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Purely organic small molecules with thermally-activated delayed fluorescence have a

high potential for application in organic light-emitting diodes (OLEDs), but overcoming

severe efficiency roll-off at high voltages still remains challenging. In this work,

we design and synthesize two new emitters consisting of electron-withdrawing

benzoyl and electron-donating phenoxazine and 9,9-dihexylfluorene. Their electronic

structures, thermal stability, electrochemical behaviors, photoluminescence property,

and electroluminescence performance are thoroughly investigated. These new emitters

show weak fluorescence in dilute solution, but they can emit strongly with prominent

delayed fluorescence in the aggregated state, indicating the aggregation-induced

delayed fluorescence (AIDF) character. The solution-processed OLEDs based on the two

emitters show high external quantum efficiency of 14.69%, and the vacuum-deposited

OLEDs can also provide comparable external quantum efficiency of 14.86%. Significantly,

roll-offs of the external quantum efficiencies are very small (down to 0.2% at 1,000 cd

m−2) for these devices, demonstrating the evidently advanced efficiency stability. These

results prove that the purely organic emitters with AIDF properties can be promising to

fabricate high-performance solution-processed OLEDs.

Keywords: aggregation-induced delayed fluorescence, thermally activated delayed fluorescence,

electroluminescence, organic light-emitting diodes, efficiency roll-off

INTRODUCTION

Organic light-emitting diodes (OLEDs) are attracting considerable attention across academia and
industry because of their advantages of flexibility, fast response, high stability, light weight, and so
forth. Generally, for conventional fluorescent organic materials, the ratio of electrically generated
singlet and triplet excitons is 1:3, leading to a low internal quantum efficiency (IQE) limited to only
25%. One way to enhance the IQE is making full use of triplet excitons. As for phosphorescent
materials, the theoretical maximum value of the IQE can reach 100%, resulting from utilizing both
triplet and singlet excitons, but most of these materials have to incorporate precious heavymetals to
promote intersystem crossing (ISC). The OLEDs based on such materials have high costs in noble
metals, and often encounter aggregation or concentration caused emission quenching. Another way
to enhance the IQE of purely organic materials is transforming triplet excitons to singlet excitons.
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According to the reports in recent years, there are several
strategies to make use of the non-radiative triplet excitons, and
thermally activated delayed fluorescence (TADF) is the method
with most potential, in which triplet excitons can be converted
to singlet excitons via reverse intersystem crossing (RISC) due
to small singlet–triplet energy gap (1EST) (Gong et al., 2011;
Uoyama et al., 2012; Hirata et al., 2015; Kang et al., 2018). TADF
materials are able to harvest both singlet and triplet excitons
and thus can reach high exciton utilization without noble metal,
but suffer from severe efficiency roll-off (Rajamalli et al., 2016,
2017; Xie et al., 2017). Recently, by taking the advantages of
aggregation-induced emission (AIE) and TADF, a new molecular
design strategy of aggregation-induced delayed fluorescence
(AIDF) was proposed and a series of novel luminogens based
on AIDF were developed. These AIDF materials could not only
harness both singlet and triplet excitons, but also showed the
merit of very small efficiency roll-off at high luminance (Huang
et al., 2017; Guo et al., 2018, 2019).

On the other hand, compared to vacuum deposition, solution-
processed film preparation techniques, including spin-coating,
inkjet printing, roll to roll processing, etc., are fitter to
manufacture large-area OLED devices with lower cost and less
material waste (Gather et al., 2011; Gong et al., 2013; Cho
et al., 2014; Albrecht et al., 2015; Zeng et al., 2019). Currently,
luminescent polymers are the major choice to fabricate solution-
processed devices due to their excellent film-forming ability
(Lee et al., 2016; Shao et al., 2017; Kim et al., 2018; Zou
et al., 2018). However, it is generally hard to remove the metal
catalyst residue completely from the products, and as a result
they are in low purity and have defects in many cases, which
undermine their EL performance.Meanwhile, the reproducibility
is another problem for the polymers. In opposition, small
molecules have the advantages of clearly defined structures, easy
purification, and better photoluminescence (PL) performance.
So, in addition to conventional fluorescent and phosphorescent
small molecules (Zhao et al., 2007, 2009; Yang et al., 2018),
developing solution-processable small molecules with delayed
fluorescence is of high significance. However, the currently
reported solution-processable TADF molecules also suffer from
severe efficiency roll-off at high voltages (Wu et al., 2009; Suzuki
et al., 2015; Zhong et al., 2020). To solve this problem, in
this work, we designed and synthesized two small molecules
with AIDF property. Long alkyl chains are introduced into
the molecules to enhance the film-forming ability for solution-
processed OLED devices. They emit strong yellow to orange-
yellow light with evident delayed fluorescence in solid film. The
solution-processed OLEDs using them as emitting layers exhibit
high EL efficiencies and very small efficiency roll-off.

