10 ms
(Nowak and Bullier, 1997). Our model is largely consistent with
these feedforward latencies. For unambiguous inputs, object iden-
tity is reliably reflected in the IT activation pattern within 20 cycles
(Figures 4A,B). Assuming 40–60 ms for the first spikes to appear
in V1, this means 20 cycles corresponds to 40–60 ms in cortex,
or around 2–3 ms per cycle. Each cycle updates the membrane
potential (Vm, see S2 for equations) of all model units as a func-
tion of their input conductances, and thus a latency of 20 cycles

for IT readout is a reasonable extension of the biology, especially
in the context of large populations of neurons where the rate code
approximates the instantaneous average population firing across
discrete spiking neurons (Guyonneau et al., 2004).

In addition to the well-known feedforward latencies of ventral
stream areas, research has indicated that downstream areas such
as prefrontal cortices categorize inputs on the order or 150 ms
(Thorpe et al., 1996; Vanrullen, 2007). However, some recent esti-
mates place the latency of recurrent processing effects well within
the 100–150 ms window (Lamme and Roelfsema, 2000; Foxe and
Simpson, 2002; Kveraga et al., 2007; Roland, 2010), and thus it
becomes increasingly unclear whether these latencies are purely
driven by feedforward responses from IT neurons or reflect sub-
stantial influence from recurrent processing mechanisms. Our
model may provide some clarification of these issues. Specifi-
cally, feedback projections send information back to earlier areas
as soon as it is sent forward, gradually incorporating more and
more recurrent loops, and inhibitory competition influences are
always present, providing online renormalization effects. Thus, we
do not believe there is such a thing as purely feedforward process-
ing. Instead, it is just a matter of the extent to which recurrence
plays a critical role in processing. For unambiguous inputs, our
model converges quickly and identity can be resolved rapidly with-
out much influence from recurrent processing. The predominant
task used in studies citing support for purely feedforward process-
ing involves a binary decision about whether an image contains an
animal (Thorpe et al., 1996; Li et al., 2002; VanRullen and Koch,
2003). Thus, our model might suggest that this “animal vs. no
animal” task involves relatively little ambiguity and thus, does not
critically depend on recurrent processing for success. Alternatively,
this task might rapidly recruit recurrent processing in as little as
100 ms (Koivisto et al., 2011).

With highly ambiguous inputs, recurrent processing becomes
increasingly important for robust object recognition. In our
model, this translates to overall longer latencies for convergence
(Figure 4C). Accordingly, neurophysiological recordings have sug-
gested that ambiguity is associated with longer latencies of process-
ing, allowing for more iterations of feedforward, feedback, and
local inhibitory interactions before convergence (Akrami et al.,
2009; Daelli and Treves, 2010). Whether this convergence dynamic
reflects rapid dynamics within and between hierarchically adjacent
areas or comparatively longer latency influence from more distant
sites that reflect “top-down” processing like attention is an open
question that will need to be addressed to fully understand the
dynamics involved in object recognition.

Much remains to be explored in the domain of recurrent pro-
cessing in visual object recognition. As noted earlier, the issue
of figure-ground processing and a potential role for top-down
and bottom-up interactions in this domain is a topic of current
research with the LVis model, and successful resolution of these
issues would help to resolve several limitations of the current
model, both in terms of being able to process images with real-
istic backgrounds at high levels of performance, and being able
to use more naturalistic forms of occlusion. More generally, there
are many different ideas in the literature about how the overall
object recognition process may unfold across the different visual
areas, and about the potential role for recurrent processing in the
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brain. Thus, different models may suggest very different conclu-
sions about the role of recurrent processing in object recognition.
We are excited to compare our predictions against those of other
such models, to eventually converge on a better understanding of
how the biological system functions.

MATERIALS AND METHODS
STRUCTURE OF THE LVis MODEL
The LVis (Leabra Vision) model starts by preprocessing bitmap
images via two stages of mathematical filtering that capture
the qualitative processing thought to occur in the mammalian
visual pathways from retina to LGN (lateral geniculate nucleus
of the thalamus) to primary visual cortex (V1). The output of
this filtering provides the input to the Leabra network, which
then learns over a sequence of layers to categorize the inputs
according to object categories. Although we have shown that the
early stages of visual processing (through V1) can be learned via
the self-organizing learning mechanisms in Leabra (O’Reilly and
Munakata, 2000; O’Reilly et al., 2012), it was more computationally
efficient to implement these steps directly in optimized C++ code.
This optimized implementation retained the k-winners-take-all
(kWTA) inhibitory competition dynamics from Leabra, which
we have found to be important for successful recognition per-
formance. Thus, the implementation can be functionally viewed
as a single Leabra network.

