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A B S T R A C T   

As low-field MRI technology is being disseminated into clinical settings around the world, it is important to assess 
the image quality required to properly diagnose and treat a given disease and evaluate the role of machine 
learning algorithms, such as deep learning, in the enhancement of lower quality images. In this post hoc analysis 
of an ongoing randomized clinical trial, we assessed the diagnostic utility of reduced-quality and deep learning 
enhanced images for hydrocephalus treatment planning. CT images of post-infectious infant hydrocephalus were 
degraded in terms of spatial resolution, noise, and contrast between brain and CSF and enhanced using deep 
learning algorithms. Both degraded and enhanced images were presented to three experienced pediatric neu-
rosurgeons accustomed to working in low- to middle-income countries (LMIC) for assessment of clinical utility in 
treatment planning for hydrocephalus. In addition, enhanced images were presented alongside their ground- 
truth CT counterparts in order to assess whether reconstruction errors caused by the deep learning enhance-
ment routine were acceptable to the evaluators. Results indicate that image resolution and contrast-to-noise ratio 
between brain and CSF predict the likelihood of an image being characterized as useful for hydrocephalus 
treatment planning. Deep learning enhancement substantially increases contrast-to-noise ratio improving the 
apparent likelihood of the image being useful; however, deep learning enhancement introduces structural errors 
which create a substantial risk of misleading clinical interpretation. We find that images with lower quality than 
is customarily acceptable can be useful for hydrocephalus treatment planning. Moreover, low quality images may 
be preferable to images enhanced with deep learning, since they do not introduce the risk of misleading infor-
mation which could misguide treatment decisions. These findings advocate for new standards in assessing 
acceptable image quality for clinical use.   

1. Introduction 

With an estimated 400,000 new cases worldwide each year, child-
hood hydrocephalus is the most common pediatric condition requiring 
neurosurgery globally (Dewan et al., 2018). Over 90% of cases occur in 
low- and middle-income countries (LMIC) (Dewan et al., 2018). In sub- 
Saharan Africa, approximately 180,000 infants per year are affected 

(Warf, 2013). Hydrocephalus is characterized by a build up of intra-
cranial cerebrospinal fluid (CSF) that, in infants, causes the head to 
enlarge. These infants need surgical treatment to survive requiring 
intracranial imaging for planning. In planning surgery it is important to 
know where the CSF is in relation to brain, and how many compartments 
are loculated where fluid is trapped. An imaging technology capable of 
showing contrast between brain and CSF at an appropriate resolution is 

* Corresponding author at: W311 Millennium Science Complex, University Park, PA 16802, USA. 
E-mail address: steven.j.schiff@gmail.com (S.J. Schiff).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2021.102896 
Received 21 July 2021; Received in revised form 27 October 2021; Accepted 22 November 2021   

mailto:steven.j.schiff@gmail.com
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2021.102896
https://doi.org/10.1016/j.nicl.2021.102896
https://doi.org/10.1016/j.nicl.2021.102896
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage: Clinical 32 (2021) 102896

2

required. We have previously suggested that a voxel size approaching 
100 mm3 (e.g 3 × 3 × 10 mm3) could be sufficient for planning treat-
ment (Obungoloch et al., 2018). 

The brain is an organ where the soft tissue and fluid encased within 
the skull have limited alternatives for imaging. Ultrasound is only 
effective within the first year of life before skull fusion closes the 
acoustical windows of the fontanels. The ionizing radiation associated 
with CT poses exceptional risks to infants (Frush et al., 2003; Brenner 
and Eric, 2007); however, in sub-Saharan Africa CT is more prevalent 
than MRI (World Health Organization, 2011) due to its lower cost. 
Although MRI is the gold standard for pediatric neuro-imaging, the high 
cost, strict siting requirements, and demanding maintenance schedule 
render high-field cryogenic systems infeasible for most of the developing 
world (Gatrad et al., 2007; Klein, 2015; Malkin, 2007; World Health 
Organization, 2011). 

