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Graphical bioinformatics has paved a unique way of mathematical characterization of proteins and proteomic maps. The graphics
representations and the corresponding mathematical descriptors have proved to be useful and have provided unique solutions
to problems related to identification, comparisons, and analyses of protein sequences and proteomics maps. Based on sequence
information alone, these descriptors are independent fromphysiochemical properties of amino acids and evolutionary information.
In this work, we have presented invariants from amino acid adjacency matrix and decagonal isometries matrix as potential
descriptors of protein sequences. Encoding protein sequences into amino acid adjacency matrix is already well established. We
have shown its application in classification of transmembrane and nontransmembrane regions of membrane protein sequences.We
have introduced the dodecagonal isometries matrix, which is a novel method of encoding protein sequences based on decagonal
isometries group.

1. Introduction

With the advent of modern and faster experimental tech-
nologies, a large amount of sequences and proteomics data
are produced every day. Combined with the genomic data,
this forms a vast and ever-growing repository of information.
However, to utilize this data in order to get an insightful
knowledge of the biological systems and develop better phar-
maceutical facilities, one needs to perform a detailed analysis
of the data generated. The new age computational methods
provide fast, accurate, precise analysis of the genomics and
proteomics data. Therefore, there is a need to characterize
biological sequences and data in mathematical formats that
can be easily manipulated using the computational methods.

Mathematical graphs andmatrices have been successfully
utilized in representing, characterizing, and analyzing biolog-
ical sequences. Even though the graphical representation of
DNAwas initiated around 25 years ago, graphical methods to
represent protein sequences and proteomics maps emerged
only recently [1, 2]. The delay is owed to the increase in
complexity and associated arbitrariness in assigning and

representing the 20 natural amino acids, which can be done in
20 factorial ways.The initialmethods proposed to graphically
represent the protein sequences are Magic Circle [3] and
Starlike graphs [4]. Both representations are associated with
no loss of information and offer novel local alignment meth-
ods using Euclidean distances between corresponding amino
acids in the graphical representation. To characterize protein
sequences numerically, structural matrices like D/D matrix
and Line Distance matrix are developed from 2D graphs
of proteins [3]. Invariants of such matrices, for example,
eigenvalues,matrix diagonals, row sums, and so forth, further
serve as numerical representation of the proteins.

Amino acid adjacency matrix (AAmatrix) [5] is a matrix
representation of protein sequences leading to mathemat-
ical characterizations. The protein sequence, in this case,
is directly translated into the matrix form without the
intermediate graphical representation. To represent a protein
sequence mathematically, any invariant of its amino acid
adjacency matrix can be used. Here, we have considered the
row sum invariant of the amino acid adjacency matrix to
numerically characterize protein sequences.
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We have also introduced the encoding of transmembrane
regions from the perspective of decagonal isometries group
(D
10
) into decagonal isometries matrix (DIM). The DIM is

then transformed into 20-dimensional vector, which is then
used to represent and numerically characterize the protein
sequences.

It is important that the code of amino acid sequence
is of uniform dimension, regardless of the length of the
protein segment. We have adopted this criterion for both
representations applied in transmembrane segments clas-
sification study. The amino acid sequence was the only
information source for AA matrix and DIM representations
developed or applied in this work. Conversely, other features
associated with amino acids and proteins are often used
in protein structure-property studies, such as secondary
structure propensity, hydrophobicity, polarizability, solvent
accessibility, normalized van der Waals volume, and polarity
enrichment scores in case of the analysis and prediction
of the metabolic stability of proteins [6]. The criterion of
uniformdimensionality has been followed also in the study of
single amino acid polymorphisms (SAPs), which is accounted
for the majority of human inherited diseases. Each SAP is
represented by 472 features including sequential, structural,
and network features, the latter being the most influential
[7]. However, in our study we have shown that the protein
sequence alone if encoded into a suitable uniform represen-
tation vector enables us to build a successful classification
model that separates transmembrane regions of a protein
from nontransmembrane ones.