For a full description of the early visual processing and para-
meters used in the model, see S1. The Leabra algorithm used to
train and test the model is described in full detail in S2.

CU3D-100 DATASET
The CU3D-100 dataset consisted of 3D models from 100 diverse
visual categories with an average of 9.42 exemplars per category.
The individual models were downloaded from the Google 3D
Warehouse2. Each model was normalized for differences in posi-
tion, scale, and rotation using a set scripts written in Ruby and
then imported into a software renderer where it was subjected
to ±20˚ in-depth (3D) rotations (including a random 180˚ left-
right flip for objects that are asymmetric along this dimension)
with an overhead lighting positioned uniformly randomly along
an 80˚ overhead arc. Models were rendered to PNG images in
RGB color at a resolution of 320× 320 pixels. This rendering
process was repeated 20 times with different random 3D depth
and lighting variations for each individual model, producing a
total of 18840 images. The resulting dataset can be downloaded
at http://cu3d.colorado.edu. A full breakdown of categories and
number of models is available in S3.

TRAINING AND TESTING METHODS
The model was trained for 1000 epochs of 500 images per epoch.
Two exemplars per category were reserved for testing. For each
image presentation, the original image was converted to grayscale
and downscaled to 144× 144 pixels and a randomly parameter-
ized affine transformation that translated, scaled, and rotated the
image was then applied. These transformations were performed

2http://sketchup.google.com/3dwarehouse

via a single function, which also used neighborhood smoothing
to preserve image quality as much as possible. The parameters
on these transformations for any given image presentation were
drawn from a uniform distribution over the following normalized
parameter ranges: scale: 0.9–1.1 (where 1.0 means presenting the
image to the model at the original downscaled resolution), trans-
lation: −0.15–0.15 in horizontal and vertical dimensions (where
1.0 would be moving center of image to the very top or right of the
model’s inputs), rotation:−0.02–0.02 (where 1.0= 2π or 360˚).

Given these variations in the image presentations, no two inputs
were likely to be identical over the course of training. Learning
was asymptotic over the first few 100 epochs, but small improve-
ments in generalization were observed by training for the full 1000
epochs. No evidence of overfitting was observed as a function
of training duration. A total of 5 batches (training from differ-
ent random initial weights and ordering of stimuli, with different
train/test splits) were run using this method.

A testing trial consisted of seven presentations of a single image,
with a different 2D affine transformation applied each time. For
2D voting results, a majority voting procedure integrated across
these presentations to determine the final output. For higher-level
voting, a second-order majority vote was then taken over the 20
testing trials with different 3D variations of each individual exem-
plar. All comparison models were tested using these same voting
methods.

BLOB-BASED OCCLUSION
The blob-based occlusion algorithm involved the construction of
a filter that was set to 1.0 within a circle of radius 5% of the image
size (i.e., 5% of 144 pixels or 7 pixels) and then fell off outside
the circle as a Gaussian function The σ parameter of the Gaussian
was also set to 5% of the image size and the final effective size of
the filter was 42× 42 pixels (Figure 3). This filter was then used
as a two-dimensional weighting function to determine how much
of the image should be occluded with the gray background color,
with 1.0 minus this value drawn from the original image. The peak
of the filter contained weights of 1.0, and thus, image areas within
the peak were completely occluded with the background color, and
outside of that, the image exhibited a smooth gradient out to the
original image. This smooth gradient (produced by the Gaussian)
was important for not introducing novel input features at the edge
of the circle occluder.

The percent occlusion parameter (O) specified the number of
times to apply the filter to an image:

Napply = 2.5O(Isize/Hwidth + 1)+ 0.5 (1)

where O was in the range [0, 1], Isize referred to the size of the
input image in pixels, and Hwidth referred to the width of the filter.

For testing trials that used the occlusion manipulation, a major-
ity vote was taken across the seven 2D affine transformations of
a single image only, with the occlusion mask applied prior to any
transformations, to ensure that an object’s occluded features did
not change across different transformations. Performance without
this majority voting procedure produced the same qualitative
pattern of results as seen in Figure 5 and is available in S4.
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SEMANTICS INPUTS
The semantic input vectors were composed of 100 different binary
unit activation patterns of which 25% were active. These patterns
started out as random binary patterns, which were systematically
shaped over many iterations to capture the pairwise semantic sim-
ilarity between the 100 object categories as captured from the
standard latent semantic analysis (LSA; Landauer and Dumais,
1997) corpus (General Reading up to 1st year College), obtained
from http://lsa.colorado.edu. Generating these semantics vectors
was necessary because the original LSA vectors did not contain the
sparse, binary patterns required to match the kWTA inhibitory
dynamics of the Leabra algorithm.

The shaping procedure was accomplished via brute-force evo-
lution described here. For each pair of patterns, bits to flip on
in common between the two patterns (thus increasing their sim-
ilarity) were chosen according to a softmax function weighted
by the sum of the semantic distance times other pattern’s bits.
Bits were flipped in on/off pairs to ensure that kWTA con-
straint was preserved. Bits to flip off were chosen according
to the opposite of the distance (1 minus the cosine distance).
Critically, after a round of bit flipping, only those changes that
increased the fit of the bit pattern distance matrix with that
of the source LSA distance matrix were kept (i.e., a form of
“ratcheting”).

The final mean cosine difference between the two distance
matrices was 0.000597733, indicating that the patterns of simi-
larity between the random binary bit vectors did a good job of
capturing the LSA similarities.

COMPARISON NETWORKS
Removing feedback from the Leabra model was achieved by simply
multiplying all excitatory activation through feedback projections
by zero such that the resulting input to a given layer at any point
in time was limited to incoming feedforward activation.

The backpropagation networks had exactly the same layer
structure and connectivity as the Leabra model, except of course
for the lack of recurrent feedback connections. Both networks used

cross-entropy error:

CE =
∑

k

tk log ok + (1− tk) log (1− ok) (2)

(where k is an index over output units, t is the target training
value, and o is the network output value), with an additional
error tolerance of 0.05 (differences in activation below this level
did not drive learning), and no momentum or weight decay. The
sparse network had bias weights initialized to−3.0, which greatly
reduced overall levels of initial activity. A high learning rate of
0.2 was also usable with this configuration, and this higher learn-
ing rate produced better generalization. The distributed network
had bias weights initialized to 0, producing high levels of activity
in the layers, and a lower learning rate of 0.01 was required to
obtain converging learning. Furthermore, the distributed model
did not use the kWTA dynamics in the V1 filter front-end process-
ing system, to more completely capture the behavior of a system
that has no sparseness-inducing inhibitory dynamics or negative
biases.

Both the Leabra model without feedback and the backpropa-
gation networks used the same majority voting procedure as the
Leabra model.

ACKNOWLEDGMENTS
The authors would like to thank Michael Tarr, Thomas Palmeri,
Garrison Cottrell, Tim Curran, and Nicolas Pinto for their helpful
comments and suggestions. This work utilized the Janus super-
computer, which is supported by the National Science Foundation
(award number CNS-0821794) and the University of Colorado
Boulder. The Janus supercomputer is a joint effort of the Univer-
sity of Colorado Boulder, the University of Colorado Denver, and
the National Center for Atmospheric Research.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.
2013.00124/abstract

REFERENCES
Akrami, A., Liu, Y., Treves, A., and

Jagadeesh, B. (2009). Converging
neuronal activity in inferior tempo-
ral cortex during the classification of
morphed stimuli. Cereb. Cortex 19,
760–776.

Almeida, J., Mahon, B. Z., and Cara-
mazza, A. (2010). The role of the
dorsal visual processing stream in
tool identification. Psychol. Sci. 21,
772–778.

Baylis, G. C., and Driver, J. (2001).
Shape-coding in it cells generalizes
over contrast and mirror reversal,
but not figure-ground reversal. Nat.
Neurosci. 4, 937–942.

Biederman, I., and Cooper, E. E.
(1991). Priming contour-deleted
images: evidence for intermedi-
ate representations in visual object
recognition. Cogn. Psychol. 23,
393–419.

