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Estimating causal effects using prior information
on nontrial treatments

Simon J Bond a,b,c and Ian R Whitea

Background Departures from randomized treatments complicate the analysis of
many randomized controlled trials. Intention-to-treat analysis estimates the effect of
being allocated to treatment. It is now possible to estimate the effect of receiving
treatment without assuming comparability of groups defined by actual treatment.
However, the methodology is largely confined to trials where the only treatment
changes were switches to other trial treatments.
Purpose To propose a method for comparing the effects of receiving trial
treatments in an active-controlled clinical trial where some participants received
nontrial treatments and others received no treatment at all, and to illustrate the
method in the PENTA 5 trial in HIV-infected children.
Methods We combine the instrumental variables approach, which forms unbiased
estimating equations based on the randomization but does not fully identify the
contrasts of trial treatment effects, with prior information about the distribution of
possible effects of nontrial treatments and of one trial treatment; we do not need to
use prior information about the comparisons of trial treatments. Prior information in
PENTA 5 was elicited from the investigators.
Results In PENTA 5, the prior information suggested that all treatments were
beneficial, but there was uncertainty about the degree of benefit. Allowing for this
prior information changed point estimates and increased standard errors compared
with ignoring nontrial treatments.
Limitations The method depends on the correct specification of the causal effect
of treatment: in PENTA 5, this assumed a linear effect of dose and no interactions
between treatments. This specification is hard to check from the data but can be
explored in sensitivity analyses. Prior information would be better derived from the
literature whenever possible.
Conclusions The use of partial prior information gives a way to adjust for complex
patterns of departures from randomized treatments. It should be useful in all trials
where nontrial treatments are used and in active-controlled trials where trial
treatments are not universally used. Clinical Trials 2010; 7: 664–676. http://
ctj.sagepub.com

Introduction

Many forms of departure from randomized
treatment occur in clinical trials: nonreceipt of
randomized treatment (sometimes termed non-
compliance), receipt of the treatment allocated to
a different trial arm (sometimes termed

contamination), or receipt of a nontrial treatment,
defined as a treatment not randomly allocated in
the trial. Intention-to-treat (ITT) analysis is
accepted as a valid way to explore the effect of
allocating treatment [1]. However, there has long
been interest in estimating the causal effect of
receiving treatment [2]. Modern statistical methods
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are able to base such estimation on comparisons of
randomized groups [3], unlike popular methods
such as per-protocol analysis which invalidly
compare subgroups with different receipt of treat-
ment [4].

Much statistical literature assumes that partici-
pants can only switch to receive the treatment
allocated to a different trial arm, a situation with
the convenient property that the ITT analysis also
tests the null hypothesis of equivalence of the
randomized treatments. This article considers
the more difficult, but common, case where
participants can receive nontrial treatments. In
this case, the ITT analysis does not test the
equivalence of the randomized treatments: for
example, one treatment could appear better
simply because participants receiving that treat-
ment were more likely to change to an effective
nontrial treatment.

The difficulty introduced by participants receiv-
ing nontrial treatments is that the effects of these
treatments must be included in a statistical
model, but cannot easily be estimated from the
trial data. Past work has addressed this problem by
assuming that there are no unmeasured confoun-
ders [5,6] or by making strong distributional
assumptions [7,8]. Our approach avoids such
assumptions and instead uses information exter-
nal to the trial to place informative prior
distributions on the effects on nontrial treat-
ments. To do this, we introduce a hybrid of
Bayesian inference [9,10] and instrumental vari-
ables methods [11].

A particular application of our proposed meth-
odology is to equivalence and noninferiority trials
in which some participants receive no treatment,
since receipt of no treatment introduces the same
issues as receipt of nontrial treatments. ITT analysis
is generally held to be anti-conservative for equiva-
lence and noninferiority trials [12]. Per-protocol
analysis is commonly done [13], but better methods
are needed [14].

In this article, we first present the hybrid
approach in general. We then show using a
simple example how comparing the causal effects
of trial treatments depend on the effects of the
nontrial treatments, and we illustrate the hybrid
approach. We next present an application to
PENTA 5, a three-arm comparative trial in
pediatric HIV patients in which some children
received no treatment and others received non-
trial treatments. We describe how we elicited and
used expert priors, the results with the various
prior distributions that were considered, and the
implications. Finally, the discussion places this
work in the wider context of the noncompliance
literature.

Proposed method

Basic assumptions

In Rubin’s causal model [15], participant i has a set
of counterfactual outcomes Yi(D), where D repre-
sents a potential set of treatments, or drug dosages.
For each participant only one of this set of
outcomes is observed, Yi(Di). Two assumptions are
implicit in this notation. The Stable Unit Treatment
Value Assumption (SUTVA) [15] states that the set
of counterfactual outcomes for a particular partici-
pant is a function of that participant’s potential
treatments, and is not in any way influenced by
other participants’ potential treatments. The exclu-
sion restriction assumption states that randomiza-
tion has no direct effect on the outcome, and may
only have an indirect effect through its effect on
treatment actually received. Thus if a participant
would receive an identical treatment regardless of
their randomized treatment, then their counter-
factual outcomes would be identical in all such
arms. All potential outcomes are assumed to be
independent of randomization.

Model

For the i-th participant, let Ri be their randomized
group, taking values 1, 2, . . . , g; let Di be a p-dimen-
sional vector of their actual amount of the trial and
nontrial treatments (or dosages, for drug treat-
ments); let Yi be their observed outcome; and let
Yi(0) be their counterfactual untreated outcome
which would have been observed if no treatment
had been received.