EXPERIMENTAL

Synthesis
9,9-Dihexyl-9H-fluorene (1)
Potassium tert-butoxide (16.83 g, 150 mmol) was added to a
mixture of fluorene (8.30 g, 50 mmol) and 1-bromohexane
(17.45mL, 125 mmol) in dehydrated tetrahydrofuran (100mL)
and stirred for 12 h under 65◦C. The reactionmixture was poured

into water and extracted with dichloromethane several times. The
combined organic layers were washed with water twice, and then
dried over anhydrous NaSO4. After filtration, the crude product
was concentrated and purified by column chromatography on
silica gel (petroleum ether) to afford 1 as colorless liquid in 97%
yield (16.21 g). 1HNMR (500MHz, CDCl3) δ (TMS, ppm): 7.70–
7.65 (m, 2H), 7.33–7.23 (m, 6H), 1.99–1.92 (m, 4H), 1.13–0.98
(m, 12H), 0.74 (t, J = 7.2Hz, 6H), 0.67–0.54 (m, 4H). 13C NMR
(125 MHz, CDCl3) δ (TMS, ppm): 150.65, 141.12, 126.97, 126.76,
122.79, 119.62, 55.12, 39.69, 32.17, 29.75, 23.57, 22.49, 13.99.

(9,9-Dihexyl-9H-fluoren-2-yl)(4-fluorophenyl)

Methanone (2a) and (9,9-dihexyl-9H-fluorene-2,7-diyl)

bis(4-fluorophenyl)Methanone (2b)
Aluminum trichloride (12.00 g, 90 mmol) was added into a
stirred solution of 1 (9.70 g, 29 mmol) and 4-fluorobenzoyl
chloride (14.22 g, 90 mmol) in dehydrated dichloromethane
(50mL) in 45◦C and stirred for 6 h. The reaction was quenched
with ice water and hydrochloric acid (50mL, 2:1 v/v), and
extracted with dichloromethane several times. The combined
organic layers were washed with water twice, and then dried
over anhydrous NaSO4. After filtration and solvent evaporation
under reduced pressure, the residue was purified by column
chromatography on silica gel (dichloromethane: petroleum ether,
2:3 v/v) to afford 2a as yellow solid in 50% yield (6.61 g) and
2b as yellow solid in 18% yield (3.02 g). For 2a, 1H NMR (500
MHz, CD2Cl2) δ (TMS, ppm): 7.83–7.75 (m, 4H), 7.71–7.64 (m,
4H), 7.44–7.32 (m, 3H), 2.05–1.97 (m, 4H), 1.16–0.98 (m, 12H),
0.76 (t, J = 7.2Hz, 6H), 0.66–0.56 (m, 4H). 13C NMR (125 MHz,
CD2Cl2) δ (TMS, ppm): 196.66, 153.28, 152.12, 147.08, 141.11,
138.51, 136.91, 132.80, 132.77, 130.91, 129.74, 128.35, 128.19,
125.84, 124.46, 121.96, 120.65, 56.63, 41.38, 32.81, 30.90, 25.10,
23.84, 15.05, 0.90. For 2b, 1H NMR (500 MHz, CDCl3) δ (TMS,
ppm): 7.91–7.84 (m, 6H), 7.83–7.79 (m, 4H), 7.23–7.16 (m, 4H),
2.06–1.99 (m, 4H), 1.17–1.01 (m, 12H), 0.78 (t, J = 7.2Hz, 6H),
0.70–0.60 (m, 4H). 13C NMR (125 MHz, CDCl3) δ (TMS, ppm):
198.49, 168.36, 164.38, 151.96, 144.94, 137.63, 134.25, 132.74,
129.80, 125.55, 119.88, 114.74, 113.69, 57.91, 39.34, 32.03, 29.55,
23.93, 22.55, 15.40.

