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Abstract
Introduction  Adverse drug reactions (ADRs) are unintended reactions caused by a drug or combination of drugs taken 
by a patient. The current safety surveillance system relies on spontaneous reporting systems (SRSs) and more recently on 
observational health data; however, ADR detection may be delayed and lack geographic diversity. The broad scope of social 
media conversations, such as those on Twitter, can include health-related topics. Consequently, these data could be used to 
detect potentially novel ADRs with less latency. Although research regarding ADR detection using social media has made 
progress, findings are based on single information sources, and no study has yet integrated drug safety evidence from both 
an SRS and Twitter.
Objective  The aim of this study was to combine signals from an SRS and Twitter to facilitate the detection of safety signals 
and compare the performance of the combined system with signals generated by individual data sources.
Methods  We extracted potential drug–ADR posts from Twitter, used Monte Carlo expectation maximization to generate 
drug safety signals from both the US FDA Adverse Event Reporting System and posts from Twitter, and then integrated 
these signals using a Bayesian hierarchical model. The results from the integrated system and two individual sources were 
evaluated using a reference standard derived from drug labels. Area under the receiver operating characteristics curve (AUC) 
was computed to measure performance.
Results  We observed a significant improvement in the AUC of the combined system when comparing it with Twitter alone, 
and no improvement when comparing with the SRS alone. The AUCs ranged from 0.587 to 0.637 for the combined SRS 
and Twitter, from 0.525 to 0.534 for Twitter alone, and from 0.612 to 0.642 for the SRS alone. The results varied because 
different preprocessing procedures were applied to Twitter.
Conclusion  The accuracy of signal detection using social media can be improved by combining signals with those from 
SRSs. However, the combined system cannot achieve better AUC performance than data from FAERS alone, which may 
indicate that Twitter data are not ready to be integrated into a purely data-driven combination system.
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1  Introduction

Spontaneous reporting systems (SRSs) and a series of dis-
proportionate analyses have been a cornerstone for pharma-
covigilance [1]. However, this has many limitations, such 
as under-reporting, over-reporting of known ADRs, delayed 

reporting, and a lack of geographic diversity [2–4]. The rapid 
expansion and immediacy of social media websites such as 
Facebook and Twitter provides a broad coverage of health-
related topics [5]. This means that these websites could 
be used to detect potentially novel adverse drug reactions 
(ADRs) with less latency [6]. A recent survey showed that 
about 3–4% of responding internet users had publicly shared 
their concerns about adverse reactions to medications on 
social media sites [7]. Regulators have become increasingly 
interested in mining such data from support group websites 
and social media postings as a potential new source for phar-
macovigilance data [8, 9]. In 2013, the Association of the 
British Pharmaceutical Industry published guidance on the 
management of adverse events (AE) and product complaints 
sourced from digital media [10]. Although such guidance 
regarding the use of social media data for pharmacovigilance 
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Key Points 

This study is the first of its kind to use a computational 
method (empirical Bayesian model) to combine drug 
safety signals from a spontaneous reporting system with 
those from social media.

The accuracy of signal detection using social media can 
be improved by combining the signals with those from 
spontaneous reporting systems.

The evaluation of the combined system and individual 
sources was based on a fairly large reference standard, 
and the results of this study shed light on the potential 
role of Twitter data in pharmacovigilance.

four data sources: FAERS, claims data, the MEDLINE 
database, and the logs of major internet search engines. 
Piccinni et al. [27] developed a semantic web-based plat-
form to integrate ADR resources from open data sources 
and social media. The integration of safety signals from 
social media with other data sources has not been studied.

The aim of this study was to systematically combine 
signals from FAERS and social media to facilitate the 
detection of safety signals. It is the first of its kind. Build-
ing on our previous Monte Carlo expectation maximiza-
tion (MCEM) framework [28], we generated safety sig-
nals from each data source individually. We also pooled 
and aggregated signal scores from multiple data sources 
to produce composite signal scores, with an emphasis on 
more reliable data sources. We assessed the performance 
of this combined system together with signal detection 
based on the individual data sources using a retrospec-
tive evaluation method based on the reference standard of 
known side effects from drug labels.

