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Purpose of review

Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and
progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of
related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory
pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these
kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy.

Recent findings

Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the
hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as
targetable molecular dependencies in diverse cancers.

Summary

IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results.
However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions
as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant
context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
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The vertebrate innate immune system encompasses
a network of phylogenetically conserved molecular
and cellular mechanisms that have evolved as an
inborn defense against pathogens. A defining fea-
ture of the innate immune system, conducted by the
toll-like receptors (TLRs), is the ability to recognize
generic molecular patterns associated with bacteria,
fungi, viruses, and cellular debris. The TLRs, with
minor exceptions, converge on the interleukin 1
receptor-associated kinases (IRAK1, IRAK2, IRAK3,
IRAK4) to coordinate multiple inflammatory path-
ways involved in cell survival, cytokine production,
and priming of the adaptive immune system. Sev-
eral recent reviews have meticulously outlined
genetic and molecular evidence that cooptation of
IRAK-signaling pathways is intrinsic to the pathobi-
ology of the hematologic malignancies [1–9]. These
observations have ignited interest in the IRAK kin-
ases as therapeutic targets and thereby renewed
focus on resolving IRAK-signaling mechanisms.
Accumulating evidence indicates that IRAK signal-
ing is more dynamic and member-specific than
what is ascribed by simplistic conventional
have critical implications for how best to manipu-
late the IRAK kinases to subvert aberrant inflamma-
tory signaling in malignancy. Below, we provide a
contemporary overview of the IRAK kinases in the
context of healthy and malignant biology. We pro-
file IRAK-targeted therapies and enumerate essential
research mandates for the field.
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KEY POINTS

� The IRAKs support oncogenic signaling pathways and
chemoresistance in diverse malignancies.

� Early clinical trials validate the IRAK kinases as
tractable drug targets.

� IRAK signaling redundancies and compensation
mechanisms are uncharacterized.

� IRAK2 and IRAK3 are understudied as
oncogenic effectors.

IRAK1 and IRAK4 as therapeutic targets Bennett and Starczynowski
CONVENTIONAL SIGNALING PARADIGM
OF INTERLEUKIN 1 RECEPTOR-
ASSOCIATED KINASES

IRAK4

IRAK4 is a 460 amino acid threonine/serine kinase
and the most recent IRAK family member to be
identified [10]. Upon ligation, the TLRs and IL-1
Receptor complex (IL-1R1 and IL-1RAcP) dimers
undergo a conformational shift that re-orients their
cytoplasmic TIR domains [11,12]. Heterotypic IL1R/
IL1RAcP and homotypic TLR TIR-TIR dimers (except
in the case of TLR3) subsequently recruit the TIR
domain-containing adaptor molecule MyD88 [13].
The N-terminal death domains of MyD88, IRAK4,
and IRAK2 then facilitate the assembly of a multi-
meric, helical signaling complex (Myddosome) con-
sisting of six molecules of MyD88, four molecules of
IRAK4, and four molecules of IRAK2 [14,15]. IRAK4
dimers recruited to the Myddosome undergo asym-
metric trans-autophosphorylation [16] and recruit
IRAK1, which then itself participates in extensive
autophosphorylation and dissociates from the Myd-
dosome (Fig. 1) [17]. Intriguingly, the absolute
requirement of IRAK4 kinase activity for canonical
signaling is not firmly established, and few IRAK4
substrates have been characterized. Vollmer et al.
[18] found that chemical inhibition of IRAK4 auto-
phosphorylation in IL-1R cells had a negligible
effect on IRAK1 activity and NF-kB/P38/JNK signal-
ing upon IL-1 stimulation. Others have similarly
demonstrated that expression of kinase-dead IRAK4
isoforms in IRAK4-deficient cells fully restores
IRAK1 phosphorylation and signaling downstream
of IL-1 [19,20]. In an IL-1-stimulated fibroblast
model, Ferrao et al. [16] found that ablation of
catalytic activity or dimerization only moderately
impaired the ability of IRAK isoforms to conduct
signaling and induce downstream cytokine expres-
sion. Conversely, Wang et al. [21] found that only
the phosphorylated species of IRAK4 was capable
of heterodimerizing with IRAK1. In the human
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
monocytic acute myeloid leukemia (AML) THP-1
cell line, an IRAK4 kinase inhibitor demonstrated
an equivalent ability to impair TLR4-induced signal-
ing through the NF-kB, JNK, and MAPK pathways as
an IRAK4 PROTAC built on the same compound,
suggesting that IRAK4 kinase activity does, in fact,
mediate signaling [22]. However, both the IRAK4
inhibitor and proteolysis-targeting chimera (PRO-
TAC) degrader only modestly attenuated canonical
signaling, calling into question whether Myddo-
some assembly entirely requires IRAK4 in any capac-
ity [22]. Collectively, though some studies report a
requisite role of IRAK4 catalytic activity for signal
transduction and cytokine induction in human
myeloid cells [10,23,24], the majority of experimen-
tal evidence insinuating an absolute requirement of
IRAK4 catalytic activity in canonical signaling
comes from mouse models. This is consistent with
the published finding that murine myeloid cells are
far more dependent on IRAK4 for inflammatory
signaling than human myeloid cells [25]. Thus,
the requirement of IRAK4 kinase activity may vary
by cell type, upstream stimulus, and pathological
context.
IRAK1

IRAK1 is a threonine/serine kinase. Unlike IRAK4,
IRAK1 is not a core constituent of the Myddosome
but transiently interacts with IRAK4 upon Myddo-
some assembly. Unlike IRAK4, IRAK1 exists primar-
ily in an inactive conformation at the basal state and
requires upstream stimulation for rapid activation
[18]. IRAK1 is reported to be a phosphorylation
substrate of IRAK4 [10] and is subject to extensive
ubiquitylation and autophosphorylation proceeding
IL-1R/TLR stimulation [17,26]. However, IRAK4-
mediated activation of IRAK1 kinase activity occurs
by an allosteric mechanism rather than by covalent
modification [18]. Once dissociated from the Myd-
dosome, IRAK1 interacts with and activates the E3
ligase TRAF6 to induce canonical signaling through
the NF-kB and MAPK pathways [27] (Fig. 1). Intrigu-
ingly, lysine (K) 63-linked polyubiquitylation of
IRAK1 is necessary for TRAF6-mediated signal trans-
duction, suggesting that covalent modification of
IRAK1 may regulate its accessibility as a scaffolding
substrate [17,28]. Precisely how IRAK1 stimulates
TRAF6 remains obscure, though it is apparently inde-
pendent of IRAK1 catalytic activity; thus, in at least
some contexts, the canonical IRAK signaling axes are
robust to the isolated loss of either IRAK1 or IRAK4
kinase activity. It is tempting to speculate that IRAK1
and IRAK4 maintain catalytic redundancy in this
regard, therefore, requiring a bispecific approach to
terminate canonical signaling by small molecule
r Health, Inc. www.co-hematology.com 9
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FIGURE 1. Dysregulation of interleukin 1 receptor-associated kinase-dependent signaling in myeloid malignancies.
Inflammatory and immune-related receptors, such as certain TLRs and IL-1R, recruit the adaptors TIRAP and MyD88, along with
IRAK kinases and TRAF6, to form the Myddosome complex. Negative regulators of the pathways, such as miR-145, miR-146a,
and TIFAB, are frequently deleted in MDS and AML. Mutations in U2AF1 and SF3B1 result in conversion of hypomorphic
(IRAK4-S) to hypermorphic (IRAK4-L) IRAK4 isoforms in MDS and AML. IRAK4-L can recruit MyD88 and IRAK1 to activate
signaling to NF-kB and MAPKs. The signaling pathway was adapted from Trowbridge and Starczynowski (2021). AML, acute
myeloid leukemia; IRAK, interleukin 1 receptor-associated kinases; MDS, myelodysplastic syndromes; TLRs, toll-like receptors.

Myeloid biology
inhibition. We discuss preliminary efforts to target
the IRAK kinases by such an approach below.

Recent efforts have focused on the role of IRAK1
in activating NLRP3 inflammasome assembly. Sev-
eral groups have reported that IRAK1 regulates rapid
NLRP3 inflammasome assembly and caspase 1 cleav-
age following IL-1R/TLR ligation in a transcription-
independent fashion [29,30]. Notably, and in con-
trast to Myddosome signaling via TRAF6, NLRP3
inflammasome assembly is dependent on the cata-
lytic competency of both IRAK1 and IRAK4 [29].
These findings contradict to a study that asserts a
role for IRAK1 as a repressor of NLRP3 inflamma-
some assembly [31]. The IRAK1 substrates and inter-
actors in this context are not characterized, and
temporally segregated interactions with distinct
10 www.co-hematology.com
binding partners may modulate the influence of
IRAK1 on inflammasome assembly.
IRAK2

IRAK2, like IRAK4, is a core constituent of the Myd-
dosome complex. Unlike IRAK1 and IRAK4, IRAK2 is
predicted to be a pseudokinase as it lacks a critical
aspartate residue in the VIb kinase subdomain [32]
and exhibits negligible kinase activity in vitro [33].
However, the fundamental signaling mechanisms
by which IRAK2 operates have not been subject to
the same level of scientific scrutiny as have IRAK1
and IRAK4, and evidence from human models is
conspicuously absent. This is especially problematic
as the utilization of IRAK2 in mice and humans is
Volume 29 � Number 1 � January 2022
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discrepant [25]. As with IRAK1, IRAK2 contains
TRAF6-binding sites [34], and IRAK2 overexpression
is sufficient to induce TRAF6 ubiquitylation and NF-
kB signaling in human cell lines [35,36]. Moreover,
knockdown of IRAK2 in human cell lines suppresses
NF-kB signaling in response to TLR stimulation [36].
Several investigations in mouse models posit that
IRAK2 is indeed catalytically active and maintains
late-phase NF-kB signaling and sustained cytokine
production downstream of TLR stimulation [37–
40]. IRAK2 has not been convincingly demonstrated
to possess such catalytic competence and latent
signaling regulation in human biology.
IRAK3

IRAK3, also known as IRAK-M to reflect its predomi-
nant expression in monocytes, is also a pseudoki-
nase [33]. In contrast to the other IRAK family
members, studies in human models indicate IRAK3
is a negative regulator of Myddosome signaling [41–
44], which supports the association of inactivating
IRAK-M mutations with early-onset asthma [45].
Like all family members, IRAK3 possesses an N-ter-
minal death domain, and as with IRAK1 and IRAK2,
a C-terminal domain with TRAF6 binding sites [34].
IRAK3 is, thus equipped to engage the Myddosome
complex and modulate TRAF6, though the exact
mechanism by which IRAK3 suppresses Myddosome
signaling is obscure. Crystal structure analysis of the
IRAK3 pseudokinase domain predicts a higher-order
assembly of IRAK3 dimers and IRAK4 that would
occlude the IRAK4 catalytic site, presenting a plau-
sible means of mitigating Myddosome signaling
[46]. Along these lines, mutagenesis of N-terminal
IRAK3 residues predicted to mediate interaction
with IRAK4 abrogate the ability of IRAK3 to dampen
TLR signaling [42]. These interactions with IRAK4
may serve to prevent Myddosome disassembly and
TRAF6 activation, as observed previously [41].
IRAK3 also possesses intrinsic guanylate cyclase
activity central to its regulatory competence, possi-
bly by creating a localized cGMP gradient that sta-
bilizes the Myddosome [43]. Finally, an alternative
model posits that an IRAK3-integrated Myddosome
complex engages a MEKK3-dependent NF-kB path-
way that drives the expression of anti-inflammatory
genes [47].
ROLE OF INTERLEUKIN 1 RECEPTOR-
ASSOCIATED KINASES IN HEMATOLOGIC
MALIGNANCIES

Inflammatory dysregulation is a fundamental fea-
ture of pathogenesis in the hematologic malignan-
cies. Multiple oncogenic signaling nodes converge
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
on the IRAK kinases, generating significant interest
in these kinases as targetable effectors of malig-
nancy. In this section, we discuss accumulated evi-
dence pertaining to the role of the IRAK kinases in
the hematologic malignancies.
Myelodysplastic syndromes

The myelodysplastic syndromes (MDS) are a group
of diseases characterized by ineffective hematopoie-
sis and myelodysplasia driven by the clonal domi-
nance of defective hematopoietic stem cells (HSC)
[48]. Many of the genetic lesions associated with
MDS induce cell-intrinsic alterations in the IRAK-
signaling hub [49–54]. One of the most common
subtypes of MDS, 5q-syndrome, is mediated by the
deletion of microRNAs (miR-145 and miR-146a) and
regulatory proteins (TIFAB) that target IRAK1 and
TRAF6 (Fig. 1). Haploinsufficiency of these genes
depresses TRAF6 and IRAK1 and promotes NF-kB-
dependent myeloproliferation [51,52,55–58]. TLR1,
TLR2, TLR4, TLR6, MYD88, and IRAK1 are fre-
quently overexpressed in MDS HSC, supporting a
functional role for IRAK signaling in MDS pathobi-
ology [59–63]. Rhyasen et al. [64] reported that
inhibition of IRAK1 reduced progenitor function
and viability in MDS HSC but not healthy CD34þ

bone marrow cells. Driver mutations in the splicing
factors U2AF1 and SF3B1 that induce hypermorphic
IRAK4 isoforms are recurrent in MDS and AML and
impose sensitivity to IRAK4 inhibition [65,66]. Stro-
mal elaboration of the alarmins S100A8 and S100A9,
which ligate TLR4, drives genotoxic stress and pre-
leukemic evolution, suggesting the IRAK-signaling
axis may play a pivotal role in the emergence of MDS
HSC [67]. Indeed, the alarmins are noted to be
elevated in the plasma of low-risk and intermedi-
ate-risk MDS [68] and proposed to serve a multifac-
eted role in disease progression by enforcing an
erythroid differentiation block, driving myeloid-
derived suppressor cell (MDSC) expansion, and
instigating NRLP3 inflammasome activation
[50,69–71,72

&

]. S100A9 binding to the CD33 com-
plex on MDSC promotes MDSC outgrowth and the
production of cytokines that suppress hematopoie-
sis and antitumor immunity [71] MDSC are over-
represented in the bone marrow of MDS, and their
abundance is a negative prognostic factor [73].
MDSCs themselves produce S100A8/9, instituting
a forward TLR signaling feedback loop [74]. The
S100A8/9 alarmins also enforce hematopoietic dys-
function in MDS by triggering NLRP3 inflamma-
some assembly and pyroptotic cell death in MDS
HSCs via TLR4 signaling [72

&

]. As discussed above,
IRAK1 is a critical mediator of NLRP3 inflammasome
assembly downstream of the TLRs [29,30].
r Health, Inc. www.co-hematology.com 11
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Inflammasome priming also requires TLR-IRAK-
mediated activation of NF-kB to induce NRLP3
and IL-1b expression [75]. IRAK1 thereby plays a
dual role in regulating the NLRP3 inflammasome at
the transcriptional and protein level. Furthermore,
the NLRP3 inflammasome facilitates the maturation
and release of IL-1 b, a cytokine that signals through
the IRAK kinases. Overexpression of IL1RAcP is
another common feature in MDS HSC, and IL-1
signaling drives the selective expansion of malig-
nant myeloid clones [76]. This is consistent with the
recent finding that chronic exposure to the TLR
ligand lipopolysaccharide (LPS) elicits a competitive
advantage of MDS HSCs in chimeric bone marrow
mouse models [77]. Collectively, these findings sug-
gest that IRAK signaling downstream of the IL-1
receptor or TLR family favors the dominance of
MDS clones. Thus, the IRAK signaling complex
resides at multiple nodes in a complex inflamma-
tory circuit governing MDS and represents a logical
target to subvert various disease mechanisms
concurrently.
Acute myeloid leukemia

MDS often antecedes AML, and many of the IRAK-
signaling dependencies in MDS are preserved in
AML. In an induced pluripotent stem cell (iPSC)
model that harnessed sequential CRISPR/Cas9
mutagenesis to recapitulate clonal progression to
AML, Wang et al. integrated transcriptional and
epigenetic analyses to consolidate genetic depen-
dencies in the transformation to overt leukemia.
These dependent genes were heavily enriched for
inflammatory mediators, and an IRAK1/IRAK4 dual
inhibitor subverted progenitor function in leuke-
mic, but not parental, iPSC-derived hematopoietic
cells [78

&

]. These findings suggest that signaling
through the IRAK kinases is recruited early in the
transition to AML. Mutually exclusive expression of
a hypermorphic long IRAK4 (IRAK4-L) isoform over
a hypomorphic short (IRAK4-S) isoform predicts
clinical aggressiveness and worse outcomes in
AML patients [65]. Treatment with an IRAK4 inhibi-
tor potently suppresses leukemic function in AML
cell lines with predominant IRAK4-L expression
[65]. In concordance, parallel inhibition of the
JNK and NF-kB pathways, which are both regulated
by the IRAK kinases, effectively eradicates AML stem
and progenitor cells [79]. As mentioned previously,
IL-1 signaling favors the competitive advantage of
leukemic clones in MDS and AML [76]. IRAK1 hyper-
phosphorylation is also observed in AML of hetero-
geneous genetic backgrounds, and IRAK1 inhibition
reduces viability and in vivo leukemic burden across
diverse AML cell lines and primary patient samples
12 www.co-hematology.com
[80]. Nevertheless, the precise role of IRAK1/4 sig-
naling dependencies in AML remains unknown.
Whether the efficacy of IRAK1 inhibition and IRAK4
inhibition is mediated by repression of mutual or
divergent signaling pathways, or, in the latter case,
whether functional redundancy permits reciprocal
compensation is not clear. These questions are of
considerable clinical interest, as the attainable
development of dual selective IRAK1/4 inhibitors
may offer substantial therapeutic benefit over extant
compounds. Furthermore, the requirement of
upstream receptor ligation to prime the oncogenic
function of the IRAK kinases in AML is obscure.
These questions must be a priority for future inves-
tigations.
Other leukemias

IRAK4 has emerged as a target in chronic lympho-
cytic leukemia, which occasionally harbors driver
mutations in MYD88 and TLR receptors [81–83].
MYD88-mutated CLL cases manifest an NF-kB sig-
nature, though treatment with an experimental
IRAK4 inhibitor reduces viability and proliferation
in patient-derived CLL regardless of MYD88 status
[84,85]. IRAK1 is overexpressed in multiple T-ALL
subtypes, which undergo apoptosis and cell-cycle
disruption upon IRAK1 knockdown [86]. Notably,
treatment with an IRAK inhibitor in this study only
partially recapitulated the efficacy of protein knock-
down, hinting that kinase-independent IRAK func-
tions are indeed relevant to these malignancies [86].
A polymorphism that is predicted to mitigate the
ability of miR146a – one of the microRNAs deleted
in del(5q) MDS – to repress IRAK1 and TRAF6 is
associated with an increased incidence of childhood
ALL in a Taiwanese cohort [87]. TLR activation is
observed in lymph node-resident CLL cells, and
combination therapy of an IRAK1/4 inhibitor with
the BTK inhibitor Ibrutinib demonstrated superior-
ity over single-agent therapy in a preclinical study
[88]. IRAK3, a suppressor of the IRAK1/2/4-signaling
complex, is robustly expressed in monocytes exposed
to circulating leukemic cells in CML patients via
engagement ofTLR4and CD44 [89]. IRAK3 induction
is theorized to deactivate monocytes and enable
immune tolerance in CML [89]. Therefore, targeting
IRAK3 in myeloid cells may facilitate an antitumor
immune response in CML and possibly other
heme malignancies.
Lymphomas