According to a 2014 baseline country survey on medical devices 
conducted by the World Health Organization, Uganda has 0.45 CT 
machines per million people and only 0.08 MRI machines per million 
people. By comparison, a high income country such as the Netherlands, 
has 12 CT and 12 MRI machines per million people (roughly 27 times 
more CT/million and 150 times more MRI/million people) (World 
Health Organization, 2011). Placed in the context of new hydrocephalus 
cases per year, with rates at least 10 times more per year in Africa than in 
Europe (Dewan et al., 2018), the clinical need for globally sustainable 
diagnostic imaging devices is clear. Low-field MRI devices have been 
recently developed that are feasible for the developing world and show 
diagnostic promise for the treatment and management of illnesses such 
as hydrocephalus (Obungoloch et al., 2018; O’Reilly et al., 2020; Sheth 
et al., 2020; Cooley et al., 2021). 

The quality of an MRI image ultimately depends on the signal-to- 
noise ratio (SNR) per voxel. Higher field strength systems (>1.5 Tesla) 
can produce increased signal-to-noise and pushing voxel size as low as 
hundreds of micrometers (Rutland et al., 2020). Low-field systems (<0.1 
Tesla) inherently suffer from low signal-to-noise placing limits on 
achievable voxel size and including more baseline noise than most cli-
nicians are accustomed to. Fig. 1 demonstrates the difference in brain 
image quality between a high-field (Fig. 1A) and a low-field (Fig. 1B) 
MRI system. 

The adoption of low-field MRI into clinical practice depends largely 
on a longstanding and recently growing body of evidence that higher 
image quality does not always lead to better diagnostic accuracy or 
better patient outcome (Jhaveri, 2015). In clinical practice there exists a 
threshold of image quality for specific pathologies, above which no 
further outcome-based value can be observed (Durand et al., 2013). It 
has been demonstrated that 0.5 Tesla MRI can be as diagnostically 

accurate as 1.5 Tesla MRI for a variety of diseases including central 
nervous system pathologies (Jack et al., 1990), hepatic lesions (Stein-
berg et al., 1990), and multiple-sclerosis (Lee et al., 1995). It has also 
been shown that a 0.064 Tesla MRI can have comparable diagnostic 
accuracy to a 1.5 Tesla MRI for neoplasms and white matter disease 
(Orrison et al., 1991). Although the threshold of image quality required 
to plan effective hydrocephalus treatment has not been previously 
explored, we hypothesized that the level of resolution, tissue contrast, 
and SNR provided by CT or high-field MRI substantially exceeds this 
threshold. 

Various machine learning-based methods have previously been used 
to perform super-resolution enhancement of low-quality MRI images. 
Interpolation based methods (Lehmann et al., 1999) are simple to 
implement but lack prior information often resulting in blurring. Model- 
based methods (Manjón et al., 2010; Manjón et al., 2010; Shi et al., 
2015) explore the stochastic mechanism in the MRI generating process 
and model it with prior information; nevertheless, the design of a suit-
able regularization for the model can be difficult. Learning-based 
methods have the advantage of modeling and learning the mapping of 
low-quality images to high-quality images from data alone (Alexander 
et al., 2014; Yang et al., 2010; Wang et al., 2014; Jia et al., 2017). 
Recently, deep learning has shown impressive performance in the field 
of super-resolution of MRI (Chen et al., 2018; Pham et al., 2017; Zhu 
et al., 2018; Cherukuri et al., 2019; Cherukuri et al., 2017). 

In the present work, we assess the diagnostic utility of reduced- 
quality and deep learning enhanced images for hydrocephalus treat-
ment planning. We focus on the most common form of infant hydro-
cephalus in sub-Saharan Africa – postinfectious (Paulson et al., 2020). 
This form of hydrocephalus is uncommon outside of LMIC (Dewan et al., 
2018), and the only abundant high-resolution comparative images are 
from CT. We developed an image utility assessment which was 
completed by three senior neurosurgeons with extensive experience in 
the treatment and management of hydrocephalus in low-resource set-
tings (Kulkarni et al., 2017; Paulson et al., 2020; Schiff et al., 2021). 
Qualitative and quantitative measures of image utility are used to 
classify images revealing the quality threshold for treatment planning of 
hydrocephalus in terms of resolution, noise, and contrast between brain 
and CSF. We further evaluate how machine learning can lead to 
misleading modifications during the enhancement of low-resolution 
imagery. 

