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Many risk factors/interventions in epidemiologic/biomedical studies are of minuscule effects. To detect
such weak associations, one needs a study with a very large sample size (the number of subjects, n). The n of a
study can be increased but unfortunately only to an extent. Here, we propose a novel method which hinges
on increasing sample size in a different direction–the total number of variables (p). We construct a p-based
‘multiple perturbation test’, and conduct power calculations and computer simulations to show that it can
achieve a very high power to detect weak associations when p can be made very large. As a demonstration, we
apply the method to analyze a genome-wide association study on age-related macular degeneration and
identify two novel genetic variants that are significantly associated with the disease. The p-based method
may set a stage for a new paradigm of statistical tests.

M
any risk factors/interventions in epidemiologic/biomedical studies are of minuscule effects1. For
example, television viewing was found to increase the risks of type 2 diabetes, cardiovascular disease
and all-cause mortality, but the effects in terms of relative risks are small: 1.20, 1.15 and 1.132, respect-

ively; regular supplement of vitamin C was associated with a shortening of the duration of common colds, but
with a relative risk (0.92) very near unity3. Moving into this ‘–omics’ era, for the first time researchers are
becoming able to probe into study subjects’ genome, transcriptome, and metabolome, etc, to search for possible
disease associations. However, the associations found so far were still very weak; for example the great majority of
the odds ratios of genetic polymorphisms in genome-wide association studies were less than 1.54,5.

To detect weak associations, a very large sample size is needed. For example, in genome-wide association
studies, the sample sizes have steeply increased from a few hundreds in the first study of age-related macular
degeneration6 to tens of thousands in recent meta-analyses7,8. Also, the consortium-based studies are becoming
increasingly indispensible as the single-institution studies often cannot meet the tough sample-size requirements.
For example, the Wellcome Trust Case-Control Consortium9, the United Kingdom Biobank10 and China
Kadoorie Biobank11 have recruited study subjects in the order of hundreds of thousands. But how big is big
enough for sample size? A simulation study suggested that in some scenarios the sample size needed can easily go
up to the millions!12 Certainly, there is a limit for the total number of subjects any research institution, any meta-
analysis and any consortium can possibly assemble.

Traditionally, sample sizes are measured in terms of the total number of study subjects (n). In this study, we
propose a novel ‘p-based’ method which hinges on increasing sample size in a different direction–the total
number of variables (p).We construct a p-based ‘multiple perturbation test’, and conduct theoretical power
calculations and computer simulations to show that it can achieve a very high power to detect a weak association
when p can be made very large, say, to the thousands, millions or even more. We will also apply the new method to
re-analyze a published genome-wide association study.

Results
Sharp null. Assume that we are interested in the association between a binary factor, X (X 5 1: exposed; X 5 0:
unexposed) and a disease, D (D 5 1: diseased; D 5 0: non-diseased). Consider also a binary auxiliary variable, Z (Z
5 1 or 0), which is not of direct interest to us, but may help discern the possible association between X and D. Our
method is based on testing whether the disease risk varies with X in any segment of the population demarcated by
Z, i.e., testing the ‘sharp null’,
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Hsharp
0 : Pr (DjX,Z)~ Pr (DjZ) ð1Þ

for both Z 5 1 and Z 5 0, against the alternative,

Hsharp
1 : Pr (DjX,Z)= Pr (DjZ) ð2Þ

for either Z 5 1 or Z 5 0.
In a case-control study conducted in the study population, the

Online Methods section shows that testing the sharp null amounts
to testing the equality of odds ratios of X and Z, between the case
group (ORcase

XZ ) and the control group (ORcontrol
XZ ), or equivalently,

testing whether there is an ‘interaction’ between X and Z with regard
to the risk of D on a multiplicative scale:

ORcase
XZ

�
ORcontrol

XZ ~1: ð3Þ

The following test statistic is proposed (see Supplementary Table S1
for the cell counts):

x2
sharp~

log cORcase
XZ { log cORcontrol

XZ

� �2

Var log cORcase
XZ

� �
zVar log cORcontrol

XZ

� �

~

log
ncase

1,1 |ncase
0,0

ncase
1,0 |ncase

0,1
{ log

ncontrol
1,1 |ncontrol

0,0

ncontrol
1,0 |ncontrol

0,1

� �2

P
j,k[f0,1g

1
ncase

j,k
z

P
j,k[f0,1g

1
ncontrol

j,k

,

ð4Þ

where j and k indicate the statuses of X and Z, respectively, and ncase
j,k

and ncontrol
j,k denote the numbers of case and control subjects with (X

5 j, Z 5 k), respectively. x2
sharp is distributed asymptotically as a df 5

1 chi-squared distribution under the sharp null.

Essentially, x2
sharp is testing whether the observed cORcase

XZ andcORcontrol
XZ are being ‘perturbed’ too much away from ORpopulation

XZ
(the population odds ratio of X and Z, and the expected value for
both cORcase

XZ and cORcontrol
XZ under the sharp null) than chance alone

would dictate. We therefore refer to it as a ‘perturbation test’.

Multiple perturbation test. One single auxiliary variable may not
perturb the above odds ratios very much. But if one has a whole panel
of auxiliary variables (the Zi and the corresponding x2

sharp,i, for i 5 1,
2, …, p), one can construct a very powerful multiple perturbation test
(MPT), by summing up the perturbations from the many auxiliary
variables (Zs) in the panel:

MPT~
Xp

i~1

x2
sharp,i: ð5Þ

MPT as such is a p-based test. Its power to detect a non-null X should
increase as more Zs are included in the panel (as p increases). On the
other hand, a truly innocent X should be able to stand the test from
multiple Zs, even if p goes to infinity.