Activating MYD88 mutations that promote tonic
signaling through the MyD88-IRAK signaling com-
plex are found in nearly all cases of Waldenstrom’s
Volume 29 � Number 1 � January 2022
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macroglobulinemia and in a substantial portion
of the Activated B-cell (ABC) subtype of Diffuse
Large B-Cell Lymphoma (DLBCL) [90–92]. Primary
lymphoplasmacytic cells collected from the bone
marrow of MYD88-mutant Waldenstrom’s macro-
globulinemia patients on sustained ibrutinib ther-
apy demonstrate elevated IRAK1 and IRAK4
phosphorylation and synergistic sensitivity to com-
bination therapy of ibrutinib with an IRAK1/4
inhibitor in vitro [93]. An RNAi screen and treatment
with an IRAK1/4 inhibitor identified both IRAK1
and IRAK4 as molecular dependencies in MYD88-
mutant ABC DLBCL [92]. Recently, Hatcher et al.
[94] discovered a highly selective inhibitor of IRAK1
that displays antiproliferative potency in MYD88
mutant lymphoma.

Likewise, a Pyrrolopyrimidine compound with
optimized IRAK4 selectively has been developed and
found to reduce NF-kB signaling and MYD88-
mutant lymphoma viability [95]. It is worth noting
that several studies in MYD88 mutant lymphomas
describe a predominant reliance on IRAK1 over
IRAK4 [22,93,96], and genome-wide CRISPR screens
have implicated IRAK1, but not IRAK4, as a signifi-
cant molecular dependency in ABC DLBCL [97,98].
Indeed, one study reported that IRAK4 was entirely
dispensable to ABC DLBCL survival [22]. These data
challenge the dogma that IRAK1 absolutely requires
upstream recruitment by IRAK4 to initiate signaling,
at least in the context of malignant biology. Rather,
IRAK4 and IRAK2 may be interchangeable in the
mutant Myddosome, or IRAK1 may assert additional
Myddosome-independent oncogenic function.
Such possibilities should be explored in future stud-
ies. Given the equivocal requirement of IRAK kinase
activity in Myddosome signaling as alluded to pre-
viously, it is reasonable to question whether ATP-
competitive small molecule inhibitors are ideal
modalities for IRAK-directed therapy. In fact, the
studies demonstrating the utility of IRAK1/4 inhib-
itors in MYD88 mutant lymphoma only observed
efficacy in the micromolar ranges, far above the
respectively reported IC50 values [91,92,94,95]. In
one study of ABC DLBCL, kinase-dead IRAK1 was
able to rescue viability following IRAK1 knockdown
[92]. Conversely, a recently generated series of
IRAK1 PROTACS exhibited antiproliferative potency
against ABC DLBCL in the low nanomolar range
[99

&

]. These findings indicate the scaffolding func-
tions of IRAK1 facilitate the oncogenic signaling in
MYD88-mutant ABC DLBCL.

The IRAK kinases are also implicated in other B-
cell malignancies. Genome-wide expression analysis
identified IRAK1 expression as one of the two most
powerful transcriptomic predictors of follicular lym-
phoma transformation to more aggressive disease
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
[100]. Nonsynonymous IRAK1 polymorphisms that
confer gain-of-function were identified in all cases
of a cohort of Kaposi sarcoma-associated herpesvi-
rus-positive primary effusion lymphoma patients
where IRAK1 expression was required for tumor
growth in culture [101]. TLR stimulation promotes
proliferation in splenic marginal zone lymphoma
samples in an IRAK1/4-dependent fashion [102].
TLR4 ligation similarly augments proliferation and
therapy evasion in a multiple myeloma model [103].
A phase 2 trial reported that the IL-1 receptor antag-
onist Anakinra reduced proliferation and delayed
progression to active disease by reducing down-
stream IL-6 induction in a subset of patients with
smoldering or indolent myeloma [104].
ROLE OF INTERLEUKIN 1 RECEPTOR-
ASSOCIATED KINASES IN SOLID TISSUE
TUMORS