Bradski, G., and Grossberg, S.
(1995). Fast-learning viewnet
architectures for recognizing three-
dimensional objects from multiple
two-dimensional views. Neural.
Netw. 8, 1053–1080.

Carandini, M., and Heeger, D. (2012).
Normalization as a canonical neural
computation. Nat. Rev. Neurosci. 13,
51–62.

Chen, J., and Proctor, R. W. (2012).
Influence of category identity on let-
ter matching: conceptual penetra-
tion of visual processing or response
competition? Attent. Percept. Psy-
chophys. 74, 716–729.

Craft, E., Schutze, H., Niebur, E., and der
Heydt, R. (2007). A neural model of
figure-ground organization. J. Neu-
rophysiol. 97, 4310–4326.

Culham, J. C., and Valyear, K. F. (2006).
Human parietal cortex in action.
Curr. Opin. Neurobiol. 16, 205–212.

Daelli, V., and Treves, A. (2010). Neural
attractor dynamics in object recog-
nition. Exp. Brain Res. 203, 241–248.

DiCarlo, J. J., Zoccolan, D., and Rust, N.
C. (2012). How does the brain solve
visual object recognition? Neuron
73, 415–434.

Fei-Fei, L., Fergus, R., and Perona, P.
(2007). Learning generative visual
models from few training examples:
an incremental bayesian approach
tested on 101 object categories.
Comput. Vis. Image Underst. 106,
59–70.

Felleman, D. J., and Van Essen, D. C.
(1991). Distributed hierarchical pro-
cessing in the primate cerebral cor-
tex. Cereb. Cortex 1, 1–47.

Foxe, J. J., and Simpson, G. V. (2002).
Flow of activation from v1 to frontal
cortex in humans. A framework for
defining ”early” visual processing.
Exp. Brain Res. 142, 139–150.

Freedman, D. J., Riesenhuber, M., Pog-
gio, T., and Miller, E. K. (2001). Cate-
gorical representation of visual stim-
uli in the primate prefrontal cortex.
Science 291, 312–316.

Freedman, D. J., Riesenhuber, M., Pog-
gio, T., and Miller, E. K. (2003). A
comparison of primate prefrontal
and inferior temporal cortices dur-
ing visual categorization. J. Neurosci.
23, 5235–5246.

Fukushima, K. (1980). Neocognitron:
a self-organizing neural network
model for a mechanism of pattern
recognition unaffected by shift in
position. Biol. Cybern. 36, 193–202.

Fukushima, K. (2003). Neocognitron
for handwritten digit recognition.
Neurocomputing 51, 161–180.

Gauthier, I., and Tarr, M. J. (1997).
Becoming a “greeble” expert: explor-
ing mechanisms for face recognition.
Vision Res. 37, 1673–1682.

Frontiers in Psychology | Perception Science April 2013 | Volume 4 | Article 124 | 12

http://lsa.colorado.edu
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2013.00124/abstract
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2013.00124/abstract
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


O’Reilly et al. Recurrent processing during object recognition

Gosselin, F., and Schyns, P. G. (2001).
Bubbles: a technique to reveal the use
of information in recognition tasks.
Vision Res. 41, 2261–2271.

Gotts, S. J., Milleville, S. C., Bellgowan,
P. S. F., and Martin, A. (2011). Broad
and narrow conceptual tuning in the
human frontal lobes. Cereb. Cortex
21, 477–491.

Grill-Spector, K., Kourtzi, Z., and
Kanwisher, N. (2001). The lateral
occipital complex and its role in
object recognition. Vision Res. 41,
1409–1422.

Guyonneau, R., Vanrullen, R., and
Thorpe, S. J. (2004). Temporal codes
and sparse representations: a key to
understanding rapid processing in
the visual system. J. Physiol. Paris 98,
487–497.

Heeger, D. J. (1992). Normalization of
cell responses in cat striate cortex.
Vis. Neurosci. 9, 181–197.

Heeger, D. J. (1993). Modeling simple-
cell direction selectivity with nor-
malized, half-squared, linear opera-
tors. J. Neurophysiol. 70, 1885–1898.

Hinton, G. E., and Salakhutdinov, R. R.
(2006). Reducing the dimensionality
of data with neural networks. Science
313, 504–507.

Hubel, D., and Wiesel, T. N. (1962).
Receptive fields, binocular interac-
tion, and functional architecture in
the cat’s visual cortex. J. Physiol. 160,
106–154.