We define a causal model relating the observed
outcome for the i-th participant to the same
participant’s counterfactual untreated outcome
[16]:

Yi ¼ Yið0Þ þD0iaþ �i, ð1Þ

where a is a p-dimensional set of causal parameters
for the trial and nontrial treatments. This model
assumes that the treatments have an additive,
linear effect proportional to the dose taken. For
any individuals with Di¼0, consistency between Yi

and Yi(0) requires ei¼0. We also assume

Yið0Þ ¼ X0icþ �i, ð2Þ

where Xi is a set of baseline covariates. Random
variation is captured by the within-individual error
ei with E[ei|Xi, Ri]¼0 and the between-individual
error �i with E[�i|Xi, Ri]¼0.
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The parameter a requires careful interpretation.
Making the stronger assumption E[ei|Di, Xi, Ri]¼0
allows us to interpret d0a as the average causal effect
of a dose d among those who receive dose d. It cannot
be interpreted as the average causal effect of dose d
among all individuals, unless we also assume that
treatment assignment is independent of treatment
benefit [17].

Ordinary least-squares estimation

One way to estimate a is to regress Yi on Di.
Unfortunately, this is only valid if Yi(0) is uncorre-
lated with Di, which is usually unrealistic: partici-
pants with a good prognosis usually show different
patterns of D to those with a poor prognosis.
Sometimes, confounding variables X can be mea-
sured and included in the analysis in order to
motivate a ‘no unmeasured confounders’ assump-
tion that Yi(0) is uncorrelated with Di given X, but
this is rarely plausible. We do not consider this
method further.

Instrumental variables estimation

A better approach to estimating the parameters uses
the idea of instrumental variables (IV). Combining
Equations (1) and (2) and taking the expectation
conditional on X and R gives

E YijXi, Ri½ � ¼ X0icþ E DijXi, Ri½ �
0a: ð3Þ

We estimate a in two stages. First, we fit a linear
regression for the d-th treatment dose,

Ddi ¼ X0ibd1 þ R0ibd2 þ eDdi ð4Þ

for each d¼1 to p, where Ri is a vector of dummy
variables for randomized group. We assemble the p
fitted values into a vector bDi ¼

bDiðXi, RiÞ. Then we
estimate a in the linear regression

Yi ¼ X0icþ
bD0iaþ eYi: ð5Þ

Identification

Regression (5) is only identified if the number of
unknown treatment effects p is less than the
number of arms g. For example, in a two-arm
trial comparing two treatments, in which some
individuals receive no treatment, Equation (5)
does not identify the two unknown treatment
effects, since there is only one contrast between

trial arms. We will consider this example further
below.

There are various ways to deal with nonidenti-
fication. First, we could expand the causal model to
a full probability model, modeling the association
between Y(0) and Di, and estimating the model
using maximum likelihood [18]. However, this
approach can be sensitive to model mis-specifica-
tion [19].

Second, we could include interactions between
Xi and Ri in model (4), as is done in structural mean
models [20,21]. Including such interactions typi-
cally identifies the treatment effects a, but such
identification is highly dependent on the assump-
tion that the causal effect does not vary with X [16].
In this article we do not include such interactions,
but they are explored separately [22].

Third, we could perform a sensitivity analysis in
which we separate the model parameters into two
groups: the ‘protocol effects’ ap which would have
been estimated if there had been perfect compli-
ance, and the ‘nonprotocol effects’ an which would
have been irrelevant if there had been perfect
compliance. In trials comparing active treatments,
the protocol effects would be contrasts of active
treatments, while the nonprotocol effects would be
the effect of one trial treatment and the effects of
any nontrial treatments used (so that they are not
uniquely defined: see ‘Obtaining prior informa-
tion’) later. The sensitivity analysis would then
estimate the protocol effects over a range of
plausible values of the nonprotocol effects.

Hybrid estimation

Building on the idea of sensitivity analysis, our
proposal in this article is to combine IV estimation
with prior information about the nonprotocol
effects in order to identify the model. The next
section will discuss how the prior information may
be obtained. To implement the method, we use a
Bayesian approach. We first fit the linear regression
(4) and sample from the posterior distribution of
parameters �. For each sampled value, we computebDiðXi, RiÞ. We then consider the linear regression (5)
with prior p(a) and sample from the posterior
distribution of a and c.

This procedure is conveniently implemented in
WinBUGS [10]. It could be considered a Bayesian
procedure using a partial likelihood that does not
consider the relationship between D, �, and e.
Alternatively, it could be considered a probabilistic
sensitivity analysis for IV estimation where any
unidentified parameters may be imputed following
an informative prior distribution [23]. Its advan-
tages are enabling the use of prior identifying
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information and allowing for uncertainty in the
parameters of E[D|X, R].

Obtaining prior information

The nonprotocol effects are commonly effects of
widely used treatments, so results of relevant
randomized trials or meta-analyses of such trials
would ideally be available as prior information. In
some cases, however, trials or meta-analyses are
inadequate, and it is preferable to elicit prior
information from experts [24].

In practice, one may elicit a prior distribution for
all of a rather than just for the nonprotocol
parameters; this was done in the case study below.
A fully Bayesian analysis would use this full prior
p(a). However, we argue against using prior beliefs
about the protocol effects, because we would not
usually use this information in a clinical trial
without noncompliance, and because it is not
needed in order to adjust for noncompliance. We
prefer to use prior information only where it is
needed to achieve identifiability.

There is usually more than one way to achieve
identifiability, because there is more than one
reasonable way to define the nonprotocol para-
meters. We propose using the full expert prior to
define the nonprotocol parameters an as a linear
combination of parameters in a that are uncorre-
lated with ap in the prior distribution. We then
modify the full prior distribution by giving a large
value to the prior variance of the protocol effects:
that is, we use the expert prior for an and a vague
prior for ap. This method has the desirable property
that the same prior is obtained, however, ap is
defined. In the case of complete compliance, or just
switching between trial treatments, the prior will
become redundant, as would be desired. Details of
how to compute such a set of constrasts are given in
appendix D.

Simple example

We now consider a two-arm trial comparing
experimental with standard treatment, where
participants may receive either treatment, both
treatments or neither treatment, but receipt of
any one treatment is all-or-nothing. As before, Ri

indicates whether participant i was randomized to
treatment 1 or 2, Yi is their actual (quantitative)
outcome, and Yi(0) is their counterfactual
untreated outcome. In this setting, treatment for
participant i is summarized by two binary vari-
ables Ddi indicating whether or not they took

treatment d¼1, 2. The causal model (1) then
becomes

Yi ¼ Yið0Þ þ �1D1i þ �2D2i þ �i ð6Þ

where, as before, ei has mean zero, is uncorrelated
with randomized group and actual treatment and
equals 0 if D1i¼D2i¼0.

The target of inference is the ‘protocol effect’
ap¼ a1� a2. Strictly, this is the difference between
the average effect of treatment 1 in those who
receive treatment 1 and the average effect of
treatment 2 in those who receive treatment 2. It
seems reasonable to believe that the average effect
of treatment 1 in those who received it is unaf-
fected by whether they would have received treat-
ment 2 if allocated to it. Therefore the protocol
effect may be interpreted as the ITT difference in
perfect compliers [22].

We initially consider the case where treatment 1
is new and treatment 2 is a standard treatment, so
we are likely to have more prior knowledge about a2

than about a1, and we define the nonprotocol effect
as an¼ a2.

Estimation by instrumental variables

Randomization ensures that the distributions of the
error term ei and the untreated outcome Yi(0) are
identical in both arms, suggesting the unbiased
estimating equation

1

n1

X
i:Ri¼1

ðYi � �1D1i � �2D2iÞ

¼
1

n2

X
i:Ri¼2

ðYi � �1D1i � �2D2iÞ ð7Þ

where n1 and n2 are the sample sizes in the two
arms. We write this as

�Y1 � �1
�D11 � �2

�D21 ¼ �Y2 � �1
�D12 � �2

�D22, ð8Þ

where �Ddr and �Yr are the mean of Ddi and Yi in arm
r, and hence

�p ¼ �1 � �2 ¼
�Y1 � �Y2 þ �2

�D22 þ �D12 � �D11 � �D21

� �
�D11 � �D12

ð9Þ

Equation (9) shows that we cannot in general
estimate the protocol effect a1� a2 without know-
ing the nonprotocol effect a2. The only exception is
if �D22 þ �D12 � �D11 � �D21 ¼ 0, which occurs in the
special case when the participants can only switch
treatments. In this case the estimate of a1�a2 is
well defined and is the standard IV estimate
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ð �Y1 � �Y2Þ=ð �D11 � �D12Þ. In the case of perfect com-
pliance, �D11 � �D12 ¼ 1, so the estimate equals the
standard ITT estimate �Y1 � �Y2.

Now suppose we have external knowledge about
a2, the causal effect of the standard treatment.
Expressing this knowledge as a probability distribu-
tion with mean ma2

and variance s2
�2

, our best
estimate is

�̂p ¼
�Y1 � �Y2 þm�2

�D22 þ �D12 � �D11 � �D21

� �
�D11 � �D12

ð10Þ

with approximate variance

varð�̂pÞ

¼
�2ð1=n1 þ 1=n2Þ þ s2

�2

�D22 þ �D12 � �D11 � �D21

� �2

ð �D11 � �D12Þ
2

ð11Þ

where � is the standard deviation of Y in each arm.
The two terms in the numerator of (11) allow for
uncertainty in the data about �Y1 � �Y2 and prior
uncertainty about a2, respectively. (We ignore for
illustrative purposes the uncertainty in the �Ddr,
which is typically much less than the uncertainty
in the �Yr.) The role of the external knowledge
is typically limited, because the term

�D22 þ �D12 � �D11 � �D21

� �
is typically small: it repre-

sents the difference in treatment in arm 2 com-
pared with arm 1, summed over treatments.

We have so far assumed that treatment 1 is new.
If instead the trial is a head-to-head comparison of
two existing treatments, one might use prior
knowledge about �� ¼ ð�1 þ �2Þ=2. This suggests
replacing Equation (9) with

�p ¼ �1 � �2

¼
�Y1 � �Y2 þ �� �D22 þ �D12 � �D11 � �D21

� �
1
2 ð

�D22 � �D12 þ �D11 � �D21Þ
:
ð12Þ

Given a full expert prior p(a1, a2), we could also
define an to be uncorrelated with ap in the prior, as
described above.

Numerical example

We illustrate these ideas using a fictitious data set
with imperfect compliance (Table 1). If a2 were
known then we could use Equation (9) to show
�̂p ¼

1�0:2�2

0:8 . Instead, we use various priors for
an¼a2, using Equations (10) and (11). The first
four rows of Table 2 have priors centered at a2¼0.
They all have point estimate �̂p¼1.25, but the
standard error of �̂p increases with uncertainty

about a2 (although this standard error is much
smaller than the prior uncertainty about a2). The
next four rows of Table 2 change the prior mean
from 0 to 1, which reduces the posterior mean from
1.25 to 1 – a smaller change, but one that could still
be practically important.

Example: PENTA 5 trial

Trial design

The PENTA 5 trial [25] compared the effectiveness
of three combination treatments for pediatric HIV-
1 infection: lamivudine (3TC) þ abacavir (ABC),
zidovudine (ZDV) þ 3TC, and ZDV þ ABC. Of the
128 children randomized, 55 who were initially
symptom-free were additionally randomized to
receive nelfinavir, a protease inhibitor (PI), or
placebo in an incomplete factorial design: sympto-
matic children all received PI. In this analysis we
include all 128 children but consider PI as a
nontrial drug, ignoring the fact that it was partly
randomized.

The children returned to the clinic at 4-week
intervals up to 24 weeks and at 12-week intervals
thereafter up to 224 weeks. The primary endpoint
was the log concentration of HIV RNA in plasma at
24 and 48 weeks. Here we focus on the 24-week
outcome, defined as the outcome observed closest
to 24 weeks within the 22–30 week window.

Table 2 Results for simple example

Prior p(a2) Posterior for ap¼ a1� a2

Mean Standard error

N(0, 02) 1.25 0.18

N(0, 0.52) 1.25 0.22

N(0, 12) 1.25 0.31
N(0, 22) 1.25 0.53

N(1, 02) 1.00 0.18

N(1, 0.52) 1.00 0.22
N(1, 12) 1.00 0.31

N(1, 22) 1.00 0.53

Table 1 Data for simple example

Arm 1 Arm 2

Mean outcome, �Yr 3 2
Outcome SD, � 1 1

Sample size, n 100 100

Mean use of treatment 1, �Dr1 0.8 0
Mean use of treatment 2, �Dr2 0 0.6
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Baseline covariates included sex, ethnic origin, age,
CDC disease stage, CD4 cell count, and height-for-
age Z-scores.

Observed treatment

The trial drugs ZDV, 3TC and ABC, and the nontrial
PI were taken at many different doses. Table 3
shows a ‘recommended dose’ for each drug (the
protocol dose for the trial drugs and current best
practice for the nontrial drug), dependent on a
child’s weight or estimated body surface area. For
each drug, we defined the ‘dose fraction’ for each
child at each clinic visit as the fraction of the
‘recommended dose’ taken, except that doses above
the maximum adult dose had a dose fraction of 1
[16]. The ‘standardized dose’ was defined as the
dose fraction if a drug had been taken without
interruption; after interruption, the effect of the
drug may be diminished by possible acquisition of
viral resistance, and the dose fraction was multi-
plied by the ‘re-start factor’ given in Table 3.

D1i, D2i, D3i, and D4i were defined as the
standardized doses for ZDV, 3TC, ABC, and PI,
respectively for child i at 24 weeks. A box and
whisker plot summarizing the standardized doses,
by randomized arm, is given in Figure 1.

The focus of the trial is to estimate differences
between 3TC & ABC, ZDV & 3TC, and ZDV & ABC
[25]. Assuming the drugs have an additive effect,
the contrasts of interest are then represented by
a2�a1 (3TC & ABC vs. ZDV & ABC) and a2� a3

(ZDV & 3TC vs. ZDV & ABC). Thus the protocol
effects are ap¼ (a2�a1, a2� a3). We consider how to
assess sensitivity to the modeling assumptions in
the discussion. The nonprotocol effects are taken
as an¼ (a1þ a3, a4), representing the causal effect
of ZDV & ABC versus no drugs and the causal effect
of the nontrial PI drugs. We emphasize that ap is of
primary clinical interest; an is only important
because it is needed in order to estimate the
protocol parameters.

Expert prior

To obtain expert opinion on drug effects, five
clinicians active in the field of HIV medicine and
HIV clinical trials were sent a questionnaire
describing 22 hypothetical randomized controlled
trials (Appendices A and B). The trials compared the
two- and three-drug combinations of all trial and
nontrial drugs actually used in PENTA 5, although
several of these (the classes NRTI and nNRTI in the
appendices) were not in use at 24 weeks. For each
trial, the questionnaire elicited the median, 75th
and 87.5th quantile of the expert’s prior distribu-
tion for the true difference in log HIV RNA between
the trial arms. The elicited data were converted into
a pooled multivariate Normal prior distribution
with the parameters given in Table 4.

ZDV

3TC

3TC & ABC ZDV & 3TC ZDV & ABC

ABC

PI

0.0 0.5 1.0 1.5 0.0 0.5

Standardized doses

1.0 1.5 0.0 0.5 1.0 1.5

Figure 1 PENTA 5 trial: standardized drug dosages at 24

weeks

Table 4 PENTA 5 trial: means, standard deviations and

correlation matrix of the expert prior distribution for the four
treatment effects

ZDV (a1) 3TC (a2) ABC (a3) PI (a4)

Mean �0.408 �0.576 �0.457 �1.032

SD 0.418 0.478 0.443 0.525

Correlation

ZDV 1 0.41 0.32 0.45

3TC 1 0.38 0.42
ABC 1 0.30

PI 1

Table 3 PENTA 5 trial: recommended and maximum drug

doses and re-start factors

Type Drug Recommended dose Maximum Re-start

(mg) (mg) factor (%)

Trial ZDV 360 /m2/day 600 75

3TC 8 /kg/day 300 50

ABC 16 /kg/day 600 50
Nontrial PI 90 /kg/day 2500 75
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Analysis model

We modeled the dose of the d-th drug for child i at
24 weeks using

Ddi ¼ �d0 þ �d1Ri1 þ �d2Ri2 þ �d3Yi0 þ �Ddi ð13Þ

where Ri1 and Ri2 are indicator variables for the 3TC
& ABC and ZDV & 3TC arms, and Yi0 is the baseline
level of log HIV RNA. The choice of covariates was
based on statistical significance.

Our model for the primary outcome was

Yi ¼
X4

d¼1

�dD̂dij þ �0 þ �1Yi0 þ �Yi: ð14Þ

The error terms, eDdi and eYi were assumed to be
independent, normally distributed, with zero mean
and variance �2

d and �2
Y , respectively.

As described more fully in [16], some outcome
values were only reported as being below a cutoff.
The MCMC simulation approach easily copes with
such censored data by imputing the censored
values under the assumption that the underlying
distribution is Normal. WinBUGS code is given in
Appendix C.

For comparative purposes, we fitted an inten-
tion-to-treat (ITT) model which made no use of the
observed doses. The model fitted was similar to
Equation (14) but with the four D̂dij terms replaced
with two indicator variables for the 3TC & ABC and
ZDV & 3TC arms of the trial; the baseline log HIV
RNA count term was retained. A classical Tobit
regression analysis was used to account for the
censored observations, replicating the approach
used in [25].

Results

We considered five different choices of priors, the
last three of which were described above under
‘Obtaining prior information’:

(1) An uninformative prior, N(0, 22), on the
two nonprotocol effects. The value of 2
was chosen as a very large value from the
clinical context;

(2) A ‘naı̈ve’ prior that assumes the value of the
nonprotocol parameters is zero;

(3) Partial expert (method 1): the experts’ full
prior distribution, with the marginal variance
on the two protocol effects changed to a
large value, 1000, and with the prior for
the two nonprotocol effects unchanged;

(4) Partial expert (method 2): as method 1, but
with the two nonprotocol parameters redefined

to be independent of the protocol parameters
in the prior;

(5) The experts’ full prior distribution on both
protocol and nonprotocol parameters.

Apart from these different specifications of the
informative prior, broadly noninformative priors
were used for the remaining parameters: the
coefficients in the D models were N(0, 100);
precisions for all the error terms were �(0.01,
0.01); ap (except in the model using the full prior)
and c were N(0, 1000).

The resulting confidence intervals for the two
protocol parameters are shown in Figure 2. With
the uninformative prior, the data are fairly
uninformative on the causal effect of the trial
drugs. The naı̈ve prior gives much more certain
results, but makes the implausible assumption
that nontrial treatments have no effect. The two
partial expert prior methods agree to a reason-
able extent in both location and width; we prefer
method 2, since it is invariant to re-parameter-
ization and has a clear theoretical interpretation.
The full expert prior gives results that are similar
to the partial expert prior but closer to the null,
reflecting the experts’ prior beliefs being centered
near the null. Recall that these parameters
require careful interpretation. The ITT analysis,
also shown in Figure 2, estimates the treatment
effect of 3TC & ABC to be closer to the null
than all the other models, with a similar size
confidence interval to the expert prior analysis;
the ITT treatment effect of ZDV & 3TC is
roughly comparable to the two expert prior
analysis.

3TC & ABC vs ZDV & ABC ZDV & 3TC vs ZDV & ABC

–2

Full expert

Expert (Method 2)

Expert (Method 1)

Naive

Uninformative

ITT

–1 0 1 2
95% confidence interval and estimate

–2 –1 0 1 2

Figure 2 PENTA 5 trial: estimated parameters under intention-

to-treat (ITT) analysis and under causal analysis with different
priors
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The qualitative conclusion is that 3TC & ABC is
the superior drug combination, but the degree of its
superiority depends on our opinion of the effect of
the other drugs.

Discussion

We have proposed a way to estimate causal
differences between treatments in a randomized
trial with a complex pattern of nonreceipt
of randomized treatments and receipt of
nontrial treatments. Here we compare our
approach with some alternative methods that
have been proposed.

The largest body of literature concerns causal
analyses when the only treatment change is switch-
ing between the trial treatments. The intuitive
presentation of Sommer and Zeger [26] has been
formalized by Angrist et al. [27] and by the notion
of principal strata [28], and widely extended
[18,29–31]. These techniques estimate a single
treatment contrast from a single randomization
and do not extend to cases where some participants
take nontrial treatments, or to comparative trials
where some participants take no treatments,
because in these settings it is necessary to estimate
more parameters without having more
randomizations.

Some attempts have been made to handle
nontrial treatments. Robins and Greenland consid-
ered a trial of low versus high dose of AZT in AIDS
patients where the ITT analysis unexpectedly found
that the low dose improved survival [5], possibly
due to imbalance in the receipt of a nontrial
treatment (prophylaxis against Pneumocystis carinii
pneumonia). The authors estimated a structural
nested failure time model involving the causal
effects of the two treatments in two ways. First,
they used two different weighted log-rank tests:
since there were more parameters than randomized
arms, this method gave very imprecise inferences,
and depended strongly on distributional assump-
tions. Second, they estimated the effect of the
nontrial treatment under the assumption that
conditioning on recorded clinical variables was
sufficient to make the decision to switch treatments
independent of potential future outcomes.
This gave more precise inferences, but the ‘no
unmeasured confounders’ assumption is highly
questionable in this and other settings. Robins
introduced a wide range of methods for equiva-
lence trials based on the assumption of no unmea-
sured confounders [6].

An alternative approach by Walter et al. [7]
extended the approach of Sommer and Zeger [26]
to a comparative trial with a binary outcome where

participants might receive no treatment. They
defined five principal strata [28] by cross-classifying
the treatment a participant would receive if rando-
mized to A with the treatment they would receive if
randomized to B. To identify the model, they made
limited assumptions about comparability of princi-
pal strata, either constraining three relative risks to
be equal or constraining two pairs of probabilities
to be equal: the estimates may be sensitive to such
assumptions, and external information is needed to
justify them.

Roy et al. [8] identified causal effects in different
principal strata without assuming either compar-
ability between groups as treated or no unmeasured
confounders [8]. However, their method assumed
that potential outcomes were independent of
covariates within principal strata, and this ques-
tionable assumption may have been the key to
model identification.

Our approach avoids making strong and typi-
cally unjustified assumptions, either comparability
between groups as treated, possibly after covariate
adjustment, or modeling assumptions. It accepts
the likely nonidentifiability of the contrasts of
interest from the observed data, and instead uses
contextual or prior knowledge about the
treatments.

Is such prior knowledge likely to be available and
reliable? In a comparative trial with some indivi-
duals receiving no treatment, we require prior
knowledge about one of the treatment effects, or
perhaps about some linear combination of the two
treatment effects. This is very likely to be available
from the literature, so we would often be able to use
published trials or (ideally) meta-analyses to pro-
vide our prior knowledge. Even rather imprecise
prior information is likely to be useful, and prior
imprecision is unlikely to carry over substantially
into the estimates of treatment contrasts unless
nonreceipt of treatment is widespread and
unbalanced.

Greater difficulties may arise in the case of
nontrial treatments, which may be new, untested
or inadequately tested treatments. In this case
expert opinions may be required. The analysis of
the PENTA 5 trial presented here was part of a larger
investigation of treatment changes throughout
follow-up, which required priors for seven drugs
from four classes. Even assuming common drug
effects within classes, this was considered to be
more information than could be obtained from the
literature, since drug effects are likely to differ
between children and adults, and few HIV trials
have been done in children. Another difficulty with
the use of expert prior information is deciding who
should provide the prior. Ideally the prior would
come from independent experts, but it will
often more practically come from the trial
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investigators [32]. Clearly the prior must be stated
so that it can be assessed by readers.

Our methodology is a hybrid of instrumental
variables and Bayesian methods. Purists will not
like this, since full Bayesian methods require a full
probability model while instrumental variables
allows us to avoid this. However, we believe that
our method combines the best aspects of both
methodologies, using instrumental variables meth-
ods to avoid assumptions about the relationship
between the dosage D and the untreated outcome
Y, and Bayesian methods to incorporate prior
beliefs about nonprotocol parameters.

Our results depend on the truth of the causal
model. In PENTA 5, this assumed that the causal
effect of a dose of drug was proportional to the dose
received, and that there were no interactions
between drugs. These assumptions are not easily
checked from the data, since adding further terms
to the causal model would only increase the
number of nonidentified parameters on which
prior information is needed. Therefore, sensitivity
analyses are important [33]. In PENTA 5, they could
involve adding to the causal model (1) nonlinear
terms with assumed coefficient values. Estimation
would then require expectations of these nonlinear
terms to be computed as in (13) and added
into (14).

Our computational approach for the PENTA 5
data used Monte Carlo Markov Chain methods in
WinBUGS. Computationally simpler approaches
could be available; one idea might be to draw a
small sample from the prior p(a), analyze the data
conditionally on each value of a, and combine
results as for multiply imputed data [34].

The methods presented here can also been
extended to analyze longitudinal data, by replacing
models (13) and (14) with time-dependent ver-
sions. This involves attention to the longitudinal
error structure.

Finally, our method in the simple case presented
requires just knowledge of the mean receipt of each
drug on each arm. Some information about treat-
ment received is typically reported, but application
of methods such as ours would be facilitated if
treatment received were reported in a more stan-
dard way.

Acknowledgments

We thank the PENTA steering committee for
allowing the use of the data from the PENTA 5
trial, Sarah Walker for her help in eliciting prior
beliefs, and our five experts for contributing their
prior beliefs.

Funding

This work was supported by MRC grant
U.1052.00.006.

References

1. Pocock SJ. Clinical Trials: A Practical Approach. Wiley,
Chichester, 1983.

2. Efron B, Feldman D. Compliance as an explanatory
variable in clinical trials. J Am Stati Assoc 1991; 86: 9–17.

3. White IR. Uses and limitations of randomization-based
efficacy estimators. Stat Methods Med Res 2005; 14:
327–47.

4. Porta N, Bonet C, Cobo E. Discordance between
reported intention-to-treat and per protocol analyses. J
Clin Epidemiol 2007; 60: 663–69.

5. Robins JM, Greenland S. Adjusting for differential rates
of prophylaxis therapy for PCP in high-dose versus low-
dose AZT treatment arms in an AIDS randomized trial.
J Am Stat Assoc 1994; 89: 737–49.

6. Robins JM. Correction for noncompliance in equiva-
lence trials. Stat Med 1998; 17: 269–302.

7. Walter SD, Guyatt G, Montori VM, et al. A new
preference-based analysis for randomized trials can
estimate treatment acceptability and effect in compliant
patients. J Clin Epidemiol 2006; 59: 685–96.

8. Roy J, Hogan JW, Marcus BH. Principal stratification
with predictors of compliance for randomized trials with
2 active treatments. Biostatistics 2007; 9: 277–89.

9. Bernardo JM, Smith AFM. Bayesian Theory (2nd edn).
Wiley, Chichester, 2001.

10. Lunn DJ, Thomas A, Best N, Spiegelhalter D.
WinBUGS – a Bayesian modeling framework: concepts,
structure, and extensibility. Stat Comput 2000; 10:
325–37.

11. Bowden RJ, Turkington DA. Instrumental Variables.
Cambridge University Press, Cambridge, 1984.

12. Jones B, Jarvis P, Lewis J, Ebbutt A. Trials to assess
equivalence: the importance of rigorous methods. BMJ
1996; 313: 36–39.

13. Brittain E, Lin D. A comparison of intent-to-treat and
per-protocol results in antibiotic noninferiority trials.
Stat Med 2005; 24: 1–10.

14. Fleming TR. Current issues in noninferiority trials. Stat
Med 2008; 27: 317–32.

15. Rubin D. Estimating causal effects of treatments in
randomized and non-randomized studies. J Educ Psychol
1974; 66: 688–701.

16. Bond SJ, White IR, Walker AS. Instrumental variables
and interactions in the causal analysis of a complex
clinical trial. Stat Med 2006; 26: 1473–96.

17. Robins JM. Correcting for noncompliance in rando-
mized trials using structural nested mean models.
Commun Stat: Theor Meth 1994; 23: 2379–2412.