2. Methods 

Three experienced pediatric neurosurgeons accustomed to working 
in LMIC, with particular experience in interpretation of postinfectious 

Fig. 1. A comparison of the image 
quality between a high-field (3T) and a 
low-field (0.05 T) image of the brain of 
the same volunteer taken at the Leiden 
University Medical Center. A) A 256 ×
256 3D T1 weighted TFE with Field of 
View: 200 × 175 × 156 mm, Resolu-
tion: 1.15 × 1.15 × 1.2 mm, TR/TE/TI 
= 9.8 ms/4.6 ms/1050 ms, ETL  = 166, 
scan duration: 3 min 13 s; B) A 128 ×
128 image at 0.05 T with Field of view: 
256 × 256 × 200mm, Resolution: 2 ×
2 × 4 mm, TR/TE  = 400 ms/15 ms, 
echo train length  = 6, scan duration: 7 
min 7 s.   
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hydrocephalus imagery of African infants, were chosen as participants in 
the image utility assessment. CT images were acquired from a repository 
of 90 patients enrolled in an ongoing randomized clinical trial (median 
age of 3.1 months, 39% female Kulkarni et al., 2017) and treated at the 
CURE Children’s Hospital of Uganda for post-infectious hydrocephalus. 
The center-most image slice from each patient was chosen for the 
assessment as either a test image (10 randomly selected, Fig. S5) or a 
learning library image (remaining 80). The images are 512 × 512 with 
0.4 mm resolution (20.48 cm field of view). Each slice is 5 mm thick. 

The 10 test images were degraded in terms of resolution, noise, and 
contrast between brain and CSF. Since the field of view remained con-
stant for all images, resolution was adjusted by reducing the matrix size 
of the image. Because of this relationship, we adopt the term ”resolu-
tion” to describe changes in image matrix size for the present work. An 
image parameter space, as shown in Fig. 2A-B, was constructed con-
sisting of the variables: 1) resolution (32 × 32, 64 × 64, 128 × 128, 512 
× 512); 2) contrast reduction (20 levels between 0 and 1), 3) and noise 
added (20 levels between 0 and 1) resulting in 1,600 possible parameter 
combinations. 

Resolution was down-sampled from the 512 × 512 image using bi- 
linear interpolation. The averaging between pixels in bi-linear 

interpolation can be considered an approximation of a partial volume 
effect. 

Contrast between brain and CSF was reduced using histogram 
compression (Fig. S6), an algorithm developed specifically for this 
purpose. In histogram compression the histogram of gray-scale values 
for brain and CSF are iteratively compressed into a smaller gray-scale 
bandwidth to simulate loss in tissue contrast. 

Gaussian noise with mean equal to variance was added according to 
known noise characteristics of CT images (Diwakar and Kumar, 2018). 
Since lower resolution images are more sensitive to noise, the noise 
added was scaled by clinical inspection for each resolution so that both 
useful and not useful images would be represented. The noise variance 
added was scaled by resolution as follows and normalized to the 
maximum value: from 0 to 0.001 (32 × 32), 0 to 0.01 (64 × 64), 0 to 
0.05 (128 × 128, and 0 to 0.13 (512 × 512). 

In Cherukuri et al. (2019) and Cherukuri et al. (2017), deep learning 
networks took advantage of low-rank structural prior information to 
enhance low quality images. Building on this work, we developed a deep 
learning network capable of simultaneously enhancing and segmenting 
CT images of infant hydrocephalus that have been artificially degraded. 
Following the DenseNet network described in Guo et al. (2019), a single 

Fig. 2. Schematic of study. In A) the image parameter space describing all possible combinations of noise, contrast between brain and CSF, and image resolution are 
visualized. There is likely to be a region of parameter combinations yielding images which are useful for hydrocephalus treatment planning (green volume), a region 
of parameter combinations that are not useful (red volume), and a region of uncertainty in between (orange volume). In B) we show a single plane from image 
parameter space in which all images have 512 × 512 resolution. The lower right corner has maximum contrast between brain and CSF and least noise considered in 
this study and the upper left corner has the lowest contrast and most noise. In C) the starred image from panel B) is chosen to be enhanced with a single encoder dual 
decoder (SEDD) architecture following the DenseNet network described in (Guo et al., 2019; Cherukuri et al., 2019). The output of such enhancement is seen in the 
upper panel of D) with corresponding segmentation in the lower panel of D). The ground truth version of the enhancement and segmentation from the original image 
without degradation or enhancement is shown in E) and called “ground truth”. 
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encoder dual decoder (SEDD) architecture was used to enhance CT im-
ages that have reduced quality. Deep learning networks, as shown in 
Fig. 2C-E, were trained for two resolutions (64 × 64 and 128 × 128) at 
seven locations in parameter space using library images. With noise 
added as the x-coordinate and contrast reduction as the y-coordinate, 
networks were trained for both resolutions at: 1) (0.3,0.3), 2) (0.6,0.3), 
3) (0.3,0.6), 4) (0.6,0.6), 5) (0.9,0.6), 6) (0.6,0.9), 7) (0.9,0.9) (Fig. S7). 
The least degraded network is network 1. The networks were built by 
degrading the 80 library images at each of the 14 network locations and 
training with the original non-degraded image as ground truth. After 
training, the 10 test images were degraded at the network locations and 
enhanced generating 140 deep learning enhanced images. 

From the 1,600 parameter combinations applied to the 10 test im-
ages, 420 cases were randomly presented to the panel of experts along 
with all 140 deep learning enhanced images. The image utility assess-
ment was divided into two parts. In Part 1, the images were shown in 
140 panels of 4 images each, as shown in Fig. 3A. In each of the 140 
panels, one image location was randomly selected for an enhanced 

image and the other three were degraded images. The expert was not 
told that there would be enhanced images. In each panel, the expert was 
asked to select which, if any, of the 4 images are clinically useful for 
planning hydrocephalus treatment (see Supplementary Methods for full 
instructions). The data from the three experts were combined by addi-
tion of scores for each image in order to be classified as useful, uncertain, 
or not useful. If all three experts agreed that an image was useful, this 
image received a 3 (i.e. Useful). If all experts agreed that an image was 
not useful this image received a 0 (i.e. Not Useful). Uncertain images 
received a score of either 1 or 2. 

In Part 2, the experts were shown enhanced images in a side-by-side 
comparison with their corresponding 512 × 512 non-degraded versions 
as seen in Fig. 4A. The experts were asked to assess whether the spatial 
errors in the enhanced version were acceptable or would alter treatment 
decisions (see Supplementary Methods for full instructions). The data 
from Part 2 were also combined by addition of scores. Part 2 enhanced 
images receiving a 3 were classified as useful (i.e. useful in both Part1 
and Part2), those receiving a 1 or 2 were classified as uncertain, and 

Fig. 3. The figure shows results from Part 1 of the Assessment. In A) we show an example panel from Part 1 of the assessment. The lower left image is an enhanced 
image and all other images are degraded. The experts must indicate which (if any) is useful. The left panel of B) shows raw classification data from Part 1 for 64 × 64 
images. Solid lines are lines of constant contrast-to-noise ratio (CNR). Dashed lines show lines of constant usefulness likelihood from the multivariate logistic 
regression. The right panel of B) shows the receiver operating characteristic curves. In C) we show the univariate logistic regression models for each resolution with 
CNR as the predictor. The diamond and circle datapoints show the calculated CNR values for the low-field and high-field MRI images shown in Fig. 1, respectively. 
Resolution for these images lie between the 128 × 128 and 512 × 512 curves, which overlap for the CNR values reported. The bottom four panels of C) show the raw 
classification data for each resolution. 
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those receiving a 0 were classified as misleading (i.e. useful in Part 1, but 
shown to have unacceptable error in Part 2). 

