
Shaping dynamical neural computations using spatiotemporal constraints

Jason Z. Kim∗
Department of Physics, Cornell University, Ithaca, NY 14853, USA

Bart Larsen
Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota

Linden Parkes†
Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA

(Dated: November 28, 2023)

Dynamics play a critical role in computation. The principled evolution of states over time enables
both biological and artificial networks to represent and integrate information to make decisions.
In the past few decades, significant multidisciplinary progress has been made in bridging the gap
between how we understand biological versus artificial computation, including how insights gained
from one can translate to the other. Research has revealed that neurobiology is a key determinant
of brain network architecture, which gives rise to spatiotemporally constrained patterns of activity
that underlie computation. Here, we discuss how neural systems use dynamics for computation,
and claim that the biological constraints that shape brain networks may be leveraged to improve
the implementation of artificial neural networks. To formalize this discussion, we consider a natu-
ral artificial analog of the brain that has been used extensively to model neural computation: the
recurrent neural network (RNN). In both the brain and the RNN, we emphasize the common compu-
tational substrate atop which dynamics occur—the connectivity between neurons—and we explore
the unique computational advantages offered by biophysical constraints such as resource efficiency,
spatial embedding, and neurodevelopment.

Keywords: recurrent neural networks, dynamics, computation, spatial constraints, neurodevelopment

I. INTRODUCTION

Dynamics have long underpinned computation.
From the cycles of central pattern generators that
support locomotion [1] to the networks of large-scale
brain dynamics thought to regulate decision-making
[2], it is clear that biological systems make ample use of
their time-evolution to respond to their environment.
Harnessing this dynamical computation, artificial
recurrent neural networks (RNNs) have been trained
to successfully perform the same computational tasks
as humans [3, 4]. However, while inspired by the
brain, training of RNNs is typically carried out in an
unconstrained manner, leading to solutions that lack
biophysical realism. Additionally, decades of neuro-
science research has demonstrated the importance of
biological constraints for achieving the brain’s unique
structure and capabilities [5–8]. Here, we draw on
literature from dynamical systems and neuroscience to
discuss (i) how RNNs leverage dynamics to compute,
and (ii) how biophysical constraints may shape this
computation by guiding the formation of network
structure. At the intersection of these goals exists
an opportunity to study how biologically-constrained
RNNs may yield more powerful and more interpretable
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computational models.

To understand how biologically realistic neurons
compute, there has been a long and rich history of
modeling and interpreting neurobiological systems
to leverage their computational capabilities. These
quantitative models fall under the category of dynam-
ical systems, whose evolution in time is determined
by mathematical functions. At the scale of a single
neuron, detailed circuit models of the ion channels that
mediate membrane voltage have enabled quantitative
understanding of signal propagation and computation
in dendrites [9, 10]. At the scale of neural populations,
mean-field models of excitatory and inhibitory neurons
have enabled the study of neural circuits for biological
sensing, imitation, and attention [11–13]. At the
whole-brain level, both linear [14–17] and non-linear
[18, 19] dynamical models have been used to simulate
large-scale activity patterns, and have examined how
those patterns spread across the brain’s white matter
tracts. Across this broad range of systems, scales,
and models, there exists a diversity of ways in which
dynamics can be used for computation, as well as a
crucial dependence of these dynamics on biophysical
parameters.

More recently, with technological advances in deep
learning, the study of neural computation has adopted
a more functional direction that moves away from
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biological realism. That is, rather than seeking a direct
biophysical model [9, 11, 20, 21], RNNs posit a general
dynamical system that is Turing complete [22], with
parameters that are trained to solve computational
tasks. We focus on RNNs because they have been
used extensively to understand how general brain-like
systems leverage dynamics to perform computation.
Examples of this use include time-series prediction
[23], source-separation [24], decision-making [3], odor
classification [25], as well as concurrent performance
of multiple cognitive tasks [26]. However, these
insights and models often fail to translate into the
real computational substrate of the brain—the neural
architecture—because RNNs are trained without
regard for biophysical constraints.

To merge biological realism with computational
dynamics, we must first understand the physical
embedding and constraints of the brain. In contrast to
artificial RNNs, the brain is embedded within a circum-
scribed physical space [27], and its inter-connectivity
is subject to limited metabolic resources [28]. This
discrepancy makes it challenging to translate insights
relating the structure, dynamics, and computation
of biological brains to artificial RNNs. Neuroscience
has studied these resource constraints for more than a
century [29], suggesting that the brain is pressured to
make efficient use of space, material, and time. That
is, the brain must learn to communicate efficiently
(time) while leveraging limited physical (space) as
well as metabolic and cellular (material) resources.
Critically, many of the brain’s topological features
of connectivity and communication are thought to
emerge as a consequence of navigating these pres-
sures [5–8, 28]. These findings suggest that the
brain’s resource constraints play a critical role in shap-
ing its dynamic repertoire and computational capacity.

Here, our goal is to lay out promising new direc-
tions for improving the computational power and in-
terpretability of RNN models of the brain. We posit
that this goal will be achieved by placing biological con-
straints on RNNs that shape their structure and activity
in systematic ways, which will in turn produce computa-
tionally improved dynamics. We focus on two aspects
of RNN computational dynamics: the diversity of in-
formation that is represented by the neurons (expres-
sivity), and the manipulation of low-dimensional inter-
nal representations (latent-spaces). In each section, we
examine how biology shapes brain networks—with par-
ticular emphasis on the spatially-patterned macro-scale
organizing principles of the cortex—and discuss how
these constraints may be ported to RNNs to improve
performance with interpretable structure and dynam-
ics. Overall, we discuss how insights from biological and
artificial computation can enrich each other towards a

new generation of biophysically realistic RNNs.

II. THE RNN MODEL

To mathematically model the time-evolution of neu-
ral systems, we turn to dynamical systems which posit
that the next state of a neural system can be written as
a function of the current state and an input as

rt+1 = f(rt,ut). (1)

Here, rt ∈ Rn is a vector of n neural activity states,
ut ∈ Rk is a vector of k inputs, and f is a function. As
an example, let us consider a simple leaky integrator
model with a single neuron which evolves according to

rt+1 = art + but, (2)

where 0 ≤ a < 1 and b are real numbers (Fig. 1A).
As time evolves forward, the neuron state integrates
the input but, and the accumulated history of inputs
decays at a rate set by a.

cont. input
disc. input

(B) Architecture of the RNN

(A) One linear neuron

cont. input
disc. input

B A

N N1k

d
W

N m

o1

o2

om

u1

u b r

u2

uk

r i

1

0

u(
t)

t
0

1

0.1

0

r(t
)

t
0

1

a

Figure 1. One-dimensional dynamics and RNN archi-
tecture. A, Schematic of a single neuron model of a leaky
integrator with an input connection in blue, and a recur-
rent connection in gold (left), alongside examples of both a
continuous and discretized input into the neuron (center),
and the state of the input-driven neuron from the contin-
uous (Eq. 5) and discretized (Eq. 2) dynamics (right). B,
Schematic of an RNN with k inputs and m outputs, with
input connections and matrix in blue, recurrent connections
and matrix in gold, and output connections and matrix in
maroon.

While Eq. 1 is written with t advancing in inte-
ger steps—thereby called a discrete-time dynamical
system—many physical neural models evolve forward
continuously in time as,

d

dt
r(t) = f̂(r(t),u(t)). (3)
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We can approximate these continuous dynamics as dis-
crete by evolving Eq. 3 in time using steps of ∆t as,

rt+∆t = f(rt,ut) = rt +

∫ t+∆t

t

f̂(r(τ),u(τ))dτ. (4)

For example, the continuous-time version of the leaky
integrator neuron is given by

d

dt
r(t) = âr(t) + b̂u(t), (5)

for â ≤ 0 (Fig. 1A). In this case, the parameters
of these two models can be interchanged through
the transformation a = eâ∆t, b = (a − 1)b̂/â, but
fundamental differences exist between continuous- and
discrete-time systems [30]. Regardless of the system
type, neural models make tradeoffs between complexity
in the level of detail and tractability.

The RNN is a model that attempts to capture the
biophysical quantity of the interactions between neu-
rons through the connectivity matrix A. In tandem, the
RNN simplifies the precise functional form of that in-
teraction through the activation function f . In its most
basic form, an RNN is a subset of dynamical systems
(Eq. 3) that evolves in time as

rt+1 = f(Art +But + d),

ot = g(rt).
(6)

where A ∈ Rn×n is the connectivity matrix between
neurons, B ∈ Rn×k is a matrix that linearly maps the
inputs to the neurons, d ∈ Rn is a vector of bias terms,
and f is an activation function (Fig. 1B). Rather than
having f be a complex and biophysically motivated
function, it is often approximated as a simple nonlinear
function such as a sigmoid. The output of the RNN,
ot, is usually taken to be some function g of the RNN
state, and is often a linear output ot = Wrt. Typically,
A,B,d, and W are treated as learnable parameters,
some or all of which can be trained using a wide variety
of methods [4, 31, 32].

We focus primarily on the computational role of the
connectivity matrix A, as it dictates how the informa-
tion in the RNN states is integrated as in the leaky
integrator example (Eq. 2, 5). Despite its crucial im-
portance in implementing computation, most uses of
RNNs do not consider the biological pressures experi-
enced by the brain while training RNN connectivity.
In the following section, we describe how diversely the
RNN states can express the inputs by leveraging A, and
how biological processes and constraints reflect, medi-
ate and accentuate this diversity.

III. TUNING EXPRESSIVITY THROUGH
REGULARILIZED ACTIVITY AND

NEUROMODULATION

When solving any computational problem, the ex-
pressivity of the language used is of crucial importance.
The more expressive a language is, the greater the
set of computations, formulae, and theorems comprise
that language [33, 34]. For example, a programming
language that supports conditional if statements can
represent many more programs than an equivalent
language that is without an if statement.

In the same way, neural networks can be viewed
from the lens of expressivity. Specifically, we can ask:
given arbitrary weights, what is the space of functions
or dynamics that can be achieved? Previous work
has demonstrated that shallow multi-layer perceptrons
(MLPs) are universal function approximators [35, 36],
and that RNNs are universal dynamics approximators
[37]. However, even if a particular function or dynami-
cal pattern is theoretically achievable, artificial neural
networks—just like biological neural networks—must
be trained from an initial condition. Hence, the study
of expressivity extends beyond theoretical guarantees,
and has been shown to rely heavily upon architectural
features such as depth [38], neuron activation [39], and
connectivity [40], which are crucial for explaining and
engineering the success of modern-day neural networks.

In this section, we study three consequences of bio-
logical processes for expressivity. First, we introduce
RNN expressivity as a richness of time history informa-
tion about the inputs, and tie this richness to spatially-
patterned temporal receptive fields in the brain that un-
derpin information integration. Second, we study con-
straints on expressivity induced by resource constraints
on neural activity as a putative learning mechanism.
Finally, we explore the potential for neural networks to
modulate their expressivity at short time-scales through
neuromodulation. Together, the processes of the brain
offer enticing and novel paradigms for training and con-
structing more expressive RNNs under biological con-
straints.