Hung, C. P., Kreiman, G., Poggio, T., and
DiCarlo, J. J. (2005). Fast readout of
object identity from macaque infe-
rior temporal cortex. Science (New
York N.Y.) 310, 863–866.

Hupe, J. M., James, A. C., Payne, B.
R., Lomber, S. G., Girard, P., and
Bullier, J. (1998). Cortical feedback
improves discrimination between
figure and background by v1 v2 and
v3 neurons. Nature 394, 784–787.

Jarrett, K., Kavukcuoglu, K., Ranzato,
M., and LeCun, Y. (2009). “What
is the best multi-stage architecture
for object recognition,” in 2009 IEEE
12th International Conference on
Computer Vision (IEEE), 2146–2153.

Keysers, C., Xiao, D. K., Fldik, P., and
Perrett, D. I. (2001). The speed of
sight. J. Cogn. Neurosci. 13, 90–101.

Kiani, R., Esteky, H., Mirpour, K.,
and Tanaka, K. (2007). Object cat-
egory structure in response patterns
of neuronal population in monkey
inferior temporal cortex. J. Neuro-
physiol. 97, 4296–4309.

Koivisto, M., Railo, H., Revonsuo, A.,
Vanni, S., and Salminen-Vaparanta,
N. (2011). Recurrent processing in
v1/v2 contributes to categorization
of natural scenes. J. Neurosci. 31,
2488–2492.

Kourtzi, Z., and Kanwisher, N. (2001).
Representation of perceived object
shape by the human lateral occipital
complex. Science 293, 1506–1509.

Kriegeskorte, N., Mur, M., Ruff, D. A.,
Kiani, R., Bodurka, J., Esteky, H.,
et al. (2008). Matching categori-
cal object representations in infe-
rior temporal cortex of man and
monkey. Neuron 60, 1126–1141.

Kveraga, K., Ghuman, A., and Bar, M.
(2007). Top-down predictions in
the cognitive brain. Brain Cogn. 65,
145–168.

Lamme, V., and Roelfsema, P. (2000).
The distinct modes of vision
offered by feedforward and recur-
rent processing. Trends Neurosci. 23,
571–579.

Landauer, T. K., and Dumais, S. T.
(1997). A solution to plato’s prob-
lem: the latent semantic analysis the-
ory of acquisition, induction, and
representation of knowledge. Psy-
chol. Rev. 104, 211–240.

LeCun, Y., Huang, F., and Bottou,
L. (2004). “Learning methods for
generic object recognition with
invariance to pose and lighting,” in
Proceedings of the 2004 IEEE Com-
puter Society Conference on Com-
puter Vision and Pattern Recognition,
Vol. 2 (IEEE), 97–104

Lee, T. S., and Nguyen, M. (2001).
Dynamics of subjective contour for-
mation in the early visual cortex.
Proc. Natl. Acad. Sci. U.S.A. 98,
1907–1911.

Lerner, Y., Hendler, T., and Malach, R.
(2002). Object-completion effects in
the human lateral occipital complex.
Cereb. Cortex 12, 163–177.

Li, F. F.,VanRullen, R., Koch, C., and Per-
ona, P. (2002). Rapid natural scene
categorization in the near absence
of attention. Proc. Natl. Acad. Sci.
U.S.A. 99, 9596–9601.

Lim, S.-L., and Pessoa, L. (2008). Affec-
tive learning increases sensitivity to
graded emotional faces. Emotion 8,
96–103.

Liu, H., Agam, Y., Madsen, J. R., and
Kreiman, G. (2009). Timing tim-
ing timing: fast decoding of object
information from intracranial field
potentials in human visual cortex.
Neuron 62, 281–290.

Logothetis, N. K., Pauls, J., and Pog-
gio, T. (1995). Shape representation
in the inferior temporal cortex of
monkeys. Curr. Biol. 5, 552–563.

Lupyan, G. (2012). Linguistically
modulated perception and
cognition: the label-feedback
hypothesis. Front. Psychol. 3:54.
doi:10.3389/fpsyg.2012.00054

Lupyan, G., and Spivey, M. J. (2008).
Perceptual processing is facilitated

by ascribing meaning to novel stim-
uli. Curr. Biol. 18, R410–R412.