2 � Methods and Materials

2.1 � Data Sources

2.1.1 � Twitter Database

A collection of tweets over the 3 years from 2012 to 2014 
were extracted from GNIP Decahose1, which provides a 
random sample of 10% of the real-time Twitter Firehose. A 
real-time sampling algorithm is used to randomly select the 
data. The initial collection involved approximately 50 billion 
tweets. We filtered out the re-tweets (33.5% of tweets) and 
non-English tweets (70.5% of the remaining tweets), yield-
ing around 13 billion tweets.

2.1.2 � FDA Adverse Event Reporting System (FAERS)

The FAERS data used in this study were pre-processed by 
Banda et al. [29]. This cleaned and standardized version of 
FAERS data involves the removal of duplicate case records 
and mapping of drug names to RxNorm concepts and ADR 
outcomes to Medical Dictionary for Regulatory Activities 
(MedDRA®) concepts. We used the same 3-year period for 
FAERS data as for the Twitter data, resulting in 2.3 million 
case reports.

1  https​://devel​oper.twitt​er.com/en/docs/tweet​s/sampl​e-realt​ime/overv​
iew/decah​ose

is lacking in the USA, the US FDA issued related regula-
tions for publishing promotional material and risk/benefit 
information on social media [11].

The general pros and cons of using social media data for 
pharmacovigilance have been reviewed thoroughly [6, 12, 
13]. One area of research focus is the application of natural 
language processing (NLP) and data mining to unstruc-
tured online sources with the aim of acquiring drug safety 
information. Notable among these is mining ADR signals 
from general purpose social networking sites such as Twit-
ter [14] and from health support group websites such as 
PatientsLikeMe [15], DailyStrength [16], and MedHelp 
[17]. We chose to work with data from Twitter because of 
the large quantity of messages (> 500 million) distributed 
worldwide from a homogeneous source. A fundamental 
question was whether analysis of social media could lead 
to earlier detection of unknown AEs and therefore supple-
ment SRSs. A further question was whether we could inte-
grate analyses generated from social media and from an 
SRS to better detect ADR signals. Comparisons of these 
two types of data sources remain anecdotal and limited 
to the comparison of patient characteristics and reporting 
patterns [18, 19] or analyzing a specific task such as earlier 
detection by social media using a limited number (fewer 
than 15 pairs) of known positive and negative drug–ADR 
pairs [20], precluding any definite conclusions [21].

Previous studies have demonstrated that combining 
safety signals from several sources can improve the accu-
racy of signal detection. For example, augmented signal 
detection has been demonstrated by synthesizing signals 
generated from the FDA Adverse Event Reporting Sys-
tem (FAERS) and other individual data sources, includ-
ing electronic health records (EHRs) [22, 23], claims data 
[23, 24], biomedical literature [25], chemical data [26], 
and internet search logs [12]. Recently, Harpaz et al. [23] 
developed multimodal methods to synthesize signals from 

https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/decahose
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2.1.3 � Symptom Lists

A Twitter user may not use a professional medical term 
to describe a symptom. For example, “insomnia” may be 
described as “can’t sleep,” and “throwing up, chucking 
up, or puking” occur more often than “vomiting” in online 
social conversations. Therefore, a symptom dictionary that 
can map the symptoms in informal language to their appro-
priate professional medical terms is essential. The unified 
medical language system (UMLS) [30] incorporates moder-
ately colloquial terminologies, such as the consumer health 
vocabulary (CHV) [31], which maps “throwing up” to “vom-
iting.” However, “chucking up” is not included. We also 
interrogated Wiki for another symptom list. We constructed 
three symptom lists to map the colloquial symptom-related 
terms to their professional terms using Wiki, UMLS1, and 
UMLS2. These three lists were used in our previous research 
and had reasonably broad coverage [14].

The first list of symptoms, named Wiki, was intended to 
capture symptoms expressed in layperson’s terms. This list 
was developed using the Wikipedia list of symptoms [32] 
in combination with those from previous work [33]. The 
list named UMLS1 involves terms from the UMLS seman-
tic type T184 (sign or symptom). The list named UMLS2 
extends the UMLS1 with additional semantic types involv-
ing T048 (mental or behavioral dysfunction) and T033 (find-
ing). The UMLS1 and UMLS2 lists were generated using a 
local database installation of the UMLS. Table 1 shows sta-
tistics about these three symptom lists. Of these three, Wiki 
has the fewest symptoms but the highest number of syno-
nyms per symptom, indicating that Wiki may include the 
most variants for a symptom. When comparing UMLS2 and 
UMLS1, adding T048 and T033 semantic types enlarged the 
number of symptoms almost 30 times, from 2733 to 68,720, 
but decreased the synonyms per symptom from 3.99 to 1.66.

2.1.4 � Drug Lists

We started with drug names mentioned in the two data 
sources and used the RxNorm from the UMLS database 
to map these to their generic names. RxNorm provides 
normalized names for clinical drugs available in the USA 

and links the names to many of the drug vocabularies com-
monly used in pharmacy management and drug interaction 
software [34]. We expanded the list by adding known trade 
names that could be matched to generic names. The final list 
involves trade names as synonyms for their generic names.

2.2 � Methodology Framework

Figure 1 illustrates the proposed four-step pipeline for pro-
cessing data and generating, combining, and evaluating 
ADR signals: (1) processing Twitter data by applying NLP 
and filtering methods to obtain structured coded data, (2) 
applying the MCEM method to generate signals from each 
data source, (3) combining signal scores from disparate data-
bases with an empirical Bayesian approach, and (4) evaluat-
ing signal scores using a reference standard.

2.2.1 � Processing Twitter Data

In our previous study, we manually annotated tweets using 
predefined named entities (NEs) from symptom lists and 
drug lists [35] and trained a linear chain conditional ran-
dom field model [36]. The data set contains 1300 tweets 
with 253 mentions of diseases, 233 mentions of pharma-
cological substances, and 764 mentions of symptoms. The 
F1 performance of our system on this data set is 0.633 for 
diseases, 0.658 for pharmacological substances, and 0.679 
for symptoms. The data set is available in our previous 
study (https​://githu​b.com/IBMMR​L/medin​fo201​5).

We applied this model to identify tweets that mentioned 
relevant symptoms or drugs, resulting in approximately 
230 million tweets. Note that most tweets were filtered 
out in this step. Furthermore, we used a mixed rule-based 
and machine learning pipeline to identify ADR-relevant 
tweets. First, we required tweets to mention drugs that 
appear in FAERS (18.9 million tweets, accounting for 
8.4% of tweets from the last step). Second, we required 
a tweet to mention both a symptom (“disease” or “symp-
tom”) and a drug (“pharmacological substance”) (553,000 
tweets). Third, we developed a stop word list to remove 
mentions of erroneous drug names that we manually 
identified, such as “stay awake” (approximately 393,000 
tweets). Fourth, we filtered out tweets that were adver-
tisements, removing text that contained the token “http”, 
assuming that these were linked to advertisements, spam, 
or news articles. We also removed tweets containing the 
word “fact” since much of the spam used Twitter user-
names such as “@AcneFacts”, “@thegoogleFact”, “@
WhatTheFacts”, and “@FactBook”. Fifth, we removed 
tweets with drug terms that were too general, such as caf-
feine, cough syrup, vitamin D, zinc, and pain killer. After 
this step, 192,000 tweets were retained for the rest of our 
analysis. We previously tried to apply a machine learning 

Table 1   Symptom lists statistics

UMLS Unified Medical Language System

List Symptoms Unique syno-
nyms

Synonyms/symp-
tom

Wiki 183 2016 11.74
UMLS1 2733 8654 3.99
UMLS2 68,720 105,721 1.66

https://github.com/IBMMRL/medinfo2015


896	 Y. Li et al.

method to filter out tweets that were indeed a treatment 
relationship between a drug and a symptom or disease 
rather than an ADR relationship, but the performance was 
quite poor [14], so we did not use this method in this study.

2.2.2 � Generating Signals from FAERS Using Monte Carlo 
Expectation Maximization (MCEM)

MCEM is a modified version of the gamma Poisson shrink-
age (GPS) model, with the aim to cope with the multidrug 
problem. The method assumes that each AE in each case 
report is caused by only one drug and then iteratively modi-
fies the effective samples based on GPS signals (expecta-
tion step) and recalculates the GPS signals (maximization 
step) [28]. An independent comparison study showed that 
MCEM had the second highest area under the receiver oper-
ating characteristics (ROC) curve (AUC) and the highest 
Youden’s index [37] compared with other traditional dispro-
portionality methods and performed very well in terms of 
high specificity based on its data set and evaluation strategy 
[38]. We used this method to generate signals from FAERS 
from 2012 to 2014.