A. Expressivity as variable time-lagged
integration of information

Expressivity of RNNs is intricately tied to the
concept of stability : how quickly a perturbation to
the RNN state decays [41]. If a perturbation decays
very quickly, then the information contained in the
perturbation cannot be used by the RNN for extended
information processing. On the other hand, if the
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Figure 2. Expressivity and the representational basis formed by RNNs. A Schematic of an RNN with a single
input, the basis vectors formed by neurons i and j, and the reconstructable subspace spanned by those vectors. B Schematic
and reconstructable subspaces for a simple 2 neuron system with no recurrent connections, C weak recurrent connections,
and D strong recurrent connections. E Example trajectories from a subset of 8 neurons of a 50 neuron system after receiving
an impulse (top), alongside the ideal and true output of the RNN (bottom) after training a linear readout, ot = Wrt, to
reproduce a time-lagged version of the impulse with |A| = 0, F |A| = 1.2, and G |A| = 1.6.

perturbation grows uncontrollably, then the temporal
information in the inputs quickly becomes too complex
to be represented by the finite number of neurons. As a
result, an optimal amount of controlled stability should
maximally preserve temporal information without
saturating the RNN’s capacity.

We can quantify this intuition through a simple re-
cursive substitution of Eq. 6,

rt+1 = f(Art +But + d)

= f(A(f(Art−1 +But−1 + d) +But + d)

= · · ·
= h(r0,u0,u1, · · · ,ut).

(7)

Hence, in a noiseless system, the RNN state rt+1

can be written as an explicit function h of the initial
state, r0, and the full time history of the inputs, uτ ,
mediated by the recursive application of A,B,d, and
the activation function f . The state of all neurons rt+1

generates a basis for a subspace of the delay-embedded
space of inputs uτ (Fig. 2A), which means that the
neuron states at time t + 1 hold information about

the time history of the inputs mediated by A, B, and
d [42]. Thus, when computing an output using the
neural states, we are implicitly computing an output
using a basis of time-lagged input terms, where the
connectivity defines the basis vectors, and therefore
the reconstructable subspace (Fig. 2A). The more
expressive this time-lagged basis, the greater the
diversity of output functions which can be computed.

This expressivity is intimately tied to the connectiv-
ity matrix [43], and has been studied through many
different lenses such as computation at the edge of
chaos [40, 44, 45], criticality, and avalanches [46, 47].
The RNN’s stability is set by the specific activation
function f and the connectivity matrix A. To gain
intuition for this dependence, let us consider a simple
linear 2 neuron system driven by one input. When
there is no connectivity between the neurons, they store
no time history of the inputs, and their state at time
t = 3 is purely a function of the input at time t = 2
(Fig. 2B). When we add weak connections between the
neurons, they begin to store some information about



5

the input at the previous time point t = 1 (Fig. 2C).
When we strengthen these connections, the neurons
begin to store information from further back in time at
t = 0 (Fig. 2D).

To further develop this intuition for larger systems
and a specific task, we consider a 50 neuron system
whose connectivity is randomly initialized, and whose
output is trained to recall an impulse from 30 time
steps in the past. At the trivial limit of an RNN
with no connectivity where |A| = 0, the recursion of
Eq. 7 yields rt+1 = f(But + d), and we see that there
is no time history of the input present in the RNN
state. As a result, the RNN is unable to recall the
input at a later point in time (Fig. 2E) [48]. As we
increase the strength of connectivity, the RNN state
stores more information about longer time lags of the
input, ut−τ , and is thus able to more accurately recall
the input later in time (Fig. 2F). As the connectivity
strength continues to further increase, the RNN state
holds increasingly more time lags of the input until it
saturates such that the number of neurons is smaller
than the dimension of the space of time-lagged input
functions, thereby forming an incomplete basis for that
space (Fig. 2G).

This link between storing long time histories and
expressivity is displayed prominantly and spatially
in the brain. Specifically, there exists a tight cou-
pling between longer periods of temporal integration
and higher-order computation, and this relationship
varies systematically across the cortex [49]. At the
macro-scale, cortical brain regions are thought to
follow a dominant axis of variation that encodes
a global processing hierarchy [50]. This gradient
of brain organization is broadly referred to as the
sensorimotor-association (S-A) axis [51, 52]. The S–A
axis spans from primary cortices supporting sensation
and movement at the bottom, to multimodal cortices
supporting multisensory processing and integration
in the middle, to transmodal association cortices
supporting higher-order cognition at the top. The
S-A axis is observed across multiple diverse features
of brain structure and function [51] and is conserved
across species [52, 53], demonstrating its evolutionary
roots. Notably, as regions traverse up the S-A axis they
undergo a progressive lengthening of their temporal re-
ceptive windows [49, 54]. Specifically, regions’ intrinsic
functional timescales vary over the S-A axis [55, 56]
with regions at the top showing slower fluctuations
reflecting longer temporal receptive windows. In turn,
these longer windows are thought to enable greater
accumulation and integration of information over time,
facilitating higher-order cognition [49]. Conversely,
regions at the bottom of the S-A axis show relatively
fast dynamics, which is thought to underpin rapid

integration of recent sensory information [49].

This spatial patterning of receptive windows suggests
that the brain—unlike naively constructed RNNs—
distributes its computational expressivity systemati-
cally across the cortex, and research suggests that
this may be critical for functional integration [49].
The above data suggest that RNNs too may benefit
from spatially varying periods of temporal integration.
Specifically, the stability of RNNs is typically only con-
sidered globally across the entire system, as the con-
nectivity of many RNNs are initialized randomly. If
the RNN is linear (i.e., if the activation function f is
the identity matrix), then any ensuing dynamic insta-
bilities are localized to linear subspaces, or modes, of
neural activity [57]. However, if the RNN is nonlin-
ear (e.g., f = tanh), then instabilities bleed into other
modes, making it difficult for the RNN to form a clean
segregation of time-scales. Hence, varying periods of
temporal integration could be achieved by specifying
spatially varying penalties on neuronal timescales into
the RNN cost functions. Such penalties may give rise to
spatially segregated modules responsible for processing
inputs at different time-scales.