Lupyan, G., Tompson-Schill, S. L.,
and Swingley, D. (2010). Concep-
tual penetration of visual processing.
Psychol. Sci. 21, 1–10.

Mahon, B., Milleville, S., Negri,
G., Rumiati, R., Caramazza, A.,
and Martin, A. (2007). Action-
related properties of objects
shape object representations in
the ventral stream. Neuron 55,
507–520.

Mahon, B. Z., and Caramazza, A.
(2011). What drives the organization
of object knowledge in the brain?
Trends Cogn. Sci. (Regul. Ed.) 15,
97–103.

Marr, D. (1982). Vision. New York: Free-
man.

Masquelier, T., and Thorpe, S. J.
(2007). Unsupervised learn-
ing of visual features through
spike timing dependent plastic-
ity. PLoS Comput. Biol. 3:e31.
doi:10.1371/journal.pcbi.0030031

McClelland, J. L., and Rumelhart, D.
E. (1981). An interactive activation
model of context effects in letter per-
ception: part 1 an account of basic
findings. Psychol. Rev. 88, 375–407.

Meyers, E. M., Freedman, D. J., Kreiman,
G., Miller, E. K., and Poggio, T.
(2008). Dynamic population coding
of category information in inferior
temporal and prefrontal cortex. J.
Neurophysiol. 100, 1407–1419.

Mozer, M. C., and Behrmann, M.
(1990). On the interaction of selec-
tive attention and lexical knowl-
edge: a connectionist account of
neglect dyslexia. J. Cogn. Neurosci.
96, 96–123.

Mutch, J., and Lowe, D. (2008). Object
class recognition and localization
using sparse features with limited
receptive fields. Int. J. Comput. Vis.
80, 45–57.

Nestor, A., Vettel, J. M., and Tarr,
M. J. (2008). Task-specific codes
for face recognition: how they
shape the neural representation of
features for detection and indi-
viduation. PLoS ONE 3:e3978.
doi:10.1371/journal.pone.0003978

Nowak, L., and Bullier, J. (1997). “The
timing of information transfer in the
visual system,” in Extrastriate Cortex
in Primates, Cerebral Cortex, Vol. 12,
eds K. S. Rockl, J. H. Kaas, and A.
Peters (New York: Plenum Press),
205–241.

Olshausen, B. A., and Field, D. J. (2004).
Sparse coding of sensory inputs.
Curr. Opin. Neurobiol. 14, 481–487.

Oram, M. W., and Perrett, D. I. (1992).
Time course of neural responses dis-
criminating different views of the

face and head. J. Neurophysiol. 68,
70–84.

Orban, G. A., Van Essen, D., and
Vanduffel, W. (2004). Compara-
tive mapping of higher visual
areas in monkeys and humans.
Trends Cogn. Sci. (Regul. Ed.) 8,
315–324.

O’Reilly, R. C. (1996). Biologically plau-
sible error-driven learning using
local activation differences: the
generalized recirculation algorithm.
Neural. Comput. 8, 895–938.

O’Reilly, R. C. (1998). Six princi-
ples for biologically-based compu-
tational models of cortical cogni-
tion. Trends Cogn. Sci. (Regul. Ed.)
2, 455–462.

O’Reilly, R. C. (2001). Generalization
in interactive networks: the benefits
of inhibitory competition and Heb-
bian learning. Neural. Comput. 13,
1199–1242.

O’Reilly, R. C., and Munakata,Y. (2000).
Computational Explorations in Cog-
nitive Neuroscience: Understanding
the Mind by Simulating the Brain.
Cambridge, MA: The MIT Press.

O’Reilly, R. C., Munakata, Y., Frank,
M. J., Hazy, T. E., and Contrib-
utors (2012). Computational
Cognitive Neuroscience, 1st
Edn. Wiki Book. Available at:
http://ccnbook.colorado.edu

Padmala, S., and Pessoa, L. (2008).
Affective learning enhances visual
detection and responses in pri-
mary visual cortex. J. Neurosci. 28,
6202–6210.

Patterson, K., Nestor, P. J., and Rogers,
T. T. (2007). Where do you know
what you know? The representation
of semantic knowledge in the human
brain. Nat. Rev. 8, 976–987.