By and large, IRAK signaling has been studied in the
context of normal and malignant leukocyte biology.
However, an increasing body of evidence implicates
IRAK kinase signaling as a critical effector of tumor-
igenesis in solid tissue cancers. IRAK4 signaling is a
determinant of chemoresistance and disease pro-
gression in pancreatic and colorectal cancer
[105,106], and IRAK4 expression is proposed to be
a biomarker and predictor of poor prognosis in IDH
wild-type and 1p19p nonco-deletion gliomas [107].
IRAK1 is purported to be a driver of oncogenesis or
chemoresistance in head and neck cancers [108–
110], breast cancer [111,112], hepatocellular carci-
noma [113–115], nonsmall cell lung cancer
[116,117], ovarian cancer [118], cervical cancer
[119], melanoma [120], and gastric cancer [121].
IRAK1 is also implicated in supporting tumor-intrin-
sic resistance to radiation therapy [122] and IRAK1/4
inhibition has demonstrated adjunctive therapeutic
benefit in preclinical models of anaplastic thyroid
cancer and melanoma [123,124]. TLR9 overexpres-
sion is observed in prostate cancer, lending indirect
support to the involvement in IRAK signaling in this
malignancy as well [125]. A detailed dissection of
IRAK signaling across solid tissue cancer is beyond
the scope of this review; however, it is worth dis-
cussing several cases that highlight the oncogenic
roles of IRAK2 and IRAK3. Evaluation of IRAK2 and
IRAK3 is conspicuously absent in the hematologic
malignancy arena, though the functions outlined
below may be conserved features of malignant biol-
ogy. IRAK3 is primarily recognized as a negative
regulator of canonical Myddosome signaling and
a mediator immunosuppressive cytokine produc-
tion [41,47], and is being examined as an effector
of tumorigenic immune evasion. Human lung
r Health, Inc. www.co-hematology.com 13
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cancer lines induce IRAK3 expression in co-cultured
monocytes, and IRAK3 deletion significantly
reduces implanted tumor growth in mice, consis-
tent with a role for IRAK3 in mollifying the antitu-
mor response of tumor-associated macrophages
[126]. This finding bolsters the observation that
leukemic cells in CML induce IRAK3 expression in
CD14þ monocytes [89]. It would be worthwhile to
assess the existence of such a phenomenon in AML
and other leukemias that are notoriously refractory
to conventional immunotherapies. Tumor-intrinsic
epigenetic repression of IRAK3 is common in hepa-
tocellular carcinoma and it is associated with a less
favorable prognosis [127]. These findings indicate
that IRAK3 may serve as a tumor suppressor by
regulating signaling through the other IRAK family
members.

IRAK2 is thought to be redundant with IRAK1 in
mice, though the role of IRAK2 in human biology is
less certain. It is nonetheless surprising that many
reports advocate a tumor suppressor functionality
for IRAK2. An IRAK2 SNP that promotes IRAK2
expression is associated with increased overall sur-
vival in NSCLC [128], whereas a nonsynonymous
SNP that produces a hypofunctional IRAK2 isoform
is associated with increased risk of death by colorec-
tal cancer [129]. One study proposes that IRAK2
mitigates oncogenesis in colon cancer by phosphor-
ylating the E3 ligase Smurf1 to trigger self-degrada-
tion [130]. Yu et al. [131] discovered that IRAK2
expression sensitizes oral squamous cell carcinoma
to radiotherapy by instigating FADD (Fas-associated
protein with death domain), an adaptor molecule
involved in apoptotic signaling-driven apoptosis.

Notably, FADD contains a death domain (a
uniting feature of Myddosome constituents), invit-
ing the possibility that IRAK2 and other IRAK kin-
ases participate in regulatory interactions with
FADD. These models conflict with the notion that
IRAK2 is a pseudokinase with activity that is con-
fined to its constituency in the Myddosome and
warrant further investigation of IRAK2 in the
heme malignancies.
THERAPEUTIC APPROACHES TARGETING
INTERLEUKIN 1 RECEPTOR-ASSOCIATED
KINASES IN HUMAN CANCERS

Several parallel efforts to develop IRAK-targeted
therapies for the hematological malignancies are
ongoing (Table 1). Yet, IRAK inhibition as a treat-
ment modality for these diseases is still a nascent
concept. Several critical questions will need to be
addressed before IRAK-targeted therapies achieve
widespread clinical use. In this section, we address
significant knowledge gaps, explicate the potential
14 www.co-hematology.com
use of IRAK-targeted therapies in clinical practice,
and highlight preliminary clinical trials.
Interleukin 1 receptor-associated kinase
inhibitors as monotherapies

One of the major questions concerning IRAK-tar-
geted therapies is whether they will demonstrate
efficacy as monotherapies, and, if not, what an
informed combination strategy would entail. Phase
1 trials with the compound CA-4948, a small mole-
cule inhibitor with affinity for IRAK4 and FLT3
(Curis Inc), provide the best available data on this
question. A phase 1 monotherapy trial in refractory
non-Hodgkin’s lymphoma (NCT03328078)
reported a favorable safety profile and pharmacoki-
netic properties, with 8 of 28 patients experiencing a
reduction in tumor burden of at least 20% [132]. An
interim report from a phase 1 open-label trial
(NCT04278768) using the same compound as a
monotherapy in adults with AML or high-risk
MDS described a reduction in bone marrow blasts
in 10 of 12 patients who presented with elevated
blast counts. Intriguingly, three of the four patients
who achieved a complete response had mutations in
the U2AF1 or SF3B1-splicing factors, which are
known to drive disease by inducing hypermorphic
IRAK4 isoforms [65,66]. These encouraging prelimi-
nary results bode well for the potential use of IRAK-
targeted monotherapy in patients with splicing fac-
tor mutations and suggest efficacy in other genetic
backgrounds. However, complementation with
other drugs may be required for optimum effect
in nonsplicing factor mutant AML/MDS. Kymera,
operating under the logic that both IRAK4 loss-of-
function and immunomodulatory imide drugs
(IMiD) suppress NF-kB, have developed first-of-class
‘IRAKIMiD’ PROTACs. IRAKIMiDs consist of IRAK4
ligands coupled to an IMiD (lenalidomide or poma-
lidomide), thereby recruiting the E3 ligase cereblon
to IRAK4 and the IMiD substrate transcription fac-
tors Ikaros and Aiolos to catalyze their ubiquityla-
tion and proteasomal degradation. A candidate
IRAKIMiD has demonstrated promise in preclinical
MYD88-mutant lymphoma models with in-human
trials planned for 2021 [133]. The absence of IRAK1-
selective drugs in clinical trials makes it difficult to
extrapolate the suitability of IRAK1 as a target for
monotherapy or compare the relative utility of tar-
geting IRAK1 over IRAK4. Pacritinib, a multikinase
inhibitor of JAK2, FLT3, and IRAK1 developed as a
treatment for myelofibrosis, demonstrated efficacy
in a pilot phase 1 trial of FLT3-ITD AML [134]. Given
the promiscuity of this compound, it is impossible
to disentangle the individual contributions of
IRAK1 and FLT3 inhibition to the observed
Volume 29 � Number 1 � January 2022