B. Learning by suppressing activity

While expressivity hinges on a careful balance
of stable dynamics, biological neural networks are
constrained by energy; more active neurons require
more metabolic energy, which is a limited resource.
As such, while artificial networks can maximize their
expressivity through unconstrained backpropaga-
tion, the brain’s capacity to learn is restricted by
resource constraints; also, the extent to which the
brain performs backpropagation remains unclear [58],
which has motivated the machine learning community
to consider more biologically-inspired optimization
approaches. Hence, penalizing activity in RNNs
should intuitively penalize computational capability
through reduced expressivity. However, recent work
has instead demonstrated important computational
benefits of minimizing energy usage during training
[59]. For example, Ali et al. [59] trained an RNN to
predict sequences of handwritten digits, and examined
how different optimization functions impacted model
architecture and behavior. Specifically, Ali et al.
[59] did not train their RNN to minimize prediction
error through backpropagation. Instead, they trained
their model to minimize absolute levels of neural
activity prior to passing that activity through neurons’
activation functions (here, ReLU). Such preactivation
minimization is akin to selectively minimizing neurons’
presynaptic inputs in biological networks. Critically,
executing this cost function required no information
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about task performance, and instead simply limited
the RNN’s resources in a biologically plausible way.

Alongside good task performance, Ali et al. [59] ob-
served dynamics in their RNN indicative of predictive
coding. Predictive coding describes the hypothesis that
the brain stores and updates expectations about its en-
vironment which it compares with incoming sensory ev-
idence for those expectations [60]. Specifically, Ali et
al. [59] observed activity patterns in their RNN sugges-
tive of (i) selective self-inhibition in neurons receiving
visual stimuli and (ii) prediction of future inputs in neu-
rons not receiving visual stimuli. These results accord
with hierarchically-organized predictive coding coupled
to the S-A axis, wherein association cortices store pre-
dictions and via their distributed connectivity modu-
late activity in sensorimotor cortices [61–63]. Taken
together, the findings of Ali et al. [59] indicate that
while limiting the neurons’ activation might intuitively
reduce their expressivity—thereby limiting their com-
putational capability in RNNs—it can also serve as a
unique mechanism for distributed learning that is more
biophysically realistic than backpropagation.

C. Dynamically Tuning Expressivity via
Neuromodulation

The preceding sections discussed expressivity as
an emergent property of a trained network that can
be modified by placing certain constraints on RNN
training. This static expressivity has been shown to
be effective at performing a wide range of tasks, and
is the basis of the success of reservoir computing [64].
Unlike in an RNN, the internal connectivity of the
reservoir computer (RC) is not trained. Instead, only
the output is trained, typically as a weighted sum of
RC states [31]. Hence, RCs rely completely on the
preexisting expressivity of their internal dynamics to
generate a sufficiently expressive basis representation
of their inputs. Because RCs can be trained without
knowledge or modification of the internal system, a
wide variety of physical systems have been explored
as efficient RCs [65], including photonics [66], elec-
trical circuits [67], hydrodynamic systems [24], and
the brain [68]. However, expressivity in biological
networks is not static, even in the presence of fixed
weights. Instead it can be modulated dynamically
over short time-scales and–––similar to regions’ tempo-
ral receptive windows–––this too is spatially patterned.

Previously, we discussed how the S-A axis tracks
functional specialization and integration across the
cortical mantle; cortical brain systems located at the
bottom of the S-A axis are responsible for processing
sensory/motor information while systems at the top of

the S-A axis are involved in processing higher-order
cognition [50], and the brain’s connectivity allows
for the hierarchical flow of information across these
systems [69–71]. However, the functional roles of these
different brain systems are not static. Instead the brain
utilizes a complex array of neuromodulatory systems to
actively reconfigure the brain’s dynamic repertoire [72].
In turn, this neuromodulation endows a relatively static
network architecture (i.e., structural connectivity) with
an increased capacity for functional flexibility. Review-
ing all of the brain’s neuromodulatory mechanisms, and
their effects on neural dynamics, is beyond the scope of
this piece (see [72–75] for reviews), as these mechanisms
comprise myriad cortico-cortical, cortico-subcortical,
and subcortical-subcortical interactions. Here, we
focus on a specific example that we believe is well
positioned to be integrated into RNNs: the balance
and modulation of cortical excitation and inhibition.

One fundamental neuromodulatory effect is that of
dynamic changes to cortical excitation and inhibition.
Neuron’s in the cortex receive a complex set of excita-
tory and inhibitory inputs, and the ratio between these
inputs (E/I ratio) plays a critical role in coordinating
an action potential. Following the S-A axis [51],
the E/I ratio varies systematically across the cortex
[76–78], leading to baseline differences in regions’
dynamics and computation [56, 79–81]. Moreover,
incorporating regional variations to the E/I ratio into
biophysical models has been shown to improve their
fit to empirical functional data [80, 82], demonstrating
that the E/I ratio shapes large-scale brain dynamics.
However, unlike features of brain stucture that track
the S-A axis [51], regions’ baseline E/I ratio can
be dynamically shifted via up- or downregulating
the excitatory and inhibitory neurotransmitters of
postsynaptic cells [72]. This regulation is achieved
via multiple neurochemical pathways which can be
driven exogenously—for example, via pharmaceutical
agents [83] or chemogenetics [84, 85]—or endogenously,
for example via the ascending noradrenergic arousal
system (AAS) [72].

In dynamical systems, changes to neuronal excitation
and inhibition are thought to engender population-level
changes in neural gain (Fig. 3) [72]; the slope of a
function that maps simulated neurons’ inputs to their
outputs. By tuning the neural gain between coupled
oscillators, Shine et al. [86] observed that increased
gain lead to greater functional integration between
neural populations. Critically, functional integration is
thought to be an important computational property of
the brain; in the human brain, functional integration
fluctuates over short time scales [87] and facilitates
cross-talk between the brain’s many functionally-
specialized communities [88]. Thus, on-the-fly changes
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to neurons’ E/I ratio facilitates a diverse range of
dynamic behaviors [11]. This diversity allows brain
function to flexibly decouple from its underlying
structural architecture [89–92], which in turn supports
a broader range of computations than would otherwise
be possible.

Figure 3. Tuning neural gain in RNNs. A, Neural gain
can be dynamically tuned in a trained RNN by modifying
the slope of neurons’ activation function. B, Neuroscientific
research demonstrates that neural gain varies systematically
across the cortex (left) and is tuned dynamically by neuro-
modulators (right). C, This neuromodulation can be used
to change the dynamics of RNNs.

The above data suggests that modulation of regions’
E/I ratio gives rise to state-dependent dynamics
that facilitate the brain’s computational expressivity.
Recently, researchers have begun examining how E/I
modulation might be instantiated in RNNs, with a
particular focus on the aforementioned AAS. The AAS
stems from the locus coeruleus, a small brainstem
structure that provides diffuse noradrenergic projec-
tions spanning the cerebral cortex [72, 93]. These
projections modulate neuronal excitability via the
neurotransmitter noradrenaline, granting the AAS
the capacity to modulate the E/I ratio. Drawing
on this mechanism, Wainstein et al. [94] trained an
RNN to perform a perceptual switching task, wherein

one visual stimuli (a plane) gradually morphed into
another (a shark) and the RNN was tasked with
reporting which stimuli it perceived at each time
point. Once trained, Wainstein et al. [94] modified
the slope of the artificial neurons’ activation function
(i.e., the neural gain) and examined the corresponding
change in perceptual switching. The authors observed
that higher gain caused perceptual switches to occur
earlier than expected, while lower gain caused the
opposite. Additionally, Wainstein et al. [94] mod-
eled the energy landscape of the RNN state-space
and observed that increasing neurons’ gain flattened
the landscape, allowing for easier state transitions
(perceptual switches). Finally, the authors supported
these modeling results with task-based fMRI data as
well as pupillometry data, which is thought to be an
indirect measure of noradrenaline-mediated arousal
[95]. Together, the authors’ results demonstrate that
a system’s computational function can be dynamically
modulated in behaviorally meaningful ways, and that
this reconfiguration may be underpinned by an internal
capacity to regulate neural excitability. Critically, this
dynamic reconfiguration unfolds on top of a static
network architecture, wherein only neurons’ activation
functions are tweaked while their trained weights are
preserved.

The results of Wainstein et al. [94] demonstrate that
the affects of neuromodulation can be introduced to
RNNs, modifying their functional outcomes in behav-
iorally meaningful ways. However, as touched on above,
the brain comprises multiple neuromodulatory systems
that are capable of influencing regions’ excitation and
inhibition, each of which subserve different functional
goals [72] and each exhibit unique spatial patterning of
their associated neurotransmitters and genes [77]. Fu-
ture work examining how each of these neurotransmit-
ter maps affect RNN behavior, across a diverse range
of tasks, will be important to characterize how differ-
ent neuromodulatory mechanisms influence expressiv-
ity. Indeed, other fields of dynamical systems (e.g. lin-
ear systems) have already begun pursuing these goals
[96–98].

IV. COMPUTING WITH THE LATENT
SPACES OF RNNS VIA CONSTRAINED

CONNECTIVITY

While expressivity tells us what information about
the input is contained in a specific state, it does not
tell us about the computational meaning behind that
state. Specifically, although Eq. 7 provides us with
a map of how any input series uτ is expressed as a
specific neural state xt+1, the meaning of that state
depends on the context of the problem being solved.
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For example, while the dynamics of the transistors in
a microprocessor can be known and simulated, the
computational meaning of the transistor state depends
on its internal, or latent representation [99].

As an illustration of latent representation, consider
one of the fundamental memory elements of computers,
the set-reset latch (SR-latch) [100], which simply re-
members which of two inputs were pulsed most recently.
A single nonlinear neuron with two inputs can be de-
signed to mimic this behavior (Fig. 4A), where its state
remains high if input u1 was last pulsed, and remains
low if input u2 was last pulsed. Here, the state of the
neuron is directly the output of a latch. Alternatively,
this latch functionality can be defined in a distributed
manner into a system of multiple neurons, where the
high state is represented as some pattern of activity
r∗, the low state is represented as another pattern of
activity r†, and the input pulses transition the RNN
state between these two (Fig. 4B). Here, no single neu-
ron is responsible for the latch dynamics. Rather, these
latent-space latch dynamics depend on the connectiv-
ity between neurons, as well as how that connectivity
was formed by training. In this section, we discuss how
RNNs represent and manipulate information in their
latent space, and the consequence of biological con-
straints on these latent representations. Then, we draw
on recent advances from the field of neurodevelopment
to put forth new directions for studying biologically-
constrained RNNs.