Transmembrane proteins pass through the complete bio-
logical membrane and perform vital functions to maintain
the normal cell physiology. They are also very important as
drug targets.These proteins are therefore of immense interest
from both the academic and pharmaceutical point of views
[8]. Despite the importance and interest, the vast majority
of the transmembrane protein space remains unexplored
due to experimental difficulties. Not all the transmembrane
proteins, hypothesized to be present, are yet reported and
sequenced. Only few of the known transmembrane proteins
have their structures resolved to atomic details. In this
work, we have focused on representing the transmembrane
protein sequences numerically in order to develop novel
transmembrane protein sequence analysis methods. Both
the amino acid adjacency matrix and decagonal isometries
matrix, explained in this work, are applied towards charac-
terizing protein transmembrane regions and distinguishing
them from the nontransmembrane regions.

2. Materials and Methods

2.1. Amino Acid AdjacencyMatrix. Theamino acid adjacency
matrix (AA matrix) is a nonsymmetric matrix that presents
the adjacency information of the 20 natural amino acids in
the given protein sequence [5]. It is a 20 × 20matrix with the
rows and columns labeled with the 20 amino acids (Figure 1).
Each position in the matrix represents the number of times
the corresponding amino acids are adjacent in the given
sequence; that is, value ofmatrix element (𝑖, 𝑗) depends on the
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A C G I  L M F P W V R N D E Q H K S  T Y
A 0  0  0  0  0  0  1 0  0  0  0  0  0  0  0  0  0  0  1 0
C 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
G 0  0  0  0  0  0  0  0  0  1 0  0  0  0  0  0  0  0  0  1
I 0  0  1 0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
L 0  0  0  0  2 0  0  0  0  0  0  0  0  0  0  0  0  0  1 0
M 1 0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
F 0  0  0  0  0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0
P 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
W 0  0  0  0  0  0  0  0  0  0  0  1 0  0  0  0  0  0  0  0
V 0  0  0  1 0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0
R 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
N 0  0  0  1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
D 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
E 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Q 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
H 0 0  0  0  0  0  0  0 0  0  0  0  0  0  0  0  0  0  0  0
K 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
S 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
T 1 0  0  0  0  0  0  1 1 0  0  0  0  0  0  0  0  0  0  0
Y 0  0  0  0  0  0  0  0  1 0  0  0  0  0  0  0  0  0  0  0  

2  0  2  2  3  2  1  0  1  2  0  1  0  0  0  0  0  0  3  1

Segment:

Amino acid adjacency matrix

Row sum:

Figure 1: Amino acid adjacency matrix. The 20 × 20 matrix
presenting the amino acid adjacency and abundance information
in the given sequence. The nonzero elements show the number of
times that corresponding amino acids are present adjacent to each
other. The 20-dimensional row sum vector is used as a descriptor to
numerically characterize the protein sequence.

number of times amino acid in row 𝑖 is followed by amino acid
in column 𝑗 in the given sequence. For example, in Figure 1,
amino acidsG andY are adjacent to each other only once, and
hence the value of element (G, Y) is 1. Similarly the value of
(L, L) is 2 as L occurs as its own first neighbor twice. The 400
matrix elements thus record the adjacencies of amino acids
and their abundance in a given protein sequence.

As the matrix invariants do not depend on the labeling of
the matrix, an arbitrary ordering of the amino acids is suffi-
cient when one is interested in bringing out the characteristic
features of a given sequence and in differentiating between
sequences. In our work, we arbitrarily choose the amino acid
to be in the following order: A, C, G, I, L, M, F, P, W, V, R, N,
D, E, Q, H, K, S, T, Y.