In addition, an analysis of inter-rater reliability was performed using 
a variation of Cohen’s Kappa, as described in Byrt et al. (1993), which 
accounts for the existence of prevalence in the data and bias between 
evaluators (see Supplementary Methods). For this analysis, the data was 
divided into three parts: 1) classification of Part1 degraded images, 2) 
classification of Part 1 enhanced images, and 3) classification of Part 2 
enhanced images. The Kappa statistic of Byrt et al. (1993) was calculated 
for all possible pairings of evaluators and conclusions regarding agree-
ment were drawn based on the interpretation of Kappa values as sug-
gested in Byrt et al. (1993) and Hallgren (2012). 

Univariate and multivariate logistic regression was used to investi-
gate the ability of contrast, noise, and contrast-to-noise ratio to predict 
image classification. A deviance statistic was used to assess goodness of 
fit of the logistic regression models. The deviance of the model is a chi- 
squared statistic which assesses the difference between the maximum 
log likelihood of the chosen model and that of the null model (i.e. the 
average probability of a classification at a given resolution being useful). 

Predicted Part 1 Part 2
128x128 64x64 128x128 64x64 128x128 64x64

Useful 1 0.88 1 0.97 0.39 0.25

Not Useful - - 0 0.03 - -
Uncertain - - - - 0.46 0.65

Misleading - - - - 0.16 0.10

B)

E)

C)

D)

Ground Truth
Degraded
CNR = 1

Enhanced
CNR = 8

Fig. 4. The figure shows results from Part 2 of the assessment. A) An example panel from Part 2 of the assessment. The left column of images are ground truth and the 
right column are the enhanced versions. B) shows the usefulness likelihood curves based on image CNR. The triangles show the average CNR for each network 
location before enhancement and the circles show the average CNR for each network after enhancement. C) shows the predicted usefulness likelihood of the 
enhanced images based on CNR after enhancement, the actual Part 1 classification of the enhanced images, and the Part 2 re-classification of the enhanced images 
after comparison with ground truth. In D) we compare the usefulness likelihood of the degraded images with the risk of a misleading result if the image is enhanced 
for 128 × 128 images. The left vertical axis shows the usefulness likelihood of the degraded image and the right vertical axis shows the risk of a misleading result if 
the corresponding degraded image were enhanced. In D) we also show an example degraded image on the left with CNR  = 1, the enhanced version of this image on 
the right with CNR` = 8 after enhancement and corresponding high likelihood of misleading results after enhancement. Finally, E) shows the ground truth version of 
the example image in D) for comparison. 
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3. Results 

3.1. Part 1: What makes an image useful? 

We first characterize the relationship between resolution, contrast, 
noise and usefulness. The inter-rater reliability for the classification of 
degraded images shows fair agreement between evaluators 1 and 2 (K  =
0.33), substantial agreement between evaluators 2 and 3 (K  = 0.94), 
and fair agreement between evaluators 1 and 3 (K  = 0.36). For all three 
evaluators, there was a high prevalence for classifying Part 1 enhanced 
images as being useful (see Supplementary results). As such, inter-rater 
reliability calculations for this data are not informative and all evalua-
tors are in near perfect agreement. In Fig. 3A we show several degraded 
images, of which the lower left is enhanced by deep learning. The left 
panel of Fig. 3B shows how the contrast and noise of each image relates 
to the image classification determinations at 64 × 64 resolution (see 
Fig. S10 for full dataset results). The solid contour lines in Fig. 3B show 
lines of constant contrast-to-noise ratio between brain and CSF averaged 
from the full dataset of images. In comparison, the dotted lines show 
constant usefulness likelihood based upon a multivariate logistic 
regression model with contrast and noise as predictors. For images with 
each of the four resolutions considered, the multivariate logistic 
regression model provided a significant fit with p-values less than 0.01 
(p32 × 32 = 7e-6, p64 × 64 = 4e-27, p128 × 128 = 2e-17, p512 × 512 = 8e-32). 
Note that there is qualitative agreement between the average contrast- 
to-noise contours and the lines of constant likelihood that the image is 
useful. On the right of Fig. 3B receiver operating characteristic curves 
demonstrate that average contrast-to-noise and likelihood are both 
comparably effective classifiers of image utility with areas under their 
curves  > 0.85 (curves for full dataset in Fig. S11). 