Table 1. Preclinical and clinical interleukin 1 receptor-associated kinase inhibitors

Compound Source Target Mechanism Disease Applications Status

‘23’ AstraZeneca IRAK3 (DC50¼2nmol/l) PROTAC Undetermined Preclinical

IRAK4 (IC50¼5 nmol/l)

’AZ1495’ AstraZeneca IRAK1 (IC50¼24 nmol/l) Kinase inhibitor Non-Hodgkin’s
lymphoma

Preclinical

BAY1830839 Bayer IRAK4 (IC50¼3 nmol/l) Kinase inhibitor Rheumatoid arthritis Clinical

‘Compound 9’ GlaxoSmithKline IRAK4 (DC50¼36nmol/l) PROTAC Undetermined Preclinical

Non-Hodgkin’s
lymphoma

IRAK4 (IC50¼50 nmol/l) Waldenstrom’s
macroglobulenemia

Emavusertib
(CA-4948)

Curis FLT3 Kinase inhibitor Acute myelogenous
Leukemia

Clinical

Myelodysplastic
syndrome

Chronic lymphocytic
Leukemia

HS-243 Duke University IRAK1 (IC50¼24 nmol/l) Kinase inhibitor Undetermined Preclinical

IRAK4 (IC50¼200 nmol/l)

IRAK-1–4 Inhibitor I Amgen IRAK1 (IC50¼300 nmol/l) Kinase inhibitor Not applicable Preclinical

JH-X-119-01 Dana Farber
Cancer Institute

IRAK1 (IC50¼9 nmol/l) Kinase inhibitor Non-Hodgkin’s
lymphoma

Preclinical

JNJ-1013 Janssen
Pharmaceuticals

IRAK1 (DC50¼3nmol/l) PROTAC Non-Hodgkin’s
lymphoma

Preclinical

Hidradenitis suppurtiva

KT-474 Kymera Therapeutics IRAK4 (DC50¼2.1nmol/l) PROTAC Atopic dermatitis Clinical

Non-Hodgkin’s
lymphoma

IRAK4 (IC50¼0.8 nmol/l)

NCGC1481 Kurome Therapeutics IRAK1 (IC50¼22.6 nmol/l) Kinase inhibitor Myelodysplastic
syndrome

Preclinical

FLT3 (IC50<0.5 nmol/l) Acute myelogenous
leukemia

JAK2 (IC50¼23nmol/l)

Pacritinib CTI Biopharma FLT3 (IC50¼22 nmol/l) Kinase inhibitor Myeloproliferative
neoplasms

Clinical

IRAK1 (IC50<20 nmol/l)

IRAK4 Myelodysplastic
syndrome

R289 Rigel Pharmaceuticals IRAK1
IRAK4

Kinase inhibitor Rheumatological
diseases

Clinical

Zabedosertib
(BAY1834845)

Bayer IRAK4 (IC50¼3.4 nmol/l) Kinase inhibitor Rheumatological
diseases

Clinical

Zimlovisertib
(PF-06650833)

Pfizer IRAK4 (IC50¼0.2 nmol/l) Kinase inhibitor Rheumatoid arthritis Clinical
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response. However, one preclinical study reported
that pacritinib exhibited potency against primary
AML samples of diverse genetic backgrounds,
whereas the efficacy of a FLT3 inhibitor lacking
affinity for IRAK1 was restricted to samples harbor-
ing FLT3-ITD [80]. This study concords with the
results of a phase 3 trial in myelofibrosis that
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
identified a response to pacritinib regardless of
JAK2V617F allele burden [135]. Further, recently gen-
erated IRAK1 inhibitors and PROTACS are effective
in constraining MYD88 mutant lymphomas in vitro
[94,99

&

]. These results establish a precedent for the
clinical development of IRAK1 inhibitors and inti-
mate that pacritinib, by virtue of its activity against
r Health, Inc. www.co-hematology.com 15
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IRAK, may be a useful drug in the hematologic
malignancies regardless of mutational background.