A. Sparsity and attractor stability

Neural networks harness the power of internal, or la-
tent, representations for computational tasks such as
path integration [101], tracking [102], and spatial work-
ing memory [103]. In RNNs and dynamical systems,
these latent representations are often referred to as at-
tractors: sets of points, S = {si}, to which the dynam-
ics evolve after a relatively long period of time. An early
example of latent representations is associative mem-
ory in Hopfield networks [104], wherein a specific set of
neural activity patterns, S = {si}, are stored as memo-
ries that could represent information such as an image.
Specifically, S are stored as fixed-point attractors [105]
such that after stimulating neurons close to a specific
pattern, x0 = si+ϵ, the neural states will evolve toward
a stored memory, xt→∞ ≈ si. In general, a fixed-point
is a state x∗ such that

x∗ = f(x∗). (8)

The computational power of this Hopfield network is
in using inputs to retrieve pre-defined information (i.e.,
memories) stored in attractors, and substantial work
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Figure 4. Distributed latent-space representations.
A, A nonlinear single-neuron model with two inputs (top),
which has been designed to act as a memory circuit such
that an impulse from input u1 or u2 will cause the state
of the neuron to stay fixed at a high or low value, respec-
tively (bottom). B, A nonlinear multi-neuron RNN which
has been designed to act as a memory circuit (top), except
that the RNN represents the states “high” and “low” as two
stable fixed-points across all of its states, and these fixed-
points are determined in a distributed manner via all of the
connections between the neurons.

has gone into improving their computational capability
[106] and biophysical realism [107]. Hence, fixed-point
attractors are latent dynamical properties that can be
harnessed for computation.

In addition to discrete memory states, RNNs can
make use of the geometry of their attractors to form
representations and make decisions. For example,
continuous-attractor neural networks (CANNs) extend
the concept of an attracting point to higher-dimensional
manifolds, thereby forming attracting curves and sur-
faces such that the geometric position along these
manifolds holds latent computational meaning. For
example, the geometric trajectory of the neural net-
work state along these manifolds can reflect a path
traversed in real physical space by an agent, [101], the
continuous tracking of a moving stimulus [102], and the
recall of spatial location in the prefrontal cortex [103].
While the connectivity and dynamics of CANNs are
precisely engineered to preserve translation-invariance
along their structure, this continuum of attractors also
emerges in trained RNN models [108], and even in
models of the prefrontal cortex trained to integrate
information given different contexts [3]. Hence, rather
than the activity of one or a collection of specific neu-
rons [109], it is the geometry of the attractor manifold
that forms the internal representation of information in
the RNN, and the RNN integrates external information
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by moving its representation along that manifold [110].

Formation of attractors occurs as a consequence
of a loss of energy in the system, which in turn
results in the stabilization of dynamics [111]. This
stabilization can be characterized using methods such
as Lyapunov functions—energy-like quantities that
monotonically decrease or dissipate throughout the
dynamics [112, 113]—and Lyapunov exponents—the
rate of convergence towards an attracting manifold
[114]—to study existing systems. However, what is
less clear is how connectivity can develop to improve
the stabilization of these attractors. Intuitively, this
energy dissipation usually takes the form of a loss in
the neural activity (e.g. the “leaky” component of the
leaky integrator in Eq. 2), whereas the parameters that
can be learned in the RNN are the connectivity. Thus,
the question becomes: how do we modify the RNN
connectivity to achieve greater attractor stability?

A biologically-inspired optimization process that has
proven useful for stabilizing RNN dynamics is sparse-
ness. In order to minimize energy expenditure [111],
the brain substantially prunes its connectivity [115]
retaining only a sparse set of weights that are finely
tuned to achieve its functional goals. In RNNs, induc-
ing sparseness via weight pruning has been shown to
provide several computational benefits. For example,
Averbeck [116] trained RNNs with and without weight
pruning to complete a working memory task. Compared
to their unpruned counterparts, moderate amounts of
pruning yielded RNNs that (i) exhibited better task
performance; (ii) required fewer training epochs; (iii)
had stronger connectivity weights; and (iv) were more
resistant to task distractors [116]. Notably, regarding
distractor resistance, pruned RNNs showed a smaller
departure from their dynamic trajectories when they
were perturbed by a distracting probe within the task.
This result demonstrates that the sparse connectivity
in the pruned RNNs strengthened their attractor basins
(Fig. 5), making them more stable and resistant to un-
desired inputs.

B. Deduction: Learning Problem Structure
through Iterative Algorithms

While the geometry of dynamical attractors can be
used for computational purposes, they also arise as the
solutions to complex problems. For example, iterative
methods are commonly used in optimization problems
such as iterative refinement, [117], root-finding meth-
ods [118], and feasibility problems [119]. Critically,
in these and many other examples, the solution is
not learned in the typical deep learning sense (i.e.,
training), but rather emerges as an attractor to satisfy

Figure 5. Sparse connectivity leads to stable attrac-
tors. Pruning connectivity weights in RNNs leads to sparse
weight matrices that deepen the attractor basins of RNNs
dynamics, making dynamics more stable.

the conditions of an iterative algorithm. In the same
manner, RNNs need not only learn the attractor struc-
ture of specific input-output relations (i.e., through
training), but have the potential to encode a specific
algorithm in the iteration of the neural states, such that
solutions to problems (i.e., tasks) emerge as attractors.

Biological neural networks demonstrate the ability to
run iterations within their latent representations [120].
A prominant example is hippocampal replay, whereby
hippocampal place cells will reactivate along the same
sequence as in a prior navigation experience [121], even
when the subject is not actively performing a naviga-
tion task. Another prominant example is dynamical
inference, whereby neural activity in the dlPFC can
reliably predict the future nonlinear trajectory of a
ball, and RNN models which best replicate prediction
behavior are trained on the sequence of the ball’s tra-
jectory [122, 123]. Hence, RNNs are not only capable
of learning attractor geometries, but also of learning
and simulating the sequence of the problem structure,
which may enable more generalizable solutions.