((4-(10H-Phenoxazin-10-yl)phenyl)(9,9-dihexyl-9H-

fluoren-2-yl)methanone)) (FC6-BP-PXZ)
A mixture of 2a (0.46 g, 1.0 mmol), phenoxazine (0.24 g, 1.3
mmol) and potassium tert-butoxide (0.23 g, 2.0 mmol) in
deaerated N, N-dimethylformamide (20mL) was heated up to
130◦C and stirred for 12 h under nitrogen. After cooling down
to room temperature, the reaction was quenched with water
(20mL), and extracted with dichloromethane several times. The
combined organic layers were washed with water twice, and
then dried over anhydrous NaSO4. After filtration and solvent
evaporation under reduced pressure, the residue was purified
by column chromatography on silica gel (dichloromethane:
petroleum ether, 1:1 v/v) to afford orange solid of FC6-BP-PXZ
in 37% yield (0.23 g). 1H NMR (500 MHz, CD2Cl2) δ (TMS,
ppm): 8.05–8.02 (m, 2H), 7.90 (s, 1H), 7.86–7.79 (m, 3H), 7.54–
7.49 (m, 2H), 7.45–7.35 (m, 3H), 6.94–6.42 (m, 6H), 6.06 (s, 2H),
2.14–1.97 (m, 4H), 1.18–0.97 (m, 12H), 0.75 (t, J = 7.1Hz, 6H),
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0.70–0.57 (m, 4H). 13C NMR (125 MHz, CD2Cl2) δ (TMS, ppm):
195.86, 153.14, 151.38, 146.89, 140.24, 139.06, 136.09, 133.05,
130.32, 127.48, 124.87, 123.61, 120.45, 119.25, 113.41, 56.84,
40.52, 31.93, 29.54, 24.25, 22.48, 15.73. HRMS (C44H45NO2):m/z
619.1476 [M+, calcd 619.3450].

((9,9-Dihexyl-9H-fluorene-2,7-diyl)bis((4-(10H-

phenoxazin-10-yl)phenyl)methanone))

(FC6-2BP-PXZ)
A mixture of 3b (0.8674 g, 1.5 mmol), phenoxazine (0.8238 g,
4.5 mmol) and potassium tert-butoxide (0.5049 g, 4.5 mmol) in
deaerated N, N-dimethylformamide (20mL) was heated up to
130◦C and stirred for 12 h under nitrogen. After cooling down
to room temperature, the reaction was quenched with water
(20mL), and extracted with dichloromethane several times. The
combined organic layers were washed with water twice, and
then dried over anhydrous NaSO4. After filtration and solvent
evaporation under reduced pressure, the residue was purified
by column chromatography on silica gel (dichloromethane:
petroleum ether, 1:1 v/v) to afford orange solid of FC6-2BP-PXZ
in 66% yield (0.90 g). 1H NMR (500 MHz, CD2Cl2) 1H NMR
(500 MHz, CD2Cl2) δ (TMS, ppm): 8.09–8.03 (m, 4H), 7.99–
7.94 (m, 4H), 7.93–7.88 (m, 2H), 7.56–7.42 (m, 4H), 6.84–6.56
(m, 12H), 6.07 (s, 4H), 2.16–2.08 (m, 4H), 1.18–0.98 (m, 12H),
0.74 (t, J = 7.0Hz, 6H), 0.72–0.65 (m, 4H). 13C NMR (125 MHz,
CDCl3) δ (TMS, ppm): 195.56, 137.77, 136.80, 133.74, 130.82,
130.12, 123.29, 120.45, 115.75, 31.49, 23.98, 22.54, 13.97. HRMS
(C63H56N2O2):m/z 904.1583 [M+, calcd 904.4240].