Pinto, N., Barhomi, Y., Cox, D., and
DiCarlo, J. (2011). “Comparing
state-of-the-art visual features on
invariant object recognition tasks,”
in 2011 IEEE Workshop on Applica-
tions of Computer Vision (WACV)
(IEEE), 463–470.

Pinto, N., Cox, D. D., and DiCarlo,
J. J. (2008). Why is real-world
visual object recognition hard?
PLoS Comput. Biol. 4:e27.
doi:10.1371/journal.pcbi.0040027

Pinto, N., Doukhan, D., DiCarlo, J. J.,
and Cox, D. D. (2009). A high-
throughput screening approach to
discovering good forms of bio-
logically inspired visual representa-
tion. PLoS Comput. Biol. 5:e1000579.
doi:10.1371/journal.pcbi.1000579

Ponce, J., Berg, T., Everingham, M.,
Forsyth, D., Hebert, M., Lazebnik, S.,
et al. (2006). Dataset issues in object
recognition. Lect. Notes Comput. Sci.
4170, 29–48.

www.frontiersin.org April 2013 | Volume 4 | Article 124 | 13

http://dx.doi.org/10.3389/fpsyg.2012.00054
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://dx.doi.org/10.1371/journal.pone.0003978
http://ccnbook.colorado.edu
http://dx.doi.org/10.1371/journal.pcbi.0040027
http://dx.doi.org/10.1371/journal.pcbi.1000579
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


O’Reilly et al. Recurrent processing during object recognition

Poort, J., Raudies, F., Wannig, A.,
Lamme, V. A. F., Neumann, H.,
and Roelfsema, P. R. (2012). The
role of attention in figure-ground
segregation in areas v1 and v4
of the visual cortex. Neuron 75,
143–156.

Ratcliff, R. (1978). A theory of memory
retrieval. Psychol. Rev. 85, 59–107.

Ratcliff, R., and McKoon, G. (2008).
The diffusion decision model: the-
ory and data for two-choice deci-
sion tasks. Neural. Comput. 20,
873–922.

Rauschenberger, R., Liu, T., Slotnick, S.
D., and Yantis, S. (2006). Temporally
unfolding neural representation of
pictorial occlusion. Psychol. Sci. 17,
358–364.

Riesenhuber, M., and Poggio, T. (1999).
Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 3,
1199–1204.

Riesenhuber, M., and Poggio, T. (2002).
Neural mechanisms of object recog-
nition. Curr. Opin. Neurobiol. 12,
162–168.

Roelfsema, P. R., Lamme, V. A. F.,
Spekreijse, H., and Bosch, H. (2002).
Figure-ground segregation in a
recurrent network architecture. J.
Cogn. Neurosci. 14, 525–537.

Roland, P. (2010). Six principles
of visual cortical dynam-
ics. Front. Syst. Neurosci. 4:28
doi:10.3389/fnsys.2010.00028

Rolls, E. T., and Stringer, S. M. (2006).
Invariant visual object recognition:
a model, with lighting invariance. J.
Physiol. Paris 100, 43–62.

Rumelhart, D. E., Hinton, G. E., and
Williams, R. J. (1986). Learning rep-
resentations by back-propagating
errors. Nature 323, 533–536.

Scannell, J., Blakemore, C., and Young,
M. P. (1995). Analysis of connec-
tivity in the cat cerebral cortex. J.
Neurosci. 15, 1463–1483.

Scholte, H. S., Jolij, J., Fahrenfort, J. J.,
and Lamme, V. A. F. (2008). Feed-
forward and recurrent processing
in scene segmentation: electroen-
cephalography and functional mag-
netic resonance imaging. J. Cogn.
Neurosci. 20, 2097–2109.

Seghier, M. L., and Vuilleumier, P.
(2006). Functional neuroimaging
findings on the human perception
of illusory contours. Neurosci. Biobe-
hav. Rev. 30, 595–612.

Serre,T.,Kreiman,G.,Kouh,M.,Cadieu,
C., Knoblich, U., and Poggio, T.
(2007a). A quantitative theory of
immediate visual recognition. Prog.
Brain Res. 165, 33–56.

Serre, T., Oliva, A., and Poggio, T.
(2007b). A feedforward architecture
accounts for rapid categorization.
Proc. Natl. Acad. Sci. U.S.A. 104,
6424–6429.