18. Imbens GW, Rubin DB. Bayesian inference for causal
effects in randomized experiments with noncompliance.
Ann Statist 1997; 25: 305–27.

19. Walker AS, White IR, Babiker AG. Parametric rando-
mization-based methods for correcting for treatment
changes in the assessment of the causal effect of
treatment. Stat Med 2004; 23: 571–90.

20. Goetghebeur E, Lapp K. The effect of treatment
compliance in a placebocontrolled trial: Regression
with unpaired data. J R Stat Soc Ser C 1997; 46: 351–64.

672 SJ Bond and IR White

Clinical Trials 2010; 7: 664–676 http://ctj.sagepub.com



21. Fischer K, Goetghebeur E. Practical properties of some
structural mean analyses of the effect of compliance in
randomized trials. Control Clin Trials 1999; 20: 531–46.

22. Fischer K, Goetghebeur E, Vrijens B, White IR. A
structural mean model to analyze the effect of compli-
ance when comparing two active treatments. Biostatistics
(in press).

23. Oakley JE, O’Hagan A. Probabilistic sensitivity analysis
of complex models: a Bayesian approach. J R Stat Soc Ser B
2004; 66: 751–69.

24. O’Hagan A, Buck CE, Daneshkhah A, et al. Uncertain
Judgements: Eliciting Expert Probabilities. Wiley,
Chichester, 2006.

25. Paediatric European Network for Treatment of AIDS.
Comparison of dual nucleoside-analogue reverse-
transcriptase inhibitor regimes with and without nelfi-
navir in children with HIV-1 who have not previously
been treated: the PENTA 5 randomized trial. Lancet 2002;
359: 733–40.

26. Sommer A, Zeger SL. On estimating efficacy from
clinical trials. Stat Med 1991; 10: 45–52.

27. Angrist JD, Imbens GW, Rubin DB. Identification of
causal effects using instrumental variables. J Am Stat
Assoc 1996; 91: 444–72.

28. Frangakis CE, Rubin DB. Principal stratification in
causal inference. Biometrics 2002; 58: 21–29.

29. Cuzick J, Edwards R, Segnan N. Adjusting for noncom-
pliance and contamination in randomized clinical trials.
Stat Med 1997; 16: 1017–29.

30. Hirano K, Imbens GW, Rubin DB, Zhou XH. Assessing
the effect of an influenza vaccine in an encouragement
design. Biostatistics 2000; 1: 69–88.

31. Barnard J, Frangakis CE, Hill JL, Rubin DB. Principal
stratification approach to broken randomized experi-
ments: A case study of school choice vouchers in New
York City. J Am Stat Assoc 2003; 98: 299–311.

32. White IR, Carpenter J, Evans S, Schroter S. Eliciting and
using expert opinions about non-response bias in
randomised controlled trials. Clin Trials 2007; 4: 125–39.

33. Vansteelandt S, Goetghebeur E. Sense and sensitivity
when correcting for observed exposures in randomized
clinical trials. Stat Med 2005; 24: 191–210.

34. Rubin DB. Multiple Imputation for Nonresponse in Surveys.
John Wiley and Sons, New York, 1987.

35. Golub GH, Van Loan CF. Matrix Computations
(2nd edn). Johns Hopkins University Press, Baltimore,
1989.

Appendices

(A) Information sheet for elicitees

Randomized control trial prior elicitation

You will shortly be asked for your opinion on the
results of a sequence of hypothetical RCTs. These
trials all have recruitment criteria that are identical
to those used in the PENTA-5 trial (children aged 3
months to 16 years, HIV-1 infection, no previous
anti-retroviral treatment and without transmitted
drug resistance). They only differ in the combina-
tions of drugs to be compared in the two arms.

For example, in question 1, the trial consists of
two arms; arm A (3TCþABCþPI) versus arm B
(ABCþNRTIþPI), and the outcome is change in
log10 RNA measurement from baseline to 48 weeks.

The end result of the trial is the mean difference
(arm A � arm B) between these changes from
baseline in the two randomized groups. So for
example, if there was a 2.5 log drop in arm A, and a
3.0 log drop in arm B, the mean difference between
arms would be þ0.5¼�2.5��3.0. Call this quan-
tity, X: X is unknown, but in your expert opinion
there are some values that are more likely than
others.

A potential ‘best guess’ for X is the point
whereby you believe that 50% of the time the X
you actually observed in a RCT would be less than
this cut-point, and 50% of the time it would be
larger: this would be the median X observed if we
carried out a large number of trials. This median
would be the cut-point whereby you would be
ambivalent between accepting a bet, or placing a
bet, on the event that the X observed in one trial
would be larger than this.

Mark on the line of your expert opinion on this
value, the median. If you think B is a better regimen
than A, this value should be positive, the right-
hand side of the line. If you think A is better it
should be negative, the left-hand side of the line.
For clarity please annotate the mark with the
letter ‘M’.

Now, imagine that X has been observed in an RCT
and you are told that its value is greater than the
value you have marked for the median – that is, a
RCT has shown that B is actually better than you
thought it was. Conditional on this extra knowl-
edge, mark your ‘best guess’ at the revised median on
the same line. This mark should always be to the right of
your first mark – B is better than you thought it was.

Finally, you are now told that another trial has
observed an X even greater than the value you have
just marked , so that B is even better than your
second guess: mark your ‘best guess’ at the revised
median. This mark should always be to the right of
your first two marks – B is even better than you
thought it was.

This exercise is now repeated for another 21
hypothetical trials that have the same outcome
measure and recruitment procedure, but differ in
the treatment assigned in the two arms. Where the
randomized comparison is between a class and a
specific drug (e.g., 3TC vs. NRTI in the first
example), please assume that the clinician has a
free choice amongst drugs of that class, and is likely
to prescribe according to current clinical practice.
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(B) Visual analog scale

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

0 1.5−1.5 −1 −0.5 0.5 1

Date:.........................................................................................................................