OLED Fabrication and Characterization
The solution-processed devices were fabricated on clean glass
substrates pre-coated with a 180 nm-thin layer of indium
tin oxide (ITO) with a sheet resistance of 10� per square.
The ITO surface was treated with an ultrasonic detergent
bath for 90min, followed by soaking in ultrasonic de-ionized
water for 20min, then dried at 120◦C for 1 h, and UV/Ozone
cleaning for 15min before spin-coating. A 50 nm-thin poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
layer was spin-coated onto ITO surface at 3,000 rpm, then
baked at 150 ◦C for 50min to remove the residual water. Then,
the substrates were moved into a glovebox under a nitrogen
atmosphere, and a poly(9-vinylcarbazole) (PVK) layer was spin-
coated onto the PEDOT:PSS layer at 2,500 rpm (the thickness
achieved 30 nm) from a filtered 10mg mL−1 chlorobenzene
solution, followed by drying at 120◦C for 20min. Then, the
emitting layer was spin-coated according to the configuration
requirement. Solutions of FC6-BP-PXZ (30 wt%) or FC6-2BP-
PXZ (10 wt%) doped in 4,4’-bis(carbazol-9-yl)biphenyl (CBP)
with an overall concentration of 20mg mL−1 in toluene were
spin-coated at 2,500 rpm for 45 s to get films with a thickness
of 50 nm. Finally, an electron-transport layer of 1,3,5-tri(m-
pyrid-3-yl-phenyl)benzene (TmPyPB), a LiF layer, and an Al
layer were deposited consecutively onto the spin-coated film
in a vacuum chamber under 10−4 Pa. Vacuum-evaporation
OLEDs were fabricated on clean glass substrates pre-coated with
a 180-nm-thin layer of ITO with a sheet resistance of 10� per
square. Organic layers were deposited by high-vacuum (5 ×

10−4 Pa) thermal evaporation onto a glass substrate pre-coated
with an ITO layer. All organic layers were deposited sequentially.
Thermal deposition rates for the organic materials, LiF and
Al were 0.5, 0.5, and 1 Å s−1, respectively. The thicknesses of
the vacuum deposited layers were monitored by quartz crystal
microbalance and were calibrated by Dektak XT profilometer.
The emission area of the devices is 3 × 3 mm2 as shaped by
the overlapping area of the anode and cathode. All the device
characterization steps were carried out at room temperature
under ambient laboratory conditions without encapsulation.
EL spectra were taken by an optical analyzer, FlAME-S-
VIS-NIR. Current density and luminance vs. driving voltage
characteristics were measured by Keithley 2400 and Konica
Minolta chromameter CS-200. External quantum efficiencies
were calculated by assuming that the devices were Lambertian
light sources.

RESULTS AND DISCUSSION

Synthesis and Thermal Stability
The target compounds FC6-BP-PXZ and FC6-2BP-PXZ were
simply and efficiently synthesized. As shown in Scheme 1,
9,9-dihexyl-9H-fluorene (1) that was prepared by the method
in reported literature underwent Friedel-Crafts acylation
reaction with compound 2 to yield intermediate 3a and
3b. The treatments of 3a and 3b with phenoxazine (PXZ)
furnished the final compounds FC6-BP-PXZ and FC6-2BP-
PXZ, respectively, in high yields. The molecular structures
had been well-characterized by NMR and high-resolution
mass spectra. Owing to the presence of hexyl groups, both
compounds have good solubility in common organic solvents,
such as chlorobenzene, toluene, chloroform, dichloromethane,
tetrahydrofuran (THF), and so on, but do not dissolve
easily in water because of the hydrophobic structures.
The thermal stability of both compounds is characterized
thoroughly by thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) under nitrogen.
FC6-BP-PXZ and FC6-2BP-PXZ show high decomposition
temperatures of 340.1 and 424.5◦C, and high glass-transition
temperatures of 85.7 and 84.0◦C, respectively (Figure S1).
The good thermal and morphological stabilities of both
compounds enable them to function in OLEDs, and benefit
device performances.

Photophysical Behavior
FC6-BP-PXZ and FC6-2BP-PXZ show strong absorption bands
at around 317 and 330 nm in THF solution, associated with π-
π∗ transition of the molecules. There are also weak absorption
bands at around 400 nm resulting from twisted intramolecular
charge transfer (TICT) from the electronic donating-accepting
(D-A) structure (Figure 1A) (Kashihara et al., 2017; Thorat et al.,
2017; Higginbotham et al., 2018). In THF solution, FC6-BP-PXZ
and FC6-2BP-PXZ emit weakly at 543 and 550 nm, with low
fluorescence quantum yields (ΦFs) of 3.5 and 2.0%, (Figure 2A)
respectively. However, they can emit strongly at 544 and 567 nm
with higher ΦFs of 32.0 and 17.0% in neat films at 300K,
respectively, indicating they have AIE property (Figures 1B, 2B
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SCHEME 1 | Synthetic routes of FC6-BP-PXZ and FC6-2BP-PXZ.

FIGURE 1 | (A) Absorption spectra in THF solutions (10−5 M) and (B) PL spectra in neat films of FC6-BP-PXZ and FC6-2BP-PXZ. PL spectra of (C) FC6-BP-PXZ and

(D) FC6-2BP-PXZ in THF-water mixtures with different water fractions (fw).

and Table S2). To further confirm this, the PL behaviors are
measured in their water-THF mixtures (Figures 1C,D). The
emission intensity is much stronger and the emission peak is
blue-shifted when water fraction in the mixture gets high. Since
these compounds are insoluble in water, they are prone to form
aggregates when the water fraction becomes high, indicating

the enhanced emission is caused by the aggregate formation.
In the aggregated state, the intramolecular motions that are
active in solution state are restricted by the spatial constraint.
In consequence, the non-radiative decay channel is blocked, and
the excited state energy can be released as photons, leading to
greatly enhanced emissions (Mei et al., 2015; Zhao et al., 2015;
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FIGURE 2 | Transient PL decay spectra of FC6-BP-PXZ and FC6-2BP-PXZ (A) in THF solutions (10−5 M) and (B) in neat films, measured at 300K under nitrogen. The

water fraction dependent transient PL decay spectra of (C) FC6-BP-PXZ and (D) FC6-2BP-PXZ in THF-water solutions.

Shen et al., 2018). These results confirm that both compounds
indeed have AIE properties. And from the fluorescence and
phosphorescence spectra of FC6-BP-PXZ and FC6-2BP-PXZ at
77K (Figure S2), the 1EST values are estimated to be 0.017 and
0.068 eV, respectively, which are small enough for promoting
RISC process.

The transient PL decay spectra show that both FC6-BP-PXZ
and FC6-2BP-PXZ have short average lifetimes within 2.0 ns and
the delayed fluorescence is hardly observed in solution. However,
FC6-BP-PXZ and FC6-2BP-PXZ in neat films show much longer
mean lifetimes of 0.22 and 0.62 µs, with prompt components
of 20.7 ns and 29.0 ns and evident delayed components of
0.66 and 2.12 µs (Figures 2C,D), respectively. Moreover, the
transient PL decay spectra in water-THF mixtures are further
measured. It can be seen that when the water fraction increases,
the mean lifetimes become longer. And the ratios of delayed
components and the rate constant of RISCs are enhanced greatly
(Table 1, Table S1). These finding demonstrate that the delayed
fluorescence of both compounds is induced by the aggregation
formation, indicative of their AIDF nature apparently. In
solution state, the excited state is readily deactivated by fast

internal conversion (IC) of vigorous intramolecular motions,
and thus the ISC and RISC processes cannot readily occur. In
the aggregated state, however, the intramolecular motions are
greatly suppressed by spatial hindrance, and the IC channel
is blocked. Therefore, given their small 1EST values, the ISC
and RISC are able to occur, leading to noticeable delayed
fluorescence (Guo et al., 2018, 2019).

Theoretical Calculation
The DFT/TDDFT calculation is applied to investigate the
molecular orbital amplitude plots and energy levels of the
highest occupied molecular orbitals (HOMOs) and lowest
unoccupied molecular orbitals (LUMOs) of both compounds.
As shown in Figure 3, the HOMOs of both compounds
are distributed on fluorene and benzoyl moieties, and the
LUMOs are concentrated on PXZ. The apparently separated
distribution of HOMOs and LUMOs is necessary to achieve
small 1EST values and thus to promote RISC process and
delayed fluorescence. The theoretical 1EST values of FC6-BP-
PXZ and FC6-2BP-PXZ are calculated to as small as 0.0442 and
0.0422 eV, respectively.
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TABLE 1 | Photophysical properties of FC6-BP-PXZ and FC6-2BP-PXZ.

Solutiona Neat filmb

λabs(nm) λem(nm) ΦF
c (%) λem (nm) ΦF

c (%) τprompt
d (ns) τdelayed

d (µs) 1EST
e(eV)

FC6-BP-PXZ 317 543 3.5 544 32.0 20.7 0.7 0.017

FC6-2BP-PXZ 330 550 2.0 567 17.0 29.0 2.1 0.068

a In THF solution (10−5 M) at room temperature. bSpin-coated on a quartz substrate. cAbsolute fluorescence quantum yield determined by a calibrated integrating sphere under nitrogen

at room temperature. dPL lifetimes of prompt (τprompt) and delayed (τdelayed) decay components evaluated at 300K under vacuum. eEstimated from the high-energy onsets of

fluorescence and phosphorescence spectra at 77 K.

FIGURE 3 | Optimized molecular structures and frontier orbital amplitude plots

of FC6-BP-PXZ and FC6-2BP-PXZ, calculated by PBE0 hybrid functional at

the basis set level of 6-31G*.

Electrochemical Property
Cyclic voltammetry (CV) is conducted to investigate the
electrochemical behaviors of FC6-BP-PXZ and FC6-2BP-PXZ
in a solution of acetonitrile with tetra-n-butylammonium
hexafluorophosphate (Bu4NPF6, 0.1M). Three-electrode system
(Ag/Ag+, platinum wire and glassy carbon electrodes as
reference, counter and work electrodes, respectively) is used and
the scan rate is 100mV s−1 in the measurement. As illustrated
in Figure 4, both compounds undergo reversible oxidation and
reduction processes, indicating good electrochemical stability.
The oxidation peaks of FC6-BP-PXZ and FC6-2BP-PXZ are both
located at 0.435V and the reduction peaks at−1.96 and−1.60V,
respectively. The HOMO energy levels of FC6-BP-PXZ and FC6-
2BP-PXZ are calculated to be −4.87 to −4.89 eV, respectively,
from the onset oxidation potentials, and the LUMO energy
levels are −2.91 to −3.25 eV, from the onset reduction potentials
(HOMO = –[Eox + 4.8] eV, and LUMO = –[Ere + 4.8] eV, in
which Eox and Ere represent the onset oxidation and reduction
potentials relative to Fc/Fc+, respectively).

FIGURE 4 | Cyclic voltammograms of FC6-BP-PXZ and FC6-2BP-PXZ

measured in acetonitrile containing 0.1M tetra-n-butylammonium

hexafluorophosphate. Scan rate: 100mV s−1.

Electroluminescence
Based on the excellent PL properties of FC6-BP-PXZ and FC6-
2BP-PXZ, their EL performances in solution-processed OLEDs
and vacuum-deposited OLEDs were further investigated. The key
data of these OLEDs are summarized in Table 2, and the relative
characteristic curves are plotted in Figure 5. The solution-
processed OLEDs with a configuration of ITO/PEDOT:PSS
(50 nm)/PVK (30 nm)/emitter/TmPyPB (40 nm)/LiF (1 nm)/Al
[Device 1A: emitter = CBP:30 wt% FC6-BP-PXZ (50 nm);
Device 2A: emitter = CBP:10 wt% FC6-2BP-PXZ (50 nm)] were
fabricated, in which PEDOT:PSS and LiF were used as hole- and
electron-injecting layers, respectively; PVK and TmPyPB were
selected as hole- and electron-transporting layers, respectively;
CBP functioned as a host. As shown in Figure 5, the turn-
on voltage at 10 cd m−2 of Devices 1A and 2A are 5.0 and
3.9V, radiating orange-yellow light at ∼555 nm (CIEx,y = 0.402,
0.549) and ∼568 nm (CIEx,y = 0.432, 0.543), respectively. The

Frontiers in Chemistry | www.frontiersin.org 6 April 2020 | Volume 8 | Article 193

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cai et al. Aggregation-Induced Delayed Fluorescence

TABLE 2 | EL performances of OLEDs based on FC6-BP-PXZ and FC6-2BP-PXZa.