2.2.3 � Generating Signals from Twitter Data using MCEM

We considered each qualified Twitter post as a case report 
that could have been submitted to FAERS, so a single tweet 
that mentioned a drug name and an AE was a unit of analy-
sis, and the overall qualified tweets were considered as an 
SRS. We mapped this tweeter-based SRS to a two-dimen-
sional contingency table and used the MCEM to compute 
the associations, or signal scores. The time period was from 
2012 to 2014.

2.2.4 � Using an Empirical Bayesian Method to Synthesize 
Signals from Twitter and FAERS

We employed an empirical Bayesian strategy to combine 
drug safety signals obtained from FAERS and Twitter 
[28]. We cast the signal combination problem as a Bayes-
ian hierarchical model that assumes signals from each 
source are independently and identically distributed with 
shared hyper-parameters. Mathematically, we indexed 
drug–ADR pair (i, j) with l ∈ {1, ..., L} , and ylk as the 
quantified relationship between lth drug–ADR pair from 
kth ( k ∈ {1, ...,K} ) data source. In addition, we defined 
�2

lk
= Var

(
ylk

)
 as the observed variance of ylk . Then, the 

objective became to estimate the combined score �l for the 
lth drug–ADR pair with Y =

{
ylk

}
 and S =

{
�2

lk

}
 . Here, we 

assumed the observed scores yl1, ..., ylK followed a Gauss-
ian process centered around �l , where �l followed a Gauss-
ian distribution centered around grand prior mean � , which 
allows related signals to share statistical properties. These 
relations are given by the distributions defined in Eq. 1:

and the signal combination is computed as the estimate of 
�l as given by Eq. 2:

where y(l) is a summary statistic that is meant to summarize 
the signal scores provided by each data source for a given 
drug–ADR association. The summary statistic y(l) is for 
approximating the joint density of the scores and � , which 
is used to obtain the posterior distribution of � and 
cl =

�2

�2+�2

l

 . In addition, we denoted 𝜙̂l as the mean of the 

posterior distribution of �l given � , �2 and the scores.

(1)p
(
y(l)|�l, �

)
∼ N

(
�l, �

2

l

)
p
(
�l|�

)
∼ N

(
�, �2

)
,

(2)𝜙̂l = cly
(l) +

(
1 − cl

)
𝜃,

Fig. 1   Processing pipeline for generating, combining and evaluating adverse drug reaction signals produced by Twitter, FAERS, and the com-
bined system. FAERS US FDA Adverse Event Reporting System, MedDRA Medical Dictionary for Regulatory Activities
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In Eq. 1, we estimated �2 and � via expectation maxi-
mization with the independently distributed observations 
y(l) conditioned on �l . Thus, we could perform a maximum 
likelihood estimation of the hyper-parameters using the 
posterior distribution of � given the scores and their vari-
ances in each iteration. Here, we defined y(l) such that the 
signal sources with less uncertainty would be emphasized 
more. To be specific, y(l) was calculated as a weighted 
average of the scores obtained by the same source first, 
then the average of the variances of individual scores was 
used as a weighting coefficient to combine different data 
sources. The formula is given in Eqs. 3 and  4.

where Nk is the number of signals from the kth source.
Our signal combination step can be viewed as a pool-

ing strategy. For the same drug–ADR pair, if the aver-
age uncertainty of one data source is high overall, then 
signal combination will have more weights on other data 
sources with less uncertainty. This approach also pro-
vides a smoothing effect: since each drug–ADR pair has 
safety scores from several sources, combining signals from 
multiple sources will prevent the performance of signal 
detection from degradation when there is artifact or data 
anomaly in one or more sources.

2.3 � Evaluation

2.3.1 � Reference Standard

To perform appropriate evaluation of the proposed system, 
we used a reference standard consisting of a set of positive 
controls (drug–ADR pairs known as true ADR relation-
ships) and a set of negative controls (drug–medical condition 
pairs less likely to be associated). Several reference stand-
ards are used in pharmacovigilance, including the Obser-
vational Medical Outcomes Partnership (OMOP) reference 
standard [39], the EU-ADR reference standard [40], and a 
time-indexed reference standard [41]. However, most of the 
drug–ADR pairs in these reference standards are related to 
serious ADRs that are rarely mentioned in Twitter. There-
fore, we chose to develop a reference standard based on Side 
Effect Resource (SIDER), a database that contains infor-
mation on marketed medicines and their recorded ADRs 
[27] and has broader coverage for both drugs and ADRs, 
especially for mild ADRs. Its information is extracted 
from public documents and package inserts and is updated 