It must be noted that the amino acid adjacency matrix
is essentially different from both the GRANTHAM matrix
[9] and the neighbor-dependent amino acid propensity [10].
The GRANTHAM matrix predicts the effect of amino acid
substitution based on chemical properties. In our case, the
matrix is independent of amino acid properties and does not
reflect substitution effects. The matrix records the adjacency
and not the propensity of the amino acid to be present
at a particular structural location. In this study, we have
considered only the first neighbor of a particular amino acid
position.Wehave implemented theAAmatrix representation
of the transmembrane segments of membrane proteins in
building transmembrane region prediction model. It must
be noted that the transmembrane segments are around
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20 residues in length. The short segments therefore result in
sparse AA matrices. The matrix elements with zero values
denote the absence of the corresponding amino acid pairs
in the sequence. If a particular amino acid is not present in
the given sequence, the corresponding row and column have
all entries zero. In the given example (Figure 1), the amino
acids C, P, R, D, E, Q, H, K, S are not present. One must also
note that the last residue of the sequence is not shown in the
adjacency matrix, as it has no adjacent residue to its right.

The important aspect of using matrix presentation of
amino acid adjacencies is that it enables a concise numerical
characterization of a protein segment by matrix invariants.
The simplest characterization of protein can be presented as
a 20-dimensional row sum vector that lists the abundance of
the 20 amino acids except for the last residue of the protein
segment, as explained in the previous paragraph.

2.2. Decagonal Isometries Matrix. This novel method intro-
duces encoding of amino acid sequences from the per-
spective of the decagonal isometries group (D

10
). The D

10

has 20 elements—10 rotations 𝑂
𝑛
(by 𝑛𝜋/5 degrees) and 10

symmetries 𝑆
𝑛
. A one-to-one correspondence can therefore

be established between the elements of the group and the
20 amino acids. Our first step is arbitrarily assigning each
element of D

10
to an amino acid. Figure 2(a) presents the

assignment of the amino acids to the elements of D
10
. Next,

we identify an arbitrary edge of a decagon with the number 0
and subsequently put numbers 1 to 9 on consecutive edges.

Before we start coding our protein sequence, the initial
position of the decagon is set such that the edge labeled 0 is
at the bottom. The sequence is then inductively encoded by
applying the transformations indicated by the group elements
that correspond to consecutive amino acids in the sequence
(Figure 2(c)). At each step, we look at the edge 𝑛 that lies at
the bottom of the decagon. For example, encoding WW →
WWNrequires the 𝑆

1
symmetry transformation bringing the

edge 5 of the decagon at the bottom (Figure 2(c)). The exact
formulas of the said transformations are as follows:

𝑂
𝑛
(𝑋) = (𝑋 + 𝑛) mod 10, for 𝑛th rotation,

𝑆
𝑛
(𝑋) = (10 + 𝑛 − 𝑋) mod 10, for 𝑛th symmetry.

(1)

In theory, the number of times each edge lies at the bottom
can be represented in a 10-dimensional vector to characterize
the protein sequence. However, it would result in overcon-
densation of data. In order to reduce the loss of information,
instead of considering just the bottom edge, at each step we
also consider the edge to the right of the obtained bottom
edge. A 10 × 10 decagonal isometries matrix (DIM) is thus
constructed with the value 𝑎

𝑖,𝑗
being the number of times

that “𝑖”-edge appears at the bottom of the decagon with
“𝑗”-edge at its right while applying transformations to the
decagon considering a given sequence. Notice that DIM
can have nonzero values only right above or right below
the diagonal (with the exception of 𝑎

9,0
and 𝑎

0,9
entries).

This allows us to transform DIM into 20-dimensional vector
by putting all potentially non-zero values in a fixed order.