Figure 1 compares the theoretical powers of MPT and x2
crude (the

conventional n-based test for the ‘crude null’). For x2
crude, we need a

very large study (n 5 ,15,000) to attain an adequate power of 80%.
On the other hand, the power of MPT increases with p, surpasses that
of x2

crude, and then can reach ,100% if p is sufficiently large.
Supplementary Figure S1 shows that to make up for the power loss
in using dependent Zs, one can simply include more Zs in the panel.
Supplementary Table S2 shows that MPT can maintain accurate type
I error rates for all scenarios considered.

The proposed MPT is applied to a public-domain data from a
genome-wide association study of age-related macular degenera-
tion6. Based on the data of chromosome 1 [a total 6639 single nuc-
leotide polymorphisms (SNPs); p (the number of auxiliary variables)
5 6638 for each SNP], the method detects two significant SNPs at
false discovery rate (FDR)13 of 0.05: rs2618034 (q-value 5 0.026) and
rs2014029 (q-value 5 0.045) (Table 1). These two SNPs clearly stand
out in the Manhattan plot (Supplementary Fig. S2). We deliberately
reduce the number of auxiliary variables (p 5 3000, randomly
selected from 6639 SNPs). The two SNPs remain at the top, though
not reaching significance (Supplementary Fig. S3). On the other
hand, we expand the number of auxiliary variables (p . 6638, ran-
domly selected from chromosome 2 to chromosome 22). The two
SNPs are still significant (Supplementary Table S3).

Figure 1 | Powers of MPT for the sharp null (solid lines, theoretical power assuming independent auxiliary variables with perturbation proportion of,
from left to right respectively, p 5 1.0, 0.2, 0.1 and 0.05) and the conventional test for the crude null (dashed line), under different number of
subjects (a: n 5 500, b: n 5 1,000, c: n 5 5,000) and number of auxiliary variables. The power of the n-based x2

crude increases with n. The power gain is
only 30%, from 8% (n 5 500, a) to 38% (n 5 5,000, c). The power of the p-based MPT increases with p in all scenarios that we considered and surpasses
the power of x2

crude when p < 3,000 for p 5 1, p < 60,000 for p 5 0.2, p < 250,000 for p 5 0.1 and p < 1,000,000 for p 5 0.05. Under p 5 1, the power of
MPT can reach nearly 100% when p is sufficiently large (p . ,1,000,000 when n 5 500; p . ,100,000 when n 5 1,000; p . ,10,000 when n 5 5,000).
Under p , 1, ,100% power is also possible if p can be made even larger.
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Figure 2 shows the fixation and drifting of P-values of the MPT.
Although the 3rd top SNP (rs437749) is not significant by our FDR
standard (Table 1), it is already displaying a fixation pattern in our
fixation/drifting analysis (Fig. 2c). This suggests that if we can incorp-
orate more perturbation SNPs into the MPT, SNP rs437749 may
become significant. We deliberately remove the respective five largest
x2

sharp,i’s in the MPTs for the two significant SNPs. Even so, a clear
fixation pattern can still be seen for both (Supplementary Fig. S4).

We also test run the proposed MPT on chromosome 19 (see
Supplementary Note). Again, MPT proves to be very powerful.
With FDR controlled at 0.05, it detects two significant SNPs
(rs862703 and rs302437) (Supplementary Table S4) which also show
fixations of P-values (Supplementary Fig. S5) and significantly stand
out in the Manhattan plot (Supplementary Fig. S6).

Discussion
While confronted with high-throughput data, researchers often turn
to dimension reduction methods to ease the severe penalty associated
with testing myriads of variables14–18. For our p-based method,
dimensionality is not a curse but in fact is a blessing. We see that

the power of the MPT actually increases as the number of auxiliary
variables increases. Such ‘the-more-the-better’ principle also applies,
when one is knowledgeable about which variables may be perturb-
ative. In Figure 3, since the initial power is only 0.59, should research-
ers add more variables into the test? We see as expected that adding
more variables unselectively into the test will only dilute the power.
However, upon more and more of low-informativity variables being
added, the power can rise up again and then surpasses the original
power.

However, the p-based approach only goes so far as when the
auxiliary variables have a non-zero informativeness (I . 0, irrespec-
tively of how small it may be). A computer can easily generate mil-
lions and billions of random variables for us, but all these artificial
data amount to nothing (I 5 0, exactly). The more such variables
being added, the more the power will be curtailed. Another caveat is
that there is no use replicate the data at hand just to make the total
number of auxiliary variables appear larger; the power simply won’t
budge with this maneuver.

Age-related macular degeneration is a progressive disease in
macula of the retina in which the pigment epithelium cells and the
photoreceptor cells degenerate, causing gradual loss of central

Table 1 | Top five SNPs on chromosome 1with smallest P-values by MPT for age-related macular degeneration data. The P-value for each
SNP is obtained from 500,000 rounds of permutation. To adjust for multiple testing, FDR is controlled at 0.05 and the q-values are calculated
(QVALUE software)13

Rank RefSNP (rs) number Minor allele frequency (%) P-value of MPT q-value Odds ratio P-value of Pearson chi-square test

1 rs2618034 7.19 4.00 3 1026 0.026 0.53 0.201
2 rs2014029 5.82 1.40 3 1025 0.045 2.10 0.166
3 rs437749 43.15 2.66 3 1024 0.357 0.94 0.865
4 rs3753298 5.82 2.74 3 1024 0.357 1.84 0.241
5 rs1749409 8.97 4.28 3 1024 0.357 0.51 0.147

Figure 2 | Fixation ((a–c), respectively for the 1st to the 3rd top SNPs on chromosome 1) and drