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Simple Summary: Insect mitochondrial genomes (mitogenomes) show high diversity in some
lineages. In the mitogenome of some Coleoptera species, a large intergenic spacer (IGS) has been
identified. However, very little is known about mitogenomes of lucanid beetles. In this work, to
provide further insight into the phylogenic relationships among species in lucanid beetles (genus
Prosopocoilus), two Prosopocoilus species (Prosopocoilus castaneus and Prosopocoilus laterotarsus) were
newly sequenced and comparatively analyzed. Significantly, the two newly sequenced Prosopocoilus
species contained a large IGS located between trnI and trnQ. Our phylogenomic analyses showed that
P. castaneus and P. laterotarsus were clustered in a clade with typical Prosopocoilus species (Prosopocoilus
confucius, Prosopocoilus blanchardi, and Prosopocoilus astacoides). These results provide valuable data
for the future study of the phylogenetic relationships in this genus.

Abstract: To explore the characteristics of mitogenomes and discuss the phylogenetic relationships
within the genus Prosopocoilus, the mitogenomes of two species (P. castaneus and P. laterotarsus) were
newly sequenced and comparatively analyzed. The arrangement of the mitogenome in these two
lucanid beetles was the same as that in the inferred ancestral insect, and the nucleotide composition
was highly biased towards A + T as in other lucanids. The evolutionary rates of 13 protein-coding
genes (PCGs) suggested that their evolution was based on purifying selection. Notably, we found
evidence of the presence of a large IGS between trnI and trnQ genes, whose length varied from
375 bp (in P. castaneus) to 158 bp (in P. laterotarsus). Within the large IGS region, a short sequence
(TAAAA) was found to be unique among these two species, providing insights into phylogenomic
reconstruction. Phylogenetic analyses were performed using the maximum likelihood (IQ-TREE)
and Bayesian (PhyloBayes) methods based on 13 protein-coding genes (PCGs) in nucleotides and
amino acids (AA) from published mitogenomes (n = 29). The genus Prosopocoilus was found to
constitute a distinct clade with high nodal support. Overall, our findings suggested that analysis
of the characteristics of the large IGS (presence or absence, size, and location) in mitogenomes of
the genus Prosopocoilus may be informative for the phylogenetic and taxonomic analyses and for
evaluation of the genus Prosopocoilus, despite the dense sampling materials needed.

Keywords: lucanid beetles; mitogenomes; phylogeny

1. Introduction

Mitogenomes have been widely applied to analyze population genetics, phylogenet-
ics, and molecular evolution across insect species [1–3]. Mitogenomes could be reliable,
convenient, and useful markers owing to their simple genomic structure, a faster rate
of evolution, and maternal inheritance patterns across different groups of insects [3–10].
More recent studies in the Coleoptera families, Scarabaeidae [4], Chrysomelidae [11], Cur-
culionidae [12], and Meloidae [8,13] have shown that the characteristics of mitochondrial
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genomes, such as genome organization, base composition, protein-coding genes, codon us-
age, intergenic spacers, control regions, etc., could be informative for phylogenetic analyses.
Intergenic spacers (IGSs) are non-coding regions typically found in metazoan mitochondrial
genomes [14]. For example, in some species of beetle, known mitogenomes contain the IGS
commonly found at the junction of the trnS2 (UCN) and nad1 genes [8,15–20]. The IGSs
have also been found between different genes in the mitogenomes of other beetles, such as
between trnW and trnC [8], nad2, and trnW [21], trnI and trnQ [4,22,23], and so on. Com-
parative analyses of IGSs suggest that the presence and location of the IGS may be useful
for studying evolutionary history and species delimitation in insects [24,25], such as those
in the families Meloidae [8,13], Cleridae [16], and Scarabaeoidae [18]. Although a recent
study reported that the Dorcus velutinus complex had a large IGS (>50 bp) between trnS2
(UCN) and nad1 [20], very little is known about large IGSs in Prosopocoilus mitogenomes.