A C G I L M F P W V R N D E Q H K S T Y

Example sequence
WWNFGSLLGICLIL

0 1 2 3 4 5 6 7 8 9
0 0 0
1 1 0
2 0 2
3 1 0
4 0 2
5 1 1
6 1
7 1
8 0 3
9 1 0

Resultant 20-dimensional vector
1 1 0 1 0 1 0 0 0 0 0 0 2 0 2 1 1 1 3 0

(a)

(b)

Marked diagonals indicate axes 
of symmetries

Corresponding DIM. Blue entries 
are always zero by the 

construction of the matrix

(c)

(d)

𝑂0 𝑂1 𝑂2 𝑂3 𝑂4 𝑂5 𝑂6 𝑂7 𝑂8 𝑂9 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

𝑆0
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Figure 2: Decagonal isometries matrix D
10
. (a) and (b) show

correspondance between group elements and amino acids and
indicate the initial step of coding. Decagons below show the explicit
transformation for the given step (WW → WWN) and the resultant
DIM (c). The 20-dimensional vector constructed from the matrix is
used as a descriptor to numerically characterize the protein sequence
(d).

The 20-dimensional vector finally acts as descriptors for the
transmembrane protein segments encoded.

2.3. Representing Transmembrane Regions. The amino acid
adjacency matrix and decagonal isometries matrix are used
independently to encode the transmembrane and nontrans-
membrane protein segments. The associated matrix invari-
ants mathematically characterize each of the membrane
protein segments. Both representations are implemented
independently and are used to distinguish between the trans-
membrane and non-transmembrane segments of membrane
spanning proteins.

For this purpose, the transmembrane protein sequences
are segmented into the transmembrane and non-transmem-
brane regions. The non-transmembrane regions are further
divided into polypeptide segments of length 20 residues. It
is essential to have the length of the non-transmembrane
similar to that of the transmembrane segments in order to
ensure better training of the classification models. All the
transmembrane and non-transmembrane regions are then
independently encoded using AA matrix and DIM. The
encoded segments are divided into training and test sets.
Table 1 lists the number of particular segments in each set.
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Table 1: Training and test sets.

Sets Number of segments
Total segments Transmembrane Nontransmembrane

Training 4204 1867 2337
Test 450 200 250

We perform principal component analysis (PCA) with
the descriptors derived from AA matrix to check if the
numerical descriptors are able to discriminate the transmem-
brane segments from the non-transmembrane ones. As PCA
is projection of multidimensional data onto a coordinate
system defined by the principal components, it gives an
initial validation regarding choice of descriptors. Next, two
independent counter propagation neural network (CPNN)
models are developed using the invariants from both the
matrices to distinguish between the transmembrane andnon-
transmembrane segments of the protein sequences.

3. Results and Discussion

3.1. Amino Acid Adjacency Matrix. To check if the row
sum vector derived from the AA matrix well characterizes
the transmembrane segments numerically, we perform the
principal component analysis (PCA) and develop a CPNN
model.

Figure 3 shows the results from PCA analysis, where the
transmembrane and non-transmembrane data are projected
on 2D space defined by their first two principal components.
PC1 contains 56.05% of the total variance, whereas PC2 con-
tains 5.52% of the remaining variance. In total, the first two
principal components contain 61.57% of the total variance
present in the data. As we can see, the transmembrane and
non-transmembrane segments, represented by the black and
blue circles, respectively, are well separated over the first and
second principal components.The region of overlap between
the two clusters is very small with an overall distinction
between the two groups. The PCA analysis is performed as
a preliminary test. We have validated that the mathematical
descriptors chosen are important to bring out the characteris-
tic features of the protein segments.Thedescriptors are able to
represent and distinguish the sequence characteristics of the
two types of protein segments and group them successfully.

Next, we have developed a CPNN model to classify the
protein segments as transmembrane or non-transmembrane
ones.Themodel is optimized for both the training and the test
sets simultaneously varying different network parameters.
The goal is to obtain the optimal network parameters that
minimize misclassification. In the final step, the optimized
network is tested for its recall and prediction ability.