Name:........................................................................................................................

Arm A Arm B Arm A - Arm B

3TC ABC PI ABC NRTI PI

ZDV ABC PI ZDV 3TC ABC

ZDV ABC PI

ZDV ABC PI

ZDV ABC PI

ZDV ABC NNRTI

ZDV 3TC ABC

ZDV 3TC ABC

ZDV ABC PI

ZDV ABC NNRTI

ABC NRTI PI

ZDV ABC

ZDV 3TC PI

ZDV 3TC ABC

ZDV 3TC ABC

ZDV 3TC ABC

3TC ABC Pi

3TC ABC NNRTI

3TC ABC PI

3TC ABC PI

3TC ABC NNRTI

3TC ABC NNRTI

3TC ABC NNRTI

3TC ABC

3TC ABC PI

3TC ABC

3TC ABC PI

ZDV ABC PI

ZDV ABC

ABC NRTI PINRTI PI

3TC ABC

ZDV 3TC PI

ZDV ABC NNRTI

ZDV ABC

ZDV 3TC

ZDV 3TC PI

ZDV 3TC ZDV 3TC PI

ZDV 3TC ABC

ZDV 3TC ABC

ZDV ABC NNRTI

(C) WinBUGS code

model{

for (i in 1:N){
# i indexes N subjects

# D-Model Fitting

for (j in 1:P){
# j indexes the P (4) protocol & non-protocol treatments in D
# columns of D are ZDV, 3TC, ABC, PI

# Q is the number (4) of baseline variables & arm indicators given in X.
# Columns of X are arm2, arm3, intercept, baseline log HIV RNA.
# So for computation, X and R of section 2 are combined into one matrix.

# eta gives the predicted values for the D models

eta[j,i] <- inprod(beta[j,1:Q], X[i,1:Q])
D[j,i] ˜ dnorm(eta[j,i], prec[j])

}
# Now convert the fitted D to the desired treatment contrasts
prot[1,i] <- eta[2,i]-eta[1,i] # 3TC-ZDV
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prot[2,i] <- eta[2,i]-eta[3,i] # 3TC-ABC
nonprot[1,i] <- eta[1,i]+eta[3,i] # ZDV+ABC
nonprot[2,i] <- eta[4,i] # PI

# Use the WinBugs cut function to ensure the D-models are not influenced
# by the Y-model estimation
Dhat[1,i] <- cut(prot[1,i])
Dhat[2,i] <- cut(prot[2,i])
Dhat[3,i] <- cut(nonprot[1,i])
Dhat[4,i] <- cut(nonprot[2,i])

# Y-Model Fitting

Yhat[i] <- inprod(alpha.protocol[1:2], Dhat[1:2,i])
+ inprod(alpha.nonprotocol[1:2], Dhat[3:P,i])
+ inprod(gamma[1:2], X[i,3:Q])

# Use the WinBugs I(,) syntax for censored observations
Y[i] ˜ dnorm(Yhat[i],precY) I(, 1.699)

}

# Prior Distributions

# D-model

for (j in 1:P) {
for (k in 1:Q) {

beta[j,k] ˜ dnorm(0,0.01)
}
prec[j] ˜ dgamma(0.01,0.01)
sd[j] <- 1/sqrt(prec[j])

}

# Y-model

# Computational efficiency suggests to start with a set of independent
# normals (delta) and then to linearly transform to obtain the desired
# multivariate normal for the priors on alpha.protocol and alpha.nonprotocol.

# To achieve a Multivariate-Normal(mu, Sigma),
# find Chol such that Sigma= Chol * transpose(Chol)
# e.g. Cholesky decomposition,
# find delta.mean=inverse(Chol)* mu,
# then Chol*N(delta.mean,I)= MvN(mu, Sigma)

for(j in 1:P){
delta[j] ˜ dnorm(delta.mean[j],1)

}

for(j in 1:2){
alpha.protocol[j] <- inprod(Chol[j,1:P], delta[1:P])
alpha.nonprotocol[j] <- inprod(Chol[j+2,1:P], delta[1:P])
gamma[1:2] ˜ dnorm(0,0.001)
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}
precY ˜ dgamma(0.01,0.01)
sdY <- 1/sqrt(precY)

# Need to specify in the data:
# N
# P
# Q
# Y[]
# X[,]
# D[,]
# Chol[,]
# delta.mean[]

}

(D) Independent prior

Let the g�1 protocol contrasts and the p� gþ1
nonprotocol contrasts be expressed as ap¼Lp a and
an¼Lna, respectively, where Lp is a (g�1)� p

matrix and Ln is a (p� gþ1)� p matrix. Let the
full prior for p-dimensional a be multivariate
normal with covariance matrix �.

We argued in the section ‘Obtaining prior
information’ that an should be independent of ap

in the prior, so we must find Ln that solves
Ln�L0p ¼ 0: This can be done by finding the QR
decomposition [35, section 5.2] of �L0p ¼ QR,
which computes the p� p orthogonal matrix Q,
and the p� (g�1) matrix R, with zero elements
apart from the first g�1 rows that form an upper
triangular matrix. Pre-multiplying by Q0 shows that
the last p� gþ1 rows of Q0 provide a solution.

For the PENTA 5 prior distribution expressed in
Table 4, this procedure gives the two components
of an as 0.806a1þ0.413a2þ0.687a3þ0.012a4,
roughly representing an average effect of the three
trial treatments, and �0.046a1�0.088a2þ

0.176a3þ0.985a4, roughly representing the effect
of the nontrial treatment.
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