RNNs can be engineered to run iterative deduc-
tions through several means. One approach involves
assigning to each neuron the state variable of an
algorithm, and defining complex interaction dynamics
such that the RNN state will settle on the solution
as a stable attractor. For example, an RNN can be
designed to solve k-satisfiability problems, which seek
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an assignment of n Boolean variables that satisfy a
set of c constraints, where each constraint places a
condition on subsets of k Boolean variables (Fig. 6A)
[124]. These RNNs evolve until the neural states find a
solution [124]. Surprisingly, a wide variety of different
dynamics and architectures can lead to different
algorithms for solving the same satisfiability problem
[125, 126], and other difficult optimization problems
such as integer linear programming feasibility [127] or
the n-queens problem [128]. Hence, algorithm variables
can be directly represented by individual neurons, and
the algorithm rules can be directly encoded in the
connectivity and update rules f of RNNs.
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Figure 6. Programming Algorithms into RNNs A,
Schematic of an RNN whose neurons si and aj represent
states in a k-SAT problem, and whose connectivity is de-
fined such that the stable attracting manifold is guaranteed
to be a solution (left). The dynamics of the RNN evolve
in a complex manner as it searches and finds the assign-
ment of states that satisfies the k-SAT problem (center,
right). B, Schematic of the process for designing algorithms
into RNNs, where the recurrent connectivity of the RNN
(gold) can be constructed from a low-rank product of ma-
trices (B,W ). Through this construction, the evolution of
the RNN states concurrently evolves the state variables of
the algorithm within a low-dimensional projection. This de-
signed connectivity was used to program and simulate the
SR-latch in Fig. 4B).

In addition to a direct, one-to-one encoding of
problem structure as an RNN, we can also design
algorithms into the latent spaces of RNNs [129].
Rather than ascribing each neuron a specific variable
in an algorithm, we can embed an algorithm into
the distributed connectivity of an RNN (Fig. 6B).
One technique for this embedding is the neural engi-
neering framework (NEF) which enables the design
of iterations of the latent-space variables through
the engineering of low-rank connectivity matrices

[130, 131]. Extensions enable the programming of
iterations in pre-existing, higher-rank connectivity, and
the ability to reverse-engineer representations from
conventionally trained RNNs [42]. Other engineered
architectures such as the differentiable neural computer
[132] and the neural turing machine [133] emulate the
structure of conventional computers using differentiable
neural elements. Hence, RNNs have the capability
to explicitly run complex algorithms in their latent
spaces, which is crucial for generalizable computation;
rather than learning individual solutions, we posit that
training RNNs on solution sequences will enable them
to learn and generalize problem-solving strategies [134],
even into nonlinear, out-of-sample regimes [135].

While the above approaches may provide more gener-
alizable RNN solutions than task-specific training, the
added computational capabilities of engineered RNNs is
accompanied by a further deviation of the correspond-
ing connectivity from biology. Whether through the
enforcing of low-rank connectivity [130, 136] or the seg-
regation of memory and processing units in a neural von
Neumann architecture [132], engineered neural connec-
tivities lack many of the costs and constraints experi-
enced by biological networks. A critical question then
is how the brain formulates connectivities that permit
sophisticated latent space computations while adher-
ing to biological constraints. Prior work has demon-
strated the capability of largely disordered RNNs to
produce sequences that rely on recurrent connectivity
[137], and the importance of the sequence of learning
over many learning iterations—a curriculum—for RNN
performance [138]. Hence, rather than forming low-rank
structures ab initio, the brain defines its structure and
dynamics through learning and plasticity on long time
scales. We explore insights into the governing princi-
ples and computational advantages of this progression
in neurodevelopment.

C. Latent-space computational capability
throughout neurodevelopment

Just as the topology of an RNN is sculpted over
training epochs (Fig. 7A), the topology of the human
connectome is sculpted throughout development (Fig.
7B). However, unlike the RNN, which may be trained
in an unconstrained manner, neurodevelopment follows
a carefully orchestrated and stereotyped program that
unfolds dynamically across space and time. Specifi-
cally, cortical neurodevelopment is thought to spatially
track the aforementioned S-A axis in a temporally
staged manner [51, 139], and this staging is thought to
underpin the emergence of cortical regions’ functional
specialization and inter-connectivity. Crucially, the
asynchronous nature of this developmental program



11

is thought to underpin the sequential emergence of
increasingly complex cognitive functions [140, 141],
suggesting that neurodevelopment stages the brain’s
acquisition of lower- and higher-order computational
processes. Mechanistically, this program may be
underpinned by windows of heightened neural plastic-
ity that cascade up the S-A axis [139, 142] priming
specific neural circuits at specific points in time for
experience-dependent neural change.

Regions in the cortex are defined in part according
their laminar structure [143, 144], with different regions
exhibiting variations in the number and size of their
distinct layers, as well as different distributions of cells
throughout those layers. Critically, cortical variations
in cytoarchitecture conform to the S-A axis [145],
and animal research demonstrates that this spatial
patterning predicts regions’ extrinsic connectivity
[146], including their strength [147], distance [147],
and layer-wise projections [147, 148]. In humans,
structural connectivity between regions at the bottom
of the S-A axis refines relatively early in development,
while connectivity at the top of the S-A axis does
so later in development [71, 149–152]. Furthermore,
recent work has shown that cytoarchitecture plays
an important role in shaping how dynamics spread
across the connectome throughout development [69].
Thus, the spatial patterning embedded in the S-A
axis plays a key role in shaping connectome topology
throughout development. But what about RNNs?
Recent work by Achterberg et al. [153] regularized
RNNs by using the Euclidean distance between regions
to constrain training. The authors found that mod-
ularity [154] and small-worldness [155]—two complex
topological features that are hallmarks of the human
connectome [28]—emerged to a greater extent in
these spatially-embedded RNNs compared to standard
RNNs (see also recent work by Tanner et al. [156]
for evidence of modularity in RNNs trained without
spatial constraints). Additionally, this effect coincided
with achieving higher out-of-sample task performance
earlier in training compared to standard RNNs (though
performance eventually converged; see their Figure
2A).