The matter of which drugs to pair with IRAK-
targeted therapy captures two related issues; first, the
resistance mechanisms to IRAK-targeted therapies
are largely unknown, and; second that recruitment
of IRAK signaling may underly adaptive resistance
to other therapies. Parallel IRAK signaling and BCR-
BTK signaling converge on NF-kB in B-cell lympho-
mas [92,136], justifying the combination of IRAK-
targeted therapies with a BTK inhibitor. The synergy
of IRAK inhibitors with the BTK inhibitor ibrutinib
affirmed in multiple preclinical studies [93–95,
137,138], and NCT03328078 has expanded to enroll
refractory lymphoma patients for dual therapy with
CA-4948 and ibrutinib. Rhyasen et al. [64] identified
upregulation of the antiapoptotic factor BCL2 in
MDS/AML clones that escaped IRAK1 inhibitor treat-
ment, with a synergistic reduction of cell expansion
and viability obtained upon the addition of BCL2
inhibitors. Similarly, BCL2 inhibitor supplementa-
tion dramatically augmented a meager response to
single-agent IRAK1/4 inhibitor treatment in a xeno-
graft model of T-ALL [139]. This result invites a
potential synergistic combination of IRAK-targeted
therapies with the BCL2 inhibitor venetoclax.
Indeed, the trial with CA-4948 in AML and high-risk
AML (NCT04278768) now includes a venetoclax dual
therapy arm. Preliminary results from this arm have
not been released at the time of publication. BCL2
upregulation remains the only described adaptation
to IRAK inhibitor treatment inAML/MDS;a thorough
delineation of escape mechanisms is an eminent
need for future studies.
Interleukin 1 receptor-associated kinase
inhibitors to overcome adaptive resistance
mechanisms to therapy

An expanding body of evidence implicates IRAK
signaling as a mechanism of adaptive resistance to
various forms of cancer therapy, indicating that
IRAK-targeted drugs may realize widespread appli-
cation as adjunctive therapies. IRAK signaling pro-
motes chemoresistance in diverse preclinical solid-
tissue cancer models in which IRAK inhibition
restores sensitivity to SN-38, 5-FU, oxaliplatin, gem-
citabine, paclitaxel, sorafenib, doxorubicin, and the
irinotecan metabolite SN-P38 [105,106,109,112,
113,140,141]. Recent investigations assert IRAK sig-
naling as a mechanism of adaptive resistance in the
hematologic malignancies as well. Melgar et al. [142]
performed kinome screening and gene expression
analysis in FLT3-ITD mutant AML cell lines treated
with clinical FLT3 inhibitors and revealed activation
of IRAK-mediated innate immune signaling to be a
16 www.co-hematology.com
mechanism of acute adaptation to FLT3 inhibition.
A novel IRAK1/IRAK4/FLT3 tri-selective inhibitor
eradicated adaptively resistant AML clones in liquid
culture and xenografts [142,143]. Two subsequent
studies reiterate innate immune activation [144]
and upregulation of the TLR ligand S100A9 [145],
respectively, as mediators of adaptive response to
the FLT3 inhibition in AML. Du et al. [146

&

] report
that treatment with Ara-C or anthracyclines induces
a subpopulation of leukemic cells to acquire an
inflammatory signature and senescence-like state
that enables chemoresistance and disease recur-
rence. Although the IRAK kinases were not explicitly
evaluated, the inflammatory signatures in the resis-
tant leukemic population are enriched for pathways
regulated by the IRAK kinases.

No inhibitors or degraders of IRAK2 or IRAK3 are
currently being vetted for therapeutic application,
though an IRAK3-selective PROTAC has recently
been developed [147]. It will be fascinating to see
whether targeting IRAK3 demonstrates broad utility
in stimulating antitumor immune responses, possi-
bly as part of a combination with checkpoint inhib-
itors as proposed elsewhere [148].
CONCLUSION

An extensive body of literature implicating IRAK
signaling in the hematologic malignancies and
promising preliminary clinical trial data validate
IRAK-targeted therapy as an exciting approach to
the hematologic malignancies. However, these ther-
apies were constructed on an incomplete model of
IRAK signaling in cancer. The data reviewed above
conflict with the convention that IRAK4 and IRAK1
signal in a linear and interdependent fashion. More-
over, the current conception of IRAK2-signaling
functions is problematically gleaned from mouse
models, and IRAK2 functionality in the human
system is nebulous. These conspicuous gaps in the
literature cast doubt as to whether extant IRAK
inhibitors are fully optimized for clinical use. Future
investigations must address the contribution of
IRAK1/IRAK4 scaffolding functions, refine the role
of IRAK2 in human malignancy, and evaluate the
capacity for signaling redundancy among IRAK fam-
ily members. These studies are direly needed to
settle debate concerning the prioritization of IRAK
degraders or ATP-competitive inhibitors, inform
ideal target selection, and resolve the demand for
a multikinase approach, respectively.
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