(3)

y(l) =

K�
k=1

⎧
⎪⎨⎪⎩

1

∑Nk

m=1

�∑L

l=1
�2

lm
∕Nk

� ×

∑Nk

m=1

�∑
k ylm∕�

2

lm

�
∑Nk

m=1

�∑
k 1∕�

2

lm

�
⎫
⎪⎬⎪⎭
,

(4)�2

l
= Var

(
y(l)

)
,

periodically. This database involves 1430 drugs and 5868 
ADRs, resulting in 139,756 unique drug–ADR pairs [42]. 
We developed a reference standard wherein we regarded all 
drug–side effect pairs in SIDER as positive controls. The 
selection of negative controls was modeled by pairing each 
drug that appeared in the set of positive controls with one 
event that appeared in SIDER. We further removed each of 
the pairs that also appeared in the set of positive controls. 
Note that negative controls lack scientific support in this ref-
erence standard and might actually be positive controls. Fur-
thermore, we restricted the evaluation to drug–ADR pairs for 
which Twitter contained at least one post and FAERS con-
tained at least one case report. The minimum number of case 
counts was to ensure numeric stability in the signal detection 
estimates. Since Twitter was processed using three different 
symptom lists, the reference standard may vary when taking 
these three lists into account. Based on the three abovemen-
tioned reference standards, we compared the performance 
of the proposed combination system against that of signal 
scores generated by a baseline combination system and each 
data source independently. Performance was measured using 
the AUC. To test whether the differences in AUCs based 
on the different combination systems and individual sys-
tems were statistically significant, we computed a two-sided 
p-value under the null hypothesis that there is no difference 
between the AUCs of the two systems. The tests were com-
puted using a bootstrapping method [43].

2.3.2 � Baselines

To evaluate the proposed method, we compared it with 
the method proposed by Harpaz et al [44] which is also 
an empirical Bayesian method that combines ADR signals 
from multiple sources, where ADR signal scores mined 
from each data source are modeled concomitantly using a 
Bayesian two-stage normal/normal model whose two hyper-
parameters are estimated from the data. Unlike our method, 
which takes a heterogeneous view by weighting each source 
according to their reliability measured by the score variance 
within each data source, it considers different data sources 
homogeneously.

3 � Results

We acquired four data sets for further signal analysis and 
synthesis: Twitter Wiki, Twitter UMLS1, Twitter UMLS2, 
and FAERS. The characteristics of these four data sets are 
reported in Table 2. Using the Wiki symptom list obtained 
fewer ADRs (e.g., 40) than using the UMLS symptom 
lists (55 and 69, respectively). Using different symptom 
lists affected the number of drugs, the number of tweets, 
and consequently the derived statistics such as number of 
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unique drug–ADR pairs indirectly since we implemented a 
rule that a tweet should mention both a symptom (“disease” 
or “symptom”) and a drug (“pharmacological substance”). 
Specifically, the numbers of drugs increased from 286 to 
298, the numbers of relevant tweets increased from 55,867 
to 72,008, the numbers of drug–ADR pairs increased from 
1626 to 2036 using Wiki, UMLS1, and UMLS2, respec-
tively. Meanwhile, FAERS involved 2.3 million reports dur-
ing the same time span covering 3639 drugs, 15,173 ADRs, 
and 2.4 million unique drug–ADR pairs. In general, FAERS 
had higher rates of drugs per ADR and ADRs per drug than 
did Twitter, indicating that FAERS has broader coverage 
regarding ADR reports. Twitter had a higher rate of drugs 

per ADR than of ADRs per drug, whereas FAERs had a 
higher rate of ADRs per drug than of drugs per ADR.

Table 3 shows the top ten most frequently reported drugs 
and ADRs. The top ten drugs were almost the same for the 
three Twitter data sources, with the only exception that pseu-
doephedrine was in the top ten for UMLS2 but aspirin was in 
top ten for the other two Twitter sources. The top ten ADRs 
varied more than the top ten drugs, as the three symptom 
lists used were directly applied to identify symptoms that 
were potential candidates for ADRs. The top ten drugs in 
FAERS differed from those in the Twitter sources, and only 
aspirin and acetaminophen appeared in both FAERS and 
Twitters. The top ten ADRs in FAERS overlapped with the 