Since average contrast-to-noise appeared to be an effective classifier, 
Fig. 3C shows that individual image contrast-to-noise alone is a signif-
icant predictor of usefullness likelihood, stratified by resolution. The 
grey circle shows the usefullness likelihood of the 256 × 256 brain 
image from the 3 Tesla system in Fig. 1A based on its contrast-to-noise 
ratio (CNR = 13). The grey diamond shows the same for the 128 ×
128 brain image from the 0.05 Tesla system in Fig. 1B (CNR = 4). 
Though the image generated by the 3T system has twice the resolution 
and 3 times the CNR, both share a predicted usefulness likelihood of 1. 
For each resolution, the raw classification data from Part 1 can be seen in 
the four inset panels of Fig. 3C. The solid lines show the logistic 
regression model and the dashed lines show the 95% confidence in-
tervals around the fit. 

3.2. Part 2: Is reconstruction error acceptable? 

Next we investigate the effect of deep learning enhancement on 
image classification. The inter-rater reliability for the classification of 
enhanced images in Part 2 shows slight agreement between evaluators 1 
and 2 (K  = 0.15), fair agreement between evaluators 2 and 3 (K  = 0.24), 
and moderate agreement between evaluators 1 and 3 (K  = 0.48). Fig. 4A 
shows a side by side comparison of ground truth (left column) with 
corresponding enhanced images (right column). Note the subtle errors in 
brain and CSF locations in the top right image and the more substantial 
errors in the lower right image. Regardless of these spatial errors, CNR is 
significantly increased by the enhancement network, as shown in the 
plot in Fig. 4B where average CNR of test images at each network 
location are shown before and after enhancement using the logistic 
models developed in Part 1. These data predict very high usefulness 
likelihood for enhanced images based on increased CNR. The table in 
Fig. 4C shows that while the Part 1 classification of enhanced images 
does closely follow the prediction of high usefulness likelihood, re- 
classification of enhanced images in Part 2 reveals that many 
enhanced images contain errors that are not clinically acceptable. We 
use an additional classification of Misleading for these images (i.e. im-
ages that were deemed Useful in Part 1, but had unacceptable errors in 

Part 2). 
Since the logistic models developed in Part 1 do not describe the Part 

2 classification, a new logistic regression model was constructed for Part 
2 with pre-enhancement noise and contrast of images as predictors. Only 
contrast showed significance (Figs. S13 and S14) so noise was removed 
from the model. In order to compare the usefulness likelihood of a 
degraded image (Part 1) with the risk of misleading errors in an 
enhanced image (Part 2), an additional logistic regression model with 
CNR as the predictor was computed based on Part 2 classification 
(Fig. 4D). Risk of misleading results is calculated to be 1 minus the 
usefulness likelihood of the enhanced images based on a univariate lo-
gistic regression with CNR prior to enhancement as the predictor. As 
CNR increases, a 128 × 128 image is more likely to be useful in its 
degraded state (left vertical axis) and less likely to be misleading if 
enhanced (right vertical axis). Note that there exists no CNR value for 
which there is low usefulness likelihood of the degraded image and low 
risk of generating a misleading image through enhancement. 