Von

(V)

Maximum values Values at 1,000 cd m−2

ηC

(cd A–1)

ηP

(lm W–1)

ηext

(%)

L

(cd m–2)

ηC

(cd A–1)

ηP

(lm W–1)

ηext(%) RO

(%)

λEL

(nm)

CIE

(x, y)

FC6-BP-PXZ 1A 5.0 39.61 21.29 12.49 16100 35.49 16.39 11.20 10.30 555 (0.402, 0.549)

1B 3.2 48.02 38.91 14.86 80507 47.84 30.06 14.83 0.20 544 (0.392, 0.569)

FC6-2BP-PXZ 2A 3.9 44.83 32.03 14.69 22530 41.76 19.28 13.80 6.06 568 (0.432, 0.543)

2B 4.6 36.12 25.52 14.12 19455 34.10 31.98 13.22 6.33 582 (0.446, 0.523

aVon = turn-on voltage at 10 cd m−2; ηc = current efficiency; ηp = power efficiency; ηext = external quantum efficiency; RO = current efficiency roll-off from maximum value to that at

1,000 cd m−2; λEL = electroluminescence maximum; CIE = Commission Internationale de I’Eclairage coordinates at condition of maximum ηext.

FIGURE 5 | (A) Luminance–external quantum efficiency with EL spectra, (B) luminance–voltage–current density, and (C) current efficiency–luminance–power

efficiency characteristics of the devices. Inset in (A): photographs of solution-processed devices (left: device 1A; right: device 2A).

maximum luminance (Lmax), current efficiency (ηC,max), power
efficiency (ηP,max) and external quantum efficiency (ηext,max)
of Device 2A are 22530 cd m−2, 44.83 cd A−1, 32.03 lm W−1,
and 14.69%, respectively. It is significant that the external
quantum efficiency at luminance of 1,000 cd m−2 is 13.80%,
showing a very low efficiency roll-off of 6.06%. The EL
properties of Device 1A is somewhat inferior than those of
Device 2A.

To further investigate the EL properties of both compounds,
vacuum-deposited OLEDs with a configuration of ITO/TAPC
(25 nm)/emitter/TmPyPB (55 nm)/LiF (1 nm)/Al [Device 1B:
emitter= CBP:30 wt% FC6-BP-PXZ (35 nm); Device 2B: emitter
= CBP: 10 wt% FC6-2BP-PXZ (35 nm)] were fabricated, in
which 4,4’-cyclohexylidenebis[N, N-bis(p-tolyl)aniline] (TAPC)
and TmPyPB were selected as hole- and electron-transporting
layers, respectively. As shown in Figure 5, the turn-on voltage at
10 cd m−2 of Devices 1B and 2B are 3.2V and 4.6V, emitting
orange-yellow light at ∼544 nm (CIEx,y = 0.392, 0.569) and
∼582 nm (CIEx,y = 0.446, 0.523), respectively. The Lmax, ηC,max,
ηP,max, and ηext,max of Devices 1B and 2B are 80,507 cd m−2,
48.02 cd A−1, 38.91 lm W−1 and 14.86%, and 19,455 cd m−2,
36.12 cd A−1, 25.52 lm W−1 and 14.12%, respectively, in which
the efficiency roll-off is extremely small especially for Device 1B
(0.20% at luminance of 1,000 cd m−2). These new emitters with
AIDF property provide good EL performance, and according
to the photophysical parameters, the exciton utilization of
these OLEDs has approached nearly 100%. More importantly,

extremely small efficiency roll-offs are successfully achieved,
which should be an apparent advance to conventional TADF
emitters for solution-processed OLEDs and vacuum-deposited
OLEDs. And the AIDF character of the materials should be
important for achieving high performance, which combines the
superior features of efficient solid-state emission, high exciton
utilization and low exciton quenching.

CONCLUSIONS

In summary, two new emitters built with electron-withdrawing
group benzoyl and electron-donating phenoxazine and 9,9-
dihexylfluorene are designed and synthesized. They have high
thermal and morphological stabilities and good electrochemical
stability. Whereas, in dilute solution state they emit weakly with
faint delayed fluorescence, they can emit strongly with prominent
delayed fluorescence in the aggregated state, demonstrating
the AIDF property. In addition, they fluoresce intensely in
spin-coated films with notable delayed fluorescence, owing
to the small 1EST, and thus fast RISC process. As a
consequence, they can perform excellently as light-emitting
layers in solution-processed OLEDs, providing high ηext,max

of up to 14.69% and very small efficiency roll-off at the
luminance of 1,000 cd m−2, demonstrating the outstanding
efficiency stability. On the other hand, their vacuum-deposited
OLEDs also have good ηext,max of up to 14.86% and negligible
efficiency roll-off at 1,000 cd m−2. These results indicate the
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great potential of small molecules with AIDF property for
the fabrication of high-performance solution-processed and
vacuum-deposited OLEDs.
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