Table 2   Summary statistics for four data sets

ADR adverse drug reaction, FAERS US FDA Adverse Event Reporting System, UMLS Unified Medical Language System
a Number of drug–ADR pairs is bigger than the number of reports because multiple drugs and events were mentioned in a single case report
b Drugs per ADR is the average number of unique drugs that are mentioned with an ADR; ADRs per drug is the average number of unique ADRs 
that are mentioned with a drug

Data source Reports (N) Drugs (N) ADRs (N) Drug–ADR pairs (N) Drugs per ADRb ADRs per drugb

Twitter Wiki 55,867 286 40 1626 41.69 5.71
Twitter UMLS1 64,195 290 55 1768 32.74 6.12
Twitter UMLS2 72,008 298 69 2036 29.94 6.86
FAERS 2.3 milliona 3639 15,173 2.4 milliona 159.42 664.72

Table 3   The top ten most 
frequently reported drugs and 
adverse drug reactions in each 
data source

ADR adverse drug reaction, FAERS US FDA Adverse Event Reporting System, UMLS Unified Medical 
Language System

Data Source Twitter Wiki Twitter UMLS1 Twitter UMLS2 FAERS

Top ten drugs Acetaminophen Acetaminophen Acetaminophen Aspirin
Hydrocodone Hydrocodone Hydrocodone Etanercept
Diphenhydramine Diphenhydramine Diphenhydramine Adalimumab
Oxycodone Oxycodone Oxycodone levothyroxine
Caffeine Caffeine Caffeine Omeprazole
Phenylephrine Dextromethorphan Dextromethorphan Acetaminophen
Dextromethorphan Menthol Phenylephrine Amlodipine
Menthol Phenylephrine Menthol Furosemide
Ibuprofen Ibuprofen Ibuprofen Prednisone
Aspirin Aspirin Pseudoephedrine Multivitamin preparation

Top ten ADRs Pain Pain Pain Nausea
Headache Headache Headache Drug ineffective
Dizziness Dizziness Dizziness Fatigue
Nausea Nausea Nausea Dyspnea
Sleepy Itching Drowsiness Pain
Itching Emesis Itching Diarrhea
Fainting Fainting Emesis Headache
Cough Cough Fainting Death
Back pain Backache Cough Vomiting
Back ache Insomnia Backache Dizziness
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Twitter data sources for four exact ADR terms (nausea, pain, 
headache, dizziness) and several similar terms (e.g., vomit-
ing and emesis). Death is a serious ADR that only appeared 
in the top ten ADRs from FAERS.

The ROC AUC evaluations were based on the drug–ADR 
pairs that occurred in Twitter, FAERS, and the reference 
standard. Thus, the numbers of positive controls and nega-
tive controls varied when we intersected one of the Twit-
ter data sets with FAERS and the reference standard, as 
shown in Table 4. The signal scores generated based on 
FAERS alone and Twitter alone were measured using the 
lower 5th percentile of MCEM output. When evaluated 
against their related reference standards, the FAERS data 
alone always achieved the highest AUCs (0.642, 0.613, and 
0.612) compared with Twitter Wiki, Twitter UMLS1, and 
Twitter UMLS2, respectively. The proposed combination 
resulted in AUCs of 0.637, 0.578, and 0.595, respectively. 

These numbers were higher than the AUCs of the baseline 
combination method across the board. The Twitter sources 
alone always had the worst AUCs (0.534, 0.532, and 0.525, 
respectively). The differences in AUCs for the three Twit-
ter sources alone were small, although the evaluations were 
based on different reference standards.

The p-values in Table 5 indicate that AUC differences 
between FAERS data alone and Twitter data alone, and 
between FAERS data alone and the baseline combination, 
were statistically significant (e.g., their two-sided p values 
were < 0.05). The proposed combination system achieved 
a comparable AUC with FAERS alone when using Twit-
ter Wiki and FAERS data sets but performed significantly 
worse in other scenarios. In general, the combination sys-
tems achieved better AUCs than Twitter, although some 
were not significant. Similarly, the proposed combination 
system achieved a significantly better AUC than the baseline 

Table 4   The AUCs of signal 
detection performance for 
Twitter, FAERS, and combined 
systems using relevant reference 
standards

ADR adverse drug reaction, AUC​ area under the receiver operating characteristics curve, FAERS US FDA 
Adverse Event Reporting System, UMLS Unified Medical Language System

Data source Method AUC​ Positive con-
trols (N)

Negative 
controls 
(N)

Twitter Wiki and FAERS FAERS alone 0.642 489 348
Twitter alone 0.534 489 348
Baseline combination 0.603 489 348
Proposed combination 0.637 489 348