4. Discussion 

4.1. Utility of Low CNR Images 

The image quality threshold required for treatment planning of hy-
drocephalus is significantly lower than the quality typically provided by 
CT or high-field MRI imaging systems. The results in Fig. 3B-C can be 
viewed in several different ways. CNR is a comparison between the 
signal-to-noise ratio of two regions of interest. This implies that the true 
limiting factor of image quality is per voxel signal-to-noise, for which 
high-field MRI has an inherent advantage over low-field MRI. However, 
Fig. 3B-C suggests that there are options for using low CNR or low res-
olution images that may be advantageous. For a high-field system im-
aging infant hydrocephalus, a short scan time is desirable, in which case 
resolution and signal-to-noise can be traded for a faster scan. Alterna-
tively, in the resource limited setting of an LMIC, a low-field MRI system 
has the potential to provide equivalent diagnostic information at a sig-
nificant reduction in cost and complexity. The trade-off for this low cost 
and complexity is lower signal-to-noise and interpretability. It is the 
interpretability that sets the threshold for the lower bound of signal-to- 
noise. 

The usefulness likelihood for the 3T (CNR  = 13) and 0.05 T (CNR  =
4) MRI images without deep learning enhancement featured in Fig. 1 are 
indicated in Fig. 3C. Although the visual quality of the two images is 
strikingly different, they are predicted to have the same utility for hy-
drocephalus treatment planning. 

To put this in the context of global sustainability, the acquisition cost 
of the 0.05 T system used for producing the image in Fig. 1B is less than 
$20,000 USD. A 3T system costs at least an additional $2.8 million USD 
(excluding siting, maintenance, and consumables) and it can provide 
over three times the CNR (Fig. 1A). However, for the cost of a single 3T 
system, 150 low-field MRI systems could be placed throughout the re-
gion, providing increased access to the hydrocephalus patient popula-
tion without compromise in diagnostic utility. 

In addition to being a substantial global health need for children’s 
medicine, hydrocephalus is also an exceptionally straightforward tech-
nical challenge for low-field MRI systems. In the vast majority of hy-
drocephalic children, there is no need to differentiate contrast within the 
brain parenchyma for diagnosis, triage, monitoring, or treatment plan-
ning. For MRI the signal strength from the water-based CSF is the 
strongest signal within the head. Although our results support substan-
tial utility from images with reduced quality in hydrocephalus man-
agement, more complex diagnostic and treatment decision-making in 
other diseases will pose additional challenges to such technologies. 

4.2. Enhanced Images: Benefit or risk? 

Image enhancement appears to perform exceptionally well based on 
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Part 1 data, as shown in Fig. 4A where even the worst network locations 
are more than 85% likely to be rendered useful. However, data from Part 
2 reveals that enhancement yields images that appear useful, but in fact 
would mislead treatment decisions due to unacceptable errors in brain 
and CSF location. Subtle features in the configuration of the CSF spaces, 
such as increased rounding of brain ventricles, are important signs of 
increased intracranial pressure suggesting that surgery might be 
required to improve CSF diversion through a shunt or endoscopic 
fenestration. If features such as these are a product of the enhancement 
network and not indicative of the true condition of the disease, clinicians 
may be led to make poor treatment decisions. 

The key difference in using a degraded image versus its enhanced 
counterpart in a clinical setting is the source of risk. A degraded image is 
either useful or it is not - the risk of using it to diagnose or treat disease 
rests with the judgement of the clinician. Enhanced images in this study 
yield useful looking images 99% of the time, however 75% of these 
images are shown to have uncertain utility or to be misleading after 
comparison with ground truth. The risk of enhancement arises from the 
black box of the deep learning network. Furthermore, as shown in 
Fig. 4D, there is never a CNR for which there is low risk of producing a 
misleading image and low usefulness likelihood of the degraded image 
without enhancement. For example, a 128 × 128 degraded image with 
modest CNR yielding 75% usefulness likelihood still has a 14% chance of 
producing a misleading image through enhancement. Enhancing highly 
degraded images can improve the usefulness likelihood, but with sub-
stantially increased risk of misleading results. We find no scenario in 
which enhancement is safely beneficial. Note also that the CNR of the 
0.05 T system studied had a very high useful likelihood and would not 
have required enhancement. Yet acceptance of such unenhanced images 
as shown in Fig. 1B would constitute a cultural shift in current standards 
of diagnostic acceptability. 