The results of Achterberg et al. [153] demonstrate
that incorporating space-based inductive biases into
RNN training causes them to converge on topological
features observed in the human connectome. However,
it remains unclear whether neurodevelopmentally-
informed spatial constraints, like those embedded in
the S-A axis [51], show similar effects. We posit that
constraining RNNs using the S-A axis may outper-
form Euclidean distance-based spatial embedding,
as the former is rooted in evolutionary programs of
connectivity formation and functional specialization

[53]. Additionally, the spatial constraints deployed by
Achterberg et al. [153] were static throughout training.
As mentioned above, the S-A axis scaffolds connectome
development in a temporally varying way [139], and
incorporating this dynamic information will be critical
to achieving realistic brain-like topology in RNNs. One
approach would be to code spatially varying periods
of heightened learning into RNNs, simulating traveling
waves of heightened neural plasticity [139, 142]. Such
an inductive bias could be achieved by including tem-
poral cascades of weight training that flow bottom-up
across the S-A axis.

In addition to injecting spatially constrained induc-
tive biases into RNNs, we can also directly assess the
ability of the developing connectome to support latent-
space computation. This analysis can be achieved
through studying the synchronization between a given
RNN and a particular latent attractor. Historically,
synchronization has been shown to be crucial for
computation in both biological cortical networks [157]
and artifical RNNs [158], and is deeply related to
consensus dynamics [159]. Intuitively, synchronization
between two systems implies that both systems are
evolving identically. This concept can be extended to
generalized synchronization, which stipulates conditions
under which a response system, rt, has synchronized
in a general sense to a driving system, dt [160], such
that rather than evolving identically such that rt = dt

[161], the joint system has collapsed onto a function ϕ
of only the driver system such that rt = ϕ(dt). Under
these conditions, the response system has followed
the attractor structure of the driving system. If we
choose the response system to be an RNN with an
empirically-derived connectivity taken at a specific
point in neurodevelopment, and the driver system to be
a specific latent attractor dynamical system, then we
can assess whether the RNN can follow the attractor
structure of the driving system (Fig. 7C).

Of course, just because the RNN can synchronize to
a particular latent-space attractor does not guarantee
that it can maintain that attractor once the driving sys-
tem is gone. In order for the RNN to internalize the at-
tractor dynamics, theories of invertible generalized syn-
chronization (IGS) stipulate conditions for which the
attractor of the driver system can be invertibly repro-
duced and stabilized by the response system, and thus
can be learned autonomously [162]. Hence, rather than
modifying RNN connectivity to learn a latent space
conditioned on spatial and resource constraints, IGS
tests whether a given RNN connectivity that already
obeys those spatial and resource constraints can stably
generate a latent attractor (Fig. 7D). The IGS theory
also indicates that the ability to internalize latent at-
tractors from driving systems depends not only on the
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Figure 7. Computational capabilities of RNNs and biological brains throughout development. RNNs and brains
are subject to different environments. A, RNNs comprise abstract nodes and edges, and their training is unconstrained.
This allows RNNs to evolve toward any network architecture that optimally performs a given task. B, By contrast, brains
comprise physically embedded nodes and edges, and the formations of their network architecture is tightly constrained
by space and time. C, The extent to which pre-existing connectivities can follow latent representations can be captured
through generalized synchronization, which measures how well an RNN that is driven by an attracting manifold (in this case,
the chaotic Lorenz attractor) can reconstruct the driving signal from its states. D, The ability of pre-existing connectivities
to internalize and generate latent representations is captured through invertible generalized synchronization, whereby an
RNN that has learned output weights W that copy the attractor manifold can then drive itself by feeding those outputs
back as inputs to autonomously generate the attractor without any input.

RNN’s structure, but also the latent attractor. Thus,
given RNNs of different structures throughout devel-
opment, we may examine the IGS on their most-likely
encountered driving signals corresponding to their po-
sition along the S-A axis.

V. CONCLUSIONS

Neural systems compute using dynamics, and
the dynamics of biological brains evolve atop the
computational substrate of a spatially and resource
constrained network. Here, we sought to jointly discuss
advances in neuroscience and dynamical systems with
a view to improving the computational power and
interpretability of RNNs. Within the context of two
computational capabilities—expressivity and latent-
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space computing—we highlighted several avenues
for future research that we believe will advance our
understanding of dynamical computation. Through
these avenues, we envision biologically interpretable,
computationally improved RNN models of how the
brain computes.

Central to this research program is the application of
biophysical constraints on the computational dynamics
of RNNs. While not exhaustive, the constraints
discussed herein represent the diverse influences of
neurobiology on network structure, and they have
been shown to influence the emergence of complex
behavior in humans. Furthermore, the influence of
these constraints on RNN connectivity can studied in
combination. For example, the spatial-patterning of
regions’ baseline E/I ratio emerges throughout develop-
ment [139], indicating it’s connection to the S-A axis.
Another example is to explore how to extend low-rank
RNN design approaches to higher-rank connectivities
that more closely match the spatial gradients of the
S-A axis. Thus, these biophysical constraints provide
fertile ground for future experimental, computational,
and theoretical work into biologically-informed RNNs.

The methodological strategies for incorporating these
constraints into computational RNN modeling are vast.
Here, we have discussed several approaches: using
known cortical structure and function as target connec-
tivities of additional training constraints [51, 153], using
resource constraints as an alternative learning mecha-

nism [32], dynamically altering connectivity with neu-
romodulation for increased expressivity [86], stabiliz-
ing latent attractors through pruning [116], engineering
and modifying low-rank latent representations and al-
gorithms [42, 130], probing the teachability of RNNs
via synchronization [162], among many others. Hence,
there is no one prescription that serves as a panacea for
the rich problems that lie at the intersection of compu-
tation, dynamics, and neurobiology. Instead, we must
continue developing diverse and creative approaches for
maximizing the computational capabilities of neurody-
namical models through the use of biological and devel-
opmental constraints.
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