Twitter UMLS1 and FAERS FAERS alone 0.613 455 390
Twitter alone 0.532 455 390
Baseline combination 0.578 455 390
Proposed combination 0.587 455 390

Twitter UMLS2 and FAERS FAERS alone 0.612 465 456
Twitter alone 0.525 465 456
Baseline combination 0.572 465 456
Proposed combination 0.595 465 456

Table 5   Two-sided p values 
for the hypothesis test of no 
difference in AUC performance 
between two methods

ADR adverse drug reaction, AUC​ area under the receiver operating characteristics curve, FAERS US FDA 
Adverse Event Reporting System, UMLS Unified Medical Language System

Data source Method Twitter alone Baseline 
combination

Proposed 
combination

Twitter Wiki and FAERS FAERS alone 0.0005 0.0003 0.2037
Twitter alone – 0.0422 0.0011
Baseline combination – – 0.0013

Twitter UMLS1 and FAERS FAERS alone 0.0103 0.0103 0.0031
Twitter alone – 0.1830 0.1096
Baseline combination – – 0.4314

Twitter UMLS2 and FAERS FAERS alone 0.0029 0.0024 0.0106
Twitter alone – 0.1665 0.0328
Baseline combination – – 0.0563
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method when using Twitter Wiki and FAERS data sets 
(p = 0.0013). Figure 2 shows the resulting ROC curves for 
the signal detection based on each individual data source and 
two combination systems.

We further examined whether different data sources 
had an advantage when detecting a particular set of ADRs. 
Table 6 shows that different ADRs were more effectively 
detected by different systems. Note that the significance test 
was not conducted for these individual ADRs because of 
insufficient samples.

4 � Discussion

Although the top reported ADRs were similar between Twit-
ter and FAERS (Table 3), our study suggests that Twitter 
postings of drug-related AEs tend to focus on much fewer 
AEs (about 80) than in FAERS (about 15,000) and less-
serious AEs, such as dizziness, pain, and nausea, which 
affect quality of life rather than being clinically serious and 
significant AEs. This is also why we could not evaluate the 
overall study using two well-known reference standards, 
namely OMOP reference standard [39] and time-indexed 
reference standard of ADRs [41], both of which focus more 
on serious and clinically significant ADRs.

As Freifeld et al. [45] suggested, AE reports from social 
media sources should not be pooled with those from conven-
tional postmarketing sources since the influx of non-serious 
AEs may dilute the serious AEs. Our combination method 
avoids this pooling procedure at the case report level and 
can synthesize the analysis at the signal level. Overall, our 
combination system can boost the performance of signal 
detection based on Twitter data alone by leveraging infor-
mation from FAERS. In addition, our combination system 
can achieve comparable AUCs with the FAERS for some 
combination data sets, although signal detection based on 
FAERS alone achieves the best AUC performance across the 
board. We must also understand that social media provides 
information in real time, whereas the first mention of an AE 
in FAERS might take significant time, e.g., several years, 
which supports the use of social media as a complementary 
source of adverse events.

The proposed combination system cannot achieve bet-
ter performance by synthesizing the signal scores from 
FAERS and Twitter when compared with each data source 

(a)Twitter Wiki and FAERS 

(b) Twitter UMLS1 and FAERS 

(c) Twitter UMLS2 and FAERS

Fig. 2   Receiver operating characteristic curves for signal scores 
based on Twitter, FAERS, and two combination systems. a Twit-
ter Wiki, and FAERS; b Twitter UMLS1, and FAERS; c Twitter 
UMLS2, and FAERS. FAERS US FDA Adverse Event Reporting 
System, UMLS Unified Medical Language System

▸
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alone. This result differs from those in our previous study, 
whereas the combined system can achieve significantly 
better AUCs than can FAERS or observational healthcare 
data such as EHRs and medical claims data alone [28]. 
This observation is consistent with those from other com-
bination methods. It may indicate that the poor quality of 
information extracted from Twitter means that data are not 
ready to be integrated into any combination systems that 
are merely using data-driven methods. A possible way to 
improve the proposed combination system is to incorpo-
rate the expert knowledge through Bayesian probability 
theory by giving different weights to evidence from inde-
pendent sources of information.[46].