Machine learning can generate attractive images from patterns with 
highly degraded information content. Philosophically, a learning library 
of other patient images enables utilization of information not present in 
the individual case undergoing enhancement. Such learned information 
brought to a new case image can be clinically misleading. This is a very 
different situation from machine learning faces or objects, or diagnosis 
classification from images, where there is only one correct match and 
the information required is already in the learning library. Hydroceph-
alus, as in so many other pathological conditions, tends to produce a 
unique structural pattern for each patient. For machine learning, auto-
mating the choice of a diagnosis is therefore very different from recon-
structing an unknown unique architecture. This fundamental issue 
implies that while this study only employed one learning network ar-
chitecture, this risk likely exists in other machine learning strategies and 
great care should be taken when employing these methods for anatomic 
reconstruction. A challenge for the machine learning community 
working with low-resolution and low-contrast images is to improve 
interpretation while minimizing risk of clinical errors. 

4.3. Limitations 

This study has limitations. Only three experts participated in the 
assessment. The single central slice from the image stack was chosen to 
demonstrate image quality and enhancement. Only image quality con-
cerns inherent to low-field systems such as noise and contrast were 
considered, while distortions in the low-field image were not. Only one 
deep learning network architecture was employed and the number of 
training samples was relatively low (80). However, the size of available 
image archives is typically not large for diseases unique to LMIC such as 
post-infectious hydrocephalus in sub-Saharan Africa. A more complex 
machine learning strategy could incorporate a 3D array of connected 
slices for enhancement and clinical review. 

Although motivation for this study stems from the advent of clinical 
low-field MRI as a tool for hydrocephalus treatment planning, the work 
was conducted with CT images. In high-resource settings where low- 

field MRI is being deployed (such as intensive care units), CT remains 
the high-resolution alternative of choice (Mazurek et al., 2021; Sheth 
et al., 2020). CT is the high-resolution modality most available in LMIC, 
and currently the only available repository of postinfectious hydro-
cephalus images where low-field MRI will soon be deployed. Note that 
we argue the potential benefits of low-field MRI using only one example 
image in Fig. 1B. This can be extended in the future as reliable low-field 
MR image repositories become available such as the new comparative 
repository in Adult stroke reported in (Mazurek et al., 2021). We 
anticipate that this quantifiable measure of CNR between brain and CSF 
will be generalizable to MRI at various field strengths as well as other CT 
studies of infant hydrocephalus treatment planning. Further evaluation 
will be necessary to determine whether CNR proves an important clas-
sifier for other conditions that may have more stringent image quality 
requirements. 

5. Conclusion 

The true value of a clinical medical image is in the treatment guiding 
information that it conveys to those providing care and in the patient 
outcomes that result, rather than its visual appeal. We have shown that 
lower quality images that are not customarily considered acceptable can 
be useful in planning hydrocephalus treatment. In addition, image res-
olution and contrast-to-noise ratio of brain and CSF predict the likeli-
hood of a useful image for hydrocephalus treatment planning. Although 
deep learning can dramatically improve the visual quality of a highly 
degraded image, there is a substantial risk of misleading results, and 
algorithmic guidelines should be developed to avoid structural alter-
ations which are potentially hazardous to clinical interpretation. At 
present, the most valuable low-resolution images may be less enhanced 
versions that maintain the structural details undistorted by excessive 
deep learning processing; indeed, emerging low-field MRI technologies 
are capable of producing useful images for hydrocephalus treatment 
planning without enhancement. Our findings advocate for new stan-
dards in assessing the cost-effectiveness of sustainable imaging tech-
nologies that can broaden global access to diagnostic imaging, and a 
reconsideration of acceptable image quality for clinical use. 
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