Serre, T., Wolf, L., Bileschi, S., Riesen-
huber, M., and Poggio, T. (2007c).
Robust object recognition with
cortex-like mechanisms. IEEE Trans.
Pattern Anal. Mach. Intell. 29,
411–426.

Sigala, N., and Logothetis, N. K. (2002).
Visual categorization shapes feature
selectivity in the primate temporal
cortex. Nature 415, 318–320.

Sporns, O., Honey, C. J., and Kot-
ter, R. (2007). Identification and
classification of hubs in brain
networks. PLoS ONE 2:e1049.
doi:10.1371/journal.pone.0001049

Sporns, O., and Zwi, J. D. (2004). The
small world of the cerebral cortex.
Neuroinformatics 2, 145–162.

Tanaka, K. (1996). Inferotemporal cor-
tex and object vision. Annu. Rev.
Neurosci. 19, 109–139.

Thorpe, S., Fize, D., and Marlot, C.
(1996). Speed of processing in the
human visual system. Nature 381,
520–522.

Tompa, T., and Sary, G. (2010). A review
on the inferior temporal cortex of
the macaque. Brain Res. Rev. 62,
165–182.

Ungerleider, L. G., and Haxby, J. V.
(1994). “What” and “Where” in the
human brain. Curr. Opin. Neurobiol.
4, 157–165.

Van Essen, D. C., Anderson, C. H.,
and Felleman, D. J. (1992). Infor-
mation processing in the primate
visual system: an integrated systems
perspective. Science 255, 419–423.

Vanrullen, R. (2007). The power of
the feed-forward sweep. Adv. Cogn.
Psychol. 3, 167–176.

VanRullen, R., and Koch, C. (2003).
Visual selective behavior can be trig-
gered by a feed-forward process. J.
Cogn. Neurosci. 15, 209–217.

Vuilleumier, P. (2005). How brains
beware: neural mechanisms of emo-
tional attention. Trends Cogn. Sci.
(Regul. Ed.) 9, 585–594.

Wallis, G., and Rolls, E. T. (1997). Invari-
ant face and object recognition in
the visual system. Prog. Neurobiol.
51, 167–194.

Weigelt, S., Singer, W., and Muckli,
L. (2007). Separate cortical stages
in amodal completion revealed
by functional magnetic resonance
adaptation. BMC Neurosci. 8:70.
doi:10.1186/1471-2202-8-70

Wyatte, D., Curran, T., and O’Reilly,
R. (2012a). The limits of feedfor-
ward vision: recurrent processing

promotes robust object recognition
when objects are degraded. J. Cogn.
Neurosci. 24, 2248–2261.

Wyatte, D., Herd, S., Mingus, B.,
and O’Reilly, R. (2012b). The
role of competitive inhibition
and top-down feedback in
binding during object recog-
nition. Front. Psychol. 3:182.
doi:10.3389/fpsyg.2012.00182

Zhaoping, L. (2005). Border owner-
ship from intracortical interactions
in visual area v2. Neuron 47,
143–153.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 27 August 2012; accepted: 26
February 2013; published online: 01 April
2013.
Citation: O’Reilly RC, Wyatte D, Herd
S, Mingus B and Jilk DJ (2013) Recur-
rent processing during object recog-
nition. Front. Psychol. 4:124. doi:
10.3389/fpsyg.2013.00124
This article was submitted to Frontiers in
Perception Science, a specialty of Frontiers
in Psychology.
Copyright © 2013 O’Reilly, Wyatte,
Herd, Mingus and Jilk. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Psychology | Perception Science April 2013 | Volume 4 | Article 124 | 14

http://dx.doi.org/10.3389/fnsys.2010.00028
http://dx.doi.org/10.1371/journal.pone.0001049
http://dx.doi.org/10.1186/1471-2202-8-70
http://dx.doi.org/10.3389/fpsyg.2012.00182
http://dx.doi.org/10.3389/fpsyg.2013.00124
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive

	Recurrent processing during object recognition
	Introduction
	Results
	Object recognition dataset
	Recurrent processing under occlusion
	Recurrent connectivity and learned object representations

	Discussion
	Materials and methods
	Structure of the LVis model
	CU3D-100 dataset
	Training and testing methods
	Blob-based occlusion
	Semantics inputs
	Comparison networks

	Acknowledgments
	Supplementary material
	References