The following network parameters are found to be opti-
mal: network size—40 × 40, number of epochs—500, and
maximum correction factor—0.9. Figure 4 shows the top
map of the optimized network with the transmembrane and
non-transmembrane segments in two distinct clusters. The
network shows only 4.33% error in recall ability; that is, it
is able to correctly classify 95.67% of the segments in the
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Figure 3: Principal component analysis. The transmembrane
(black) and nontransmembrane (blue) segments form two different
clusters.
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Figure 4: Top map of the optimized network. The transmembrane
(green) and nontransmembrane (brown) segments form two differ-
ent clusters. Empty neurons are dark blue.

training set. For the test set, the error is 8.67%. Table 2
presents the detailed results of CPNN network.

3.2. Decagonal Isometries Matrix. The 20-dimensional vec-
tors, derived from the decagonal isometries matrix, represent
the transmembrane and non-transmembrane segments. The
mathematically encoded protein segments in the training and
test sets are then used to train and optimize a CPNNnetwork.
The goal is to optimize the network such that it is able to
classify the two different types of protein segments based on
the DIM invariant.
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Table 2: Classification model using amino acid adjacency matrix.

Sets Network results
Total segments Segments correctly classified % error

Training 4204 4022 4.33
Test 450 411 8.67

Table 3: Classification model using decagonal isometries matrix.

Sets Network results
Correlation coefficient (𝑟 ∗ 𝑟) % error

Training 0.61 14.3
Test 0.255 27.1

The optimized network has the following configuration:
network size—40 × 40, number of epochs—500, and maxi-
mum correction factor—0.5. The network shows 14.3% error
in recall ability and 27.1% error in prediction ability, with error
threshold at 0.501. The detailed results are given in Table 3.

3.3. Advantage of Mathematical Characterization. Analyzing
the protein sequence is the first step towards determining
its structure and function. With the growing number of
proteins sequenced, there is a necessity of novel techniques
to characterize the sequences. Presently, most commonly
used protein sequence descriptors are based on evolutionary
information and physiochemical properties. Even though
these methods have proved to be efficient in most cases, in
certain special cases like that of transmembrane proteins,
they may fall short. As the vast field of transmembrane
proteins largely remains unexplored with many transmem-
brane proteins yet to be sequenced, it is possible to obtain
new protein sequences without any known homologs. In
such case, traditional sequence analysis methods based on
alignment profiles would not be sufficient to analyze the novel
sequences. The evolutionary information-based descriptors
are therefore inadequate. As several indices of the same
physiochemical property exist, such descriptors can cause
ambiguity. Therefore, there is a need of developing novel
methods based on sequence information alone to represent
protein sequences.

The two matrix representations, amino acid adjacency
matrix and decagonal isometries matrix, of the protein
segments are derived from the sequence information. The
physiochemical properties of the amino acids and the evo-
lutionary information of the sequence based on alignment
profiles are not utilized for characterizing. Moreover, the
matrices are labeled with the amino acids arbitrarily. The
mathematical descriptors are dependent on the sequence
information alone and successfully reveal underlying charac-
teristics and patterns of a given sequence. Such descriptors are
useful in representing novel sequences independently. Their
numerical nature also makes them easier to be incorporated
into a mathematical model. In addition, one can derive
different invariants to be used as descriptors from the same

matrix representations depending on the problem to be
addressed.

4. Conclusion

In this work, we have successfully usedmathematical descrip-
tors to characterize transmembrane regions of proteins.
Amino acid adjacency matrix and decagonal isometries
matrix are independently used to encode the protein seg-
ments. Both the representations are successful in revealing
the sequence characteristics particular to a specific group
of protein segments and in classifying them accordingly
as transmembrane and non-transmembrane. The accuracy
of the former method was better, which challenges the
potential optimization and further development of the latter
one. Depending only on the sequence information, the
mathematical representations described here can prove to
be powerful tool in developing novel sequence analysis
methods, especially for less explored protein classes like
transmembrane proteins.
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[2] M. Randić, J. Zupan, A. T. Balaban, D. Vikić-Topić, and
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proteins by star-like graph,” Journal of Molecular Graphics and
Modelling, vol. 26, pp. 290–305, 2007.
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