The genus Prosopocoilus Hope and Westwood (1845) contains approximately 200 species
and subspecies, accounting for approximately 15% of all known stag beetles in the world,
with distributions across the African, Australian, Oriental, and Palearctic realms [26,27].
Like most stag beetles, members of Prosopocoilus show strong sexual dimorphism and
male polymorphism; there are distinctly conspecific variations in shape and size of the
mandible and head and sometimes in body colour. However, many species are so highly
divergent in their morphological traits that it is difficult to classify them as Prosopocoilus.
Consequently, many taxonomic changes and adjustments have been made to establish
more “reasonable” positions for these taxa due to different opinions held by different tax-
onomists [26,28–34]. Systematics of Prosopocoilus has, to date, been a problematic issue in
the Lucanidae. Accordingly, there is an urgent need for additional molecular phylogenetic
studies. Mitogenomic datasets are powerful molecular tools for exploring the evolution
of Coleoptera [6,16]. Unfortunately, there have been very few gene fragments and only
three identified mitogenomes to date [1,4,23,35]. Of the approximately 200 species within
Prosopocoilus, only three mitogenomes (those of Prosopocoilus confucius Hope, P. blanchardi
Parry, and P. astacoides Hope) have been described [4,23]. These studies of Prosopocoilus
mitogenomes demonstrated that both species maintained the ancestral type for insects
without rearrangement, but possessed a large non-coding region, excluding the control
region [4,23]. The lack of research greatly limits the mitogenomic comparisons and molecu-
lar phylogenomic studies of the genus Prosopocoilus. Thus, we considered it a priority to
explore the mitogenome evolution in the genus Prosopocoilus.

Accordingly, in this study, we newly sequenced and annotated the complete or almost
complete mitochondrial genomes of two species belonging to Prosopocoilus (P. castaneus
Hope & Westwood and P. laterotarsus Houlbert). We described and compared the character-
istics of these two newly sequenced mitogenomic sequences, together with 24 previously
sequenced lucanid mitogenomes. Additionally, we analyzed the large IGS in the mi-
togenomes of all studied Prosopocoilus species to explore their evolutionary significance.
The large IGS may provide phylogenetic signals. Most notably, for the five species se-
quenced in the present study, the large IGS is located between trnI and trnQ, including a
five bp long short sequence (TAAAA) with different repeat patterns within this uniquely
large IGS region. Additionally, we also find this distinctive feature of the large IGS region
to be useful for a systematic understanding of the genus Prosopocoilus.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

Data were collected for the following two newly sequenced specimens: male P. casta-
neus, Lincang, Yunnan, China, July 2017; and female P. laterotarsus, Medog, Xizang, China,
June 2016. The voucher specimens were deposited in the Museum of Anhui University,
China. At the time of sampling, muscle tissues were placed in pure ethanol. Total genomic
DNA was extracted from the thorax using a Blood and Tissue Kit (Qiagen, Germany).
The newly generated mitogenomic sequence data have been deposited into the GenBank
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database with the following accession numbers: ON401054 for P. castaneus and ON401055
for P. laterotarsus.

2.2. Polymerase Chain Reaction (PCR) Amplification and Sequencing

PCR amplification reactions for cox1, cytb, and 16S were performed in a final volume of
25 µL, including 8.5 µL sterile double-distilled water, 12.5 µL 2 × EasyTaqSuperMix (+dye),
2 µL template DNA, and 1 µM of each primer (forward and reverse). Three amplification
reactions were used as “anchors” to assemble complete mitogenomes. All primers used for
PCR amplification are summarized in Table 1. The PCR amplification reaction conditions
were the same as those described by Lin et al. [4]. For mitogenome sequencing, we prepared
a library using a Truseq nano DNA kit (Illumina) with an insert size of 450 bp and sequenced
it on the Illumina HiSeq 2000 platform at Berry Genomics (Beijing, China). Raw reads
were trimmed of adapters using Trimmomatic [36], and low-quality and short reads were
removed with Prinseq [37].

Table 1. Primers used in this study.

Gene Primer Name Sequence (5′-3′) Length (bp) Reference

cox1
COI-F1 CAACATTTATTTTGATTTTTTGG 23 [4]
COI-R1 TCCAATGCACTAATCTGCCATATTA 25 [4]

cytb Cytb-F2 GAGGAGCAACTGTAATTACTAA 22 [4]
Cytb-R2 AAAAGAAARTATCATTCAGGTTGAAT 26 [4]

16S
16S-F1 CCGGTTTGAACTCAGATCATG 21 [4]
16S-R1 TAATTTATTGTACCTTGTGTATCAG 25 [4]

2.3. Mitogenome Assembly, Annotation, and Analysis

High-quality reads were applied to de novo assemble using IDBA-UD [38] with
minimum and maximum k values of 80 and 240 bp, respectively. We then evaluated the
accuracy of the assembly by re-mapping clean reads to the mitogenome assemblies in
Geneious v6.1.7 (Biomatters Ltd., Auckland, New Zealand), allowing mismatches of up
to 2%, a minimum overlap of 100 bp, and a maximum gap size of 3 bp. The preliminary
annotations were made on the MITOS Web Server with the invertebrate mitochondrial code
(http://mitos.bioinf.unileipzig.de/inxdex.py, accessed on 12 September 2021). Protein-
coding regions were identified by aligning published mitochondrial sequences in Geneious
v6.1.7 (Biomatters Ltd.), whereas tRNA genes and their secondary structures were inferred
using tRNA scan-SE v2.0 [39]. Owing to they could not be identified using tRNA scan-SE,
16S ribosomal RNA (rrnL) and 12S ribosomal RNA (rrnS) were determined according
to sequence similarity with related species. Relative synonymous codon usage (RSCU)
and Nucleotide composition were computed using MEGA-X [40]. Composition skew
analysis was performed using the following formulas: AT skew = (A – T)/(A + T) and GC
skew = (G – C)/(G + C) [41]. The evolutionary rates (Ka/Ks ratios) for each PCG were
calculated using DnaSP v5.0 [42]. The mitogenomic map was drawn using the CG View
server V 1.0 [43].

2.4. Phylogenetic Analyses

Phylogenetic analyses were performed using five Prosopocoilus stag beetles, twenty-
one other stag beetles as an ingroup, and three scarab beetles (Cheirotonus jansoni, Protaetia
brevitarsis, and Rhopaea magnicornis) as an outgroup (Table 2). Protein coding genes (PCGs)
of these species were extracted based on GenBank annotations using GenScalpel [44]. The
nucleotide and amino acid sequences of the 13 PCGs were used as the dataset to construct
the Bayesian inference (BI) and maximum likelihood (ML) phylogenetic trees, respectively.
All these nucleotide and amino acid sequences were aligned using translation align and
geneious align, respectively, in the programme Geneious 9.0.5. Gaps and ambiguous sites
were removed from the protein alignment to generate a 10,878 bp nucleotide dataset and a
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corresponding amino acid dataset (3626 amino acids). We then set the model selections as
Akaike information criterion (AIC), greedy search algorithm, and unlinked branch lengths
to estimate the best fitting schemes in the programme PartitionFinder 2.1.1 [45]. The best-fit
partitioning schemes and evolutionary models for the nucleotide and amino acid datasets
are presented for ML analyses (Table S1).

BI and ML analyses were conducted using PhyloBayes MPI 1.5a [46] and IQ-TREE
web server [47], respectively. Then, BI analysis was performed on the CIPRES Science
Gateway [48] and the site-heterogeneous mixture model (GTR + CAT) was chosen [49]. Two
independent chains starting from a random tree were run for 20,000 cycles, with trees being
sampled every 10 cycles. The initial 25% of trees for each MCMC run were discarded as
burn-in. A consensus tree was computed from the remaining 1500 trees combined from two
runs, and the two runs converged at a maxdiff of less than 0.1. In ML analyses, the “Auto”
option was set under optimal evolutionary models, and the phylogenomic trees were
constructed using an ultrafast bootstrap approximation approach with 10,000 replicates.
Phylogenomic trees were viewed and rooted with the three species in Scarabaeidae as the
outgroup in Figtree v1.4.3 (http://beast.bio.ed.ac.uk/figtree, accessed on 1 June 2022).

Table 2. Accession numbers and lengths of mitochondrial genomes of species used in this study.
I-Q indicates the presence of IGS between trnI and trnQ, whereas S2-1 indicates the presence of IGS
between trnS2 (UCN) and nad1.

Family Taxa Length (bp) I-Q/S2-1 ACC. Number References

Lucanidae Cyclommatus vitalisi (Pouillaude, 1913) 17,795 S2-1 MF037205 [20]
(Ingroup) Dorcus curvidens hopei (Nomura, 1960) 16,026 S2-1 MF612067 [20]

Dorcus parallelipipedus (Linnaeus, 1758) 17,563 S2-1 JX412841 [20]
Dorcus tenuihirsutus (Kim & Kim, 2010) 18,266 S2-1 MK050991 [20]

Dorcus ursulus (Arrow, 1938) 18,001 S2-1 MK050990 [20]
Dorcus velutinus (Thomson, 1862) 16,939 S2-1 MK050989 [20]

Epidorcus gracilis (Séguy, 1954) 16,736 S2-1 KP735805 [4]
Lucanus cervus (Linnaeus, 1758) 20,109 S2-1 MN580549 [50]

Lucanus fortunei (Saunders, 1854) 16,591 S2-1 JX313688 Unpublished
Lucanus mazama (LeConte, 1861) 15,261 S2-1 FJ613419 [50]

Lucanus chengyuani (Wang and Ko, 2018) 16,926 S2-1 MK878514 [51]
Figulus binodulus (Waterhouse, 1873) 16,261 S2-1 NC045102 [52]
Kirchnerius guangxii (Schenk, 2009) 15,296 S2-1 MK134567 [53]

Neolucanus perarmatus (Didier, 1925) 16,610 S2-1 MF401425 Unpublished
Odontolabis fallaciosa (Boileau, 1901) 20,276 S2-1 MF908524 [50]

Prismognathus prossi (Bartolozzi & Wan, 2006) 15,984 S2-1 MF614014 [50]
Prosopocoilus blanchardi (Parry, 1873) 21,628 I-Q/S2-1 KF364622 [23]

Prosopocoilus castaneus (Hope et Westwood, 1845) 17,523 I-Q/S2-1 ON401054 This study
Prosopocoilus confucius (Hope, 1842) 16,951 I-Q/S2-1 KU552119 [4]

Prosopocoilus laterotarsus (Houlbert, 1915) 17,333 I-Q/S2-1 ON401055 This study
Prosopocoilus astacoides (Hope, 1840) 17,746 I-Q/S2-1 NC050851 Unpublished
Pseudorhaetus sinicus (Boileau, 1899) 18,126 S2-1 MZ504793 [54]

Hexarthrius vitalisi (Didier, 1925) 18,362 S2-1 JX313676 Unpublished
Rhaetus westwoodi (Parry, 1862) 18,131 S2-1 MG159815 [50]

Serrognathus platymelus (Saunders, 1854) 17,088 S2-1 MF612070 Unpublished
Sinodendron yunnanense (Král, 1994) 16,921 S2-1 KP735804 [4]

Scarabaeidae Cheirotonus jansoni (Jordan, 1898) 17,249 S2-1 KC428100 [4]
(Outgroup) Protaetia brevitarsis (Lewis, 1879) 20,319 S2-1 KC775706 [20]

Rhopaea magnicornis (Blackburn, 1888) 17,522 S2-1 FJ859903 [50]

3. Results and Discussion
3.1. Genome Organization and Base Composition

In this study, we obtained one complete mitogenome of P. castaneus and one nearly
complete mitogenome of P. laterotarsus. The total lengths of the two mitogenomes ranged
from 17,523 bp (P. castaneus) to 17,333 bp (P. laterotarsus). Both new mitogenomes shared
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the ancestral type for insects [55,56]; thus, these mitogenomes were composed of 13 PCGs,
22 tRNAs, two rRNAs, and a control region. We recovered only a partial control region
of the mitogenome of P. laterotarsus (Table 3). Of the 37 genes, nine PCGs and 14 tRNA
genes were located on the majority strand (J-strand), with the remaining four PCGs, two
rRNA genes, and eight tRNAs genes on the minority strand (N-strand) (Figure 1). The mi-
tochondrial genome map of Prosopocoilus species is shown in Figure 1. Both mitochondrial
genomic arrangements were similar to other published stag beetle mitogenomes [4,20,23,50].
All 22 tRNA genes were detected in these two newly sequenced mitogenomes (Table 3,
Figure 1). The lengths of the tRNA genes ranged from 60 to 70 bp (Table 3). All tRNA
genes displayed the representative clover-leaf secondary structure (Figures S1 and S2),
whereas trnS1 (AGN) lacked the dihydrouridine (DHU) arm, and it was replaced with
a simple loop, which was common in other lucanid mitogenomes [4,23,50–54]. There is
a similar nucleotide proportion among the two newly sequenced mitogenomes, with a
high content of AT (Table 4). The AT skews of PCGs, tRNA genes, and rRNA genes in the
P. castaneus and P. laterotarsus mitogenomes were−0.16/−0.18, 0.05/0.05 and−0.11/−0.08,
respectively (Table 4). The AT-skew values were negative in PCGs but positive in the tRNA
genes within the two mitogenomes, consistent with those found in other lucanid mi-
togenomes [4,20,23,50]. Additionally, the nucleotide compositions of lucanid mitochondrial
genomes corresponded well to the AT skew generally observed in other beetles [8,11–13].

Table 3. Mitogenomic organization of P. castaneus (Pc) and P. laterotarsus (Pl).

Gene Strand
Region Length (bp) Start/Stop Codon Intergenic (bp)

Pc/Pl Pc/Pl Pc/Pl Pc/Pl

trnI J 1-64/335-398 64/64 - 375/158
trnQ N 440-508/557-625 69/69 - −1/−1
trnM J 508-575/625-693 68/69 - 0/0
nad2 J 576-1589/694-1707 1014/1014 ATA(TAA)/ATA(TAG) 2/2
trnW J 1592-1657/1710-1773 66/64 - −8/−8
trnC N 1650-1710/1766-1825 61/60 - 0/0
trnY N 1711-1775/1826-1889 65/64 - 1/1
cox1 J 1777-3307/1891-3421 1531/1531 AAC(T)/AAT(T) 0/0

trnL2 (UUR) J 3308-3372/3422-3485 65/64 - 0/0
cox2 J 3373-4060/3486-4170 688/685 ATA(T)/ATC(T) 0/0
trnK J 4061-4130/4171-4240 70/70 - 0/0
trnD J 4131-4193/4241-4303 63/63 - 0/0
atp8 J 4194-4349/4304-4459 156/156 ATT(TAA)/ATT(TAA) −4/−4
atp6 J 4346-5014/4456-5124 669/669 ATA(TAA)/ATA(TAA) −1/−1
cox3 J 5014-5797/5124-5907 784/784 ATG(T)/ATG(T) 0/0
trnG J 5798-5861/5908-5970 64/63 - 0/0
nad3 J 5862-6213/5971-6322 352/352 ATG(T)/ATA(T) 0/0
trnA J 6214-6278/6323-6387 65/65 - −1/−1
trnR J 6278-6341/6387-6450 64/64 - −1/−1
trnN J 6341-6404/6450-6513 64/64 - 0/0

trnS1 (AGN) J 6405-6471/6514-6580 67/67 - 0/0
trnE J 6472-6535/6581-6644 64/64 - −2/−2
trnF N 6534-6598/6643-6706 65/64 - 0/0
nad5 N 6599-8315/6707-8423 1717/1717 ATA(T)/ATT(T) 0/0
trnH N 8316-8379/8424-8487 64/64 - 0/0
nad4 N 8380-9715/8488-9823 1336/1336 ATG(T)/ATG(T) −7/−7
nad4l N 9709-9996/9817-10104 288/288 ATG(TAA)/ATG(TAA) 2/2
trnT J 9999-10061/10107-10171 63/65 - 0/−1
trnP N 10062-10127/10171-10236 66/66 - 5/5
nad6 J 10133-10630/10242-10739 498/498 ATG(TAA)/ATG(TAA) −1/−1
cytb J 10630-11770/10739-11879 1141/1141 ATG(T)/ATG(T) 0/0

trnS2 (UCN) J 11771-11835/11880-11944 65/65 - 18/18
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Table 3. Cont.

Gene Strand
Region Length (bp) Start/Stop Codon Intergenic (bp)

Pc/Pl Pc/Pl Pc/Pl Pc/Pl

nad1 N 11854-12804/11963-12913 951/951 ATA(TAG)/ATA(TAG) 0/0
trnL1 (CUN) N 12805-12868/12914-12976 64/63 - 0/0

rrnL N 12869-14136/12977-14242 1268/1266 - 0/0
trnV N 14137-14205/14243-14311 69/69 - −1/0
rrnS N 14205-15014/14312-15116 810/805 - 0/−

Control region - 15015-17523/- 2509/- - 0/−
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Figure 1. The mitochondrial genome map of Prosopocoilus species. The names of PCGs and rRNA 
genes are indicated using standard abbreviations, whereas the names of tRNA genes are indicated 
using single-letter abbreviations. The first circle shows the gene arrangement, and arrows indicate 
the direction of gene transcription. Blue, red, pink, and grey arrows indicate PCGs, rRNA genes, 

Figure 1. The mitochondrial genome map of Prosopocoilus species. The names of PCGs and rRNA
genes are indicated using standard abbreviations, whereas the names of tRNA genes are indicated
using single-letter abbreviations. The first circle shows the gene arrangement, and arrows indicate
the direction of gene transcription. Blue, red, pink, and grey arrows indicate PCGs, rRNA genes,
tRNA genes, and the control region, respectively. The second circle indicates the GC content, and the
third circle indicates the GC-skew. The innermost circle indicates the size of the sequence.
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Table 4. Base composition of two newly mitochondrial genomes.

Species Genes T(U) C A G A + T% G + C% AT-Skew GC-Skew

P. castaneus

PCGs 39.14 17.06 28.19 15.61 67.32 32.68 −0.16 −0.04
tRNAs 33.45 13.66 36.66 16.24 70.10 29.90 0.05 0.09
rRNAs 39.03 8.86 31.42 20.70 70.44 29.56 −0.11 0.40

Genome 32.07 20.33 36.67 10.93 68.73 31.27 0.07 −0.30

P. laterotarsus

PCGs 40.00 16.49 27.64 15.88 67.63 32.37 −0.18 −0.02
tRNAs 34.20 12.31 37.55 15.94 71.75 28.25 0.05 0.13
rRNAs 38.77 8.64 32.83 19.75 71.61 28.39 −0.08 0.39

Genome 32.81 19.82 36.44 10.93 69.26 30.74 0.05 −0.29

3.2. Protein-Coding Genes and Codon Usage

The lengths, nucleotide proportion, and codon usages of 13 PCGs in these two new
mitogenomes were nearly the same as those in the ancestral type of insects (Tables 3 and 4;
Figures 1 and 2). All 13 PCGs were identified in these two new mitogenomes. Twelve
PCGs of these two new mitogenomes used ATN (where N represents A, C, G, or T) as
initiation codons, with the exception of cox1, which was initiated with AAN. Notably, AAN
is an accepted conventional start codon in many beetle mitogenomes [8,11,15,23,57]. In the
P. castaneus and P. laterotarsus mitogenomes, six PCGs shared the typical stop codons TAA
and TAG, whereas in the remaining genes, an incomplete stop codon consisting of T or
TA was inferred (Table 3). All of the new mitogenomes had incomplete stop codons, as
described in other stag beetles [4,23,51] and other insects [58,59], which have been demon-
strated to produce functional stop codons in polycistronic transcription cleavage and
polyadenylation processes [8,13,14]. Comparisons of five mitogenomes of Prosopocoilus stag
beetles showed that the cox1 genes of P. castaneus, P. laterotarsus, P. blanchardi, P. astacoides,
and P. confucius shared the same incomplete stop codon (T). By contrast, complete termi-
nators (TAA) are utilized in Kirchnerius guangxii, Epidorcus gracilis, and the related species
Serrognathus platymelus. Thus, we assumed that these species shared a similar preference for
stop codon adoption and may have a closer relationship, as confirmed by the phylogenetic
analysis (see below). The average AT contents of the 13 PCGs were 67.32% and 67.63% in
P. castaneus and P. laterotarsus, respectively. The PCGs encoded by the J-strand displayed
T-skews (T > A) and G-skews (G > C), whereas others encoded by the N-strand displayed
T-skews and C-skews (C > G). The characteristics of the relative synonymous codon usages
(RSCU) in these two new mitogenomes showed that codons including A or T at the third
position were overrepresented compared with the other synonymous codons (Figure 2),
reflecting the nucleotide bias of insect mitogenomes [8]. There was also a high AT content
at the third codon site, indicating a high background mutational pressure towards AT
nucleotides [60].

3.3. Evolutionary Rates of PCGs

Five available mitogenomes from the genus Prosopocoilus (from P. castaneus, P. latero-
tarsus, P. confucius, P. astacoides, and P. blanchardi) were used to calculate the evolutionary
rate of its PCGs. For each PCG, the ratio of non-synonymous substitution (Ka) to synony-
mous substitution (Ks) was calculated (Figure 3). The NADH dehydrogenase subunits
(nad1-6 and 4l) and ATP synthase subunits (atp8 and atp6) had higher Ka/Ks ratios than
the cytochrome oxidase subunits (cox1, cox2, and cox3) and cytochrome b (cytb). This
phenomenon suggested that various functional genes in the mitochondria of Prosopocoilus
have undergone different selection pressures during the evolutionary process. The order of
Ka/Ks for 13 protein genes was as follows: atp8 > nad6 > nad5 > nad4 > nad4l > nad2 > nad3
> nad1 > atp6 > cox2 > cytb > cox3 > cox1. Notably, the Ka/Ks ratios of the 13 PCGs among
the five mitogenomes of Prosopocoilus were all less than 1.0, suggesting that these functional
genes were all under strong purifying selection, as was reported in other insects [8,14,60].
The slowest and fastest evolution rates were observed for cox1 and atp8 genes, respectively
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(Figure 3). Furthermore, the cox1 had the smallest evolutionary rate, indicating that positive
selection was less powerful for this gene than functional constraints, as found in other
insects or stag beetles [8,61,62].
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3.4. Intergenic Spacers

In the two newly sequenced mitogenomes, the sizes of intergenic spacers were ex-
amined, varying from 1 bp to 375 bp in P. castaneus, and 1 bp to 158 bp in P. laterotarsus
(Table 3). The large intergenic spacers in these Prosopocoilus mitogenomes were located
between trnI and trnQ, consistent with those in the previously studied species of P. blan-
chardi (4051 bp), P. astacoides (375 bp), and P. confucius (580 bp) [4,23]. In Lucanidae, the
notably large IGSs between trnI and trnQ were only found at this particular position in
mitogenomes of the genus Prosopocoilus at present. Moreover, a short repetitive sequence
with the sequence TAAAA was identified within the large IGS in both of the two newly
sequenced mitogenomes. Compared with three previously reported Prosopocoilus species,
the sites and number of times this short repetitive sequence (TAAAA) appeared and the
lengths of the intergenic region when it was repeated were different among the five se-
quenced Prosopocoilus mitogenomes (Figure 4). In these five Prosopocoilus mitogenomes,
the short sequence (TAAAA) appeared four times (P. castaneus and P. laterotarsus), five
times (P. blanchardi), and three times (P. confucius and P. astacoides), and the length of the
intergenic region between the repetitive sequence (TAAAA) differed among these five
species (Figure 4). Additionally, in these five species of Prosopocoilus, we also detected
an intergenic spacer of 18 bp between trnS2 (UCN) and nad1 with the conserved motif
(TACTAAA), similar to other reported lucanid beetles [4,20,50–54]. The IGS between trnS2
(UCN) and nad1 is common in Coleoptera mitogenomes, but varies in length [4,20,23,50–54].
The characteristics of the large IGS between trnI and trnQ are only present in the represen-
tatives of this genus among the family Lucanidae; therefore, we propose that this feature
may be synapomorphic for the members of the genus Prosopocoilus. This large IGS between
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trnI and trnQ could support the taxonomic positions of the other 195 species currently
within Prosopocoilus. For example, Epidorcus gracilis, which was previously considered a
species in the genus Prosopocoilus, does not contain this large IGS [4]. Previous studies have
supposed that large intergenic spacers have possible roles in insect mitogenomic evolution
owing to their existence in most insect species, despite their irregular appearance [55,56]. It
is possible that this difference may have been caused by environmental selection pressures
at the time during the evolutionary process and thus could serve as a useful phylogenetic
signal [20]. The IGS between trnI and trnQ may be a useful marker for distinguishing
Prosopocoilus from its closely related and indistinguishable genera with respect to this
intergenic spacer that may exist in all studied Prosopocoilus species while it is absent in
other genera. The present study has provided meaningful implications into the roles of
these IGSs in the phylogenetic analysis of Prosopocoilus stag beetles. From our phylogeny is
that the species that follow the genus Prosopocoilus have in common the presence of this
large IGS that the implication could be in the role of this non-coding region in the evolution
of the mitogenome of these species.
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3.5. Phylogenetic Analyses

In this study, the nucleotide and amino acid sequences of the 13 PCGs were used to
reconstruct the phylogenetic relationship through BI and ML inference methods and gener-
ate four nearly identical topologies (Figures 5 and 6). Monophyly of the family Lucanidae
was strongly supported (BPP = 1, MLP = 100), consistent with the phylogeny inferred
from the multi-gene fragments in previous works [1,35]. Within the family Lucanidae
(Figures 5 and 6, blue shaded), close relationships were observed among Prosopocoilus,
Dorcus, and Serrognathus. According to the topologies, the current genus Prosopocoilus
was monophyletic and included the five representatives discussed in this study (BPP = 1,
MLP = 100). P. castaneus, P. astacoides, and P. blanchardi formed the sister clade of the
P. confucius and P. laterotarsus clade (Figures 5 and 6, yellow shaded), whereas the subclade
of K. guangxii was a sister group to the subclade of E. gracilis + S. platymelus. These two
subclades were both included in Dorcus sensu lato. Additionally, from our phylogenomic
tree, Prosopocoilus was a sister group to the clade ((Hexarthrius + Rhaetus) + Pseudorhaetus)
consistent with the results of a study by Lin et al. [4]. The three species of the D. velutinus
complex, Dorcus curvidens hopei and Dorcus parapllelipipedus, were clustered in a mono-
phyletic clade, as reported by Chen et al. [20]. These results were also consistent with
previous morphological comparisons [26,27]. Five species (P. laterotarsus, P. castaneus, P.
confucius, P. astacoides, and P. blanchardi) shared high similarities with the type species of
Prosopocoilus (Prosopocoilus cavifrons Hope & Westwood, 1845) in their external characteris-
tics and the genitalia traits of both sexes [26,27], suggesting that these five representatives
may follow the genus Prosopocoilus sensu stricto. The three others K. guangxii, E. gracilis, and
S. platymelus showed partial morphological overlap with typical members of Prosopocoilus,
Dorcus, and Serrognathus, and their taxonomic positions have been frequently adjusted
among different genera by different taxonomists and amateurs [27,33,63–65]. Our phylo-
genetic analyses based on the mitogenomic data supported that the five species exhibited
typical characteristics of Prosopocoilus, whereas the other three, which had partial morpho-
logical features, formed a different clade from the genus Prosopocoilus. We also found that
Dorcus was a sister of the clade ((Epidorcus + Serrognathus) + Kirchnerius). The relationships
among these lucanid representatives have been described in previous studies [4,62]. The
clade Prosopocoilus shares the presence of the large IGS, providing robust information for
determining the taxonomic positions of the species following the genus Prosopocoilus. Addi-
tionally, our results continue to support that mitogenomes could be very useful molecular
tools for improving our understanding of the phylogeny of problematic taxa in Lucanidae,
despite the dense sampling materials needed.
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4. Conclusions

Our study presents and describes the mitochondrial genomes of two stag beetles
from the genus Prosopocoilus. The two mitogenomes of the genus Prosopocoilus maintained
the typical gene content and organization of the ancestor mitogenome organization as
proposed. The evolutionary rates of 13 PCGs among our studied Prosopocoilus (including
three previously reported species) indicated that their evolution occurred under purifying
selection. The large intergenic spacer was identified in each of the five Prosopocoilus
mitogenomes, and comparisons suggested that the characteristics of large intergenic spacers
(presence or absence, size, and location) may be phylogenetically meaningful for evaluating
the genus Prosopocoilus. Our phylogenomic analyses including two newly sequenced
species, further supported that P. castaneus and P. laterotarsus were clustered in a clade
with typical Prosopocoilus species (P. confucius, P. astacoides, and P. blanchardi). Although
we were unable to fully confirm that this large IGS was present in all Prosopocoilus species
owing to limited sample availability, our findings established a new potential candidate for
molecular identification of this genus. Moreover, our findings suggest that variations in the
quantity, sequence, and location of IGSs may also be important signals for phylogenomic
and evolutionary studies at lower taxonomic levels if these details become available for
more taxa in the future. Finally, our results also indicated that mitogenomes could provide
useful molecular evidence for improving our understanding of the evolution of stag beetles.
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