This study has several limitations. First, our study only 
used Twitter data, the character restrictions on which may 
prevent users from discussing complex AEs. Thus, we are 
uncertain as to whether our findings could be general-
ized to other social media data sources such as patient 
forums. Second, the set of symptoms that our system 
identified was limited to self-reported symptoms that 
do not include ADRs identified in laboratory tests (e.g., 
blood test-derived ADRs). Third, the annotation method 
for processing Twitter data could not detect negated NE 
recognition. For example, a post that mentioned “I’m just 
not sleepy tonight” was annotated as “sleepy” (a poten-
tial AE symptom) by the NE tagger; however, the correct 
AE should be “insomnia”. This finding suggested that we 
needed to incorporate modification such as negation in 
the annotation method. Although the observation period 
for the Twitter data was from 2012 to 2014, reflecting a 
relatively aged data set, the overall combination system 
aimed to demonstrate the feasibility of using a statistical 
method to synthesize signals from FAERS and Twitter. 
This combination system could be generalized to com-
bine FAERS with more recent Twitter data. Fourth, the 
current study design could not confirm whether Twit-
ter could identify some ADR signals earlier than could 
traditional pharmacovigilance approaches. This requires 
a benchmark that can support prospective performance 
evaluations.

5 � Conclusions

We presented a large-scale, efficient, and effective approach 
to systematically combine signals from Twitter and FAERS. 
Compared with signal detection solely using Twitter data, 
our combination system synthesizing signals from both 
FAERS and Twitter had significantly improved performance. 
However, given the several limitations associated with the 
data and reference standard used in this study, we cannot 
reach definitive conclusions regarding the usefulness of 

Ta
bl

e 
6  

A
dv

er
se

 d
ru

g 
re

ac
tio

ns
 w

ith
 th

e 
be

st 
ar

ea
 u

nd
er

 th
e 

re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
s c

ur
ve

 in
 o

ne
 o

f t
hr

ee
 sy

ste
m

s o
r a

re
 u

nd
et

er
m

in
ed

FA
ER

S 
U

S 
FD

A
 A

dv
er

se
 E

ve
nt

 R
ep

or
tin

g 
Sy

ste
m

FA
ER

S
Tw

itt
er

C
om

bi
na

tio
n 

Sy
ste

m
U

nd
et

er
m

in
ed

A
bd

om
in

al
 p

ai
n,

 b
ur

ni
ng

 se
ns

at
io

n,
 c

on
sti

pa
-

tio
n,

 d
iz

zi
ne

ss
, d

ry
 sk

in
, fl

us
hi

ng
, h

un
ge

r, 
na

us
ea

, r
as

h,
 to

ot
ha

ch
e,

 tr
em

or

A
nx

ie
ty

 d
is

or
de

r, 
ba

ck
 p

ai
n,

 c
he

st 
pa

in
, 

co
ug

h,
 fa

tig
ue

, h
un

ge
r, 

le
th

ar
gy

, p
ai

n,
 

se
iz

ur
e,

 th
irs

t

A
gi

ta
tio

n,
 a

nx
ie

ty
, d

iz
zi

ne
ss

, f
at

ig
ue

, h
ea

d-
ac

he
, i

ns
om

ni
a,

 m
ya

lg
ia

, n
au

se
a,

 v
er

tig
o

A
bd

om
in

al
 d

is
co

m
fo

rt,
 a

lc
oh

ol
is

m
, a

lo
pe

ci
a,

 
am

ne
si

a,
 a

rth
ra

lg
ia

, b
lin

dn
es

s, 
ch

ill
s, 

dr
oo

l-
in

g,
 d

ry
 e

ye
, d

ry
 m

ou
th

, e
ar

 p
ai

n,
 e

ar
 p

ru
rit

us
, 

ey
e 

pr
ur

itu
s, 

fla
tu

le
nc

e,
 h

yp
er

so
m

ni
a,

 m
al

ai
se

, 
ov

er
w

ei
gh

t, 
si

nu
s h

ea
da

ch
e,

 sn
ee

zi
ng

, s
no

r-
in

g,
 so

m
no

le
nc

e,
 st

ar
va

tio
n,

 st
re

ss
, t

hr
oa

t 
irr

ita
tio

n,
 w

he
ez

in
g



902	 Y. Li et al.

social media data to supplement conventional postmarketing 
surveillance. Future research directions involve incorpora-
tion of patient and health websites, expanding the scope of 
the reference standard, considering the time dimension of 
signal detection, and weighting evidence according to its 
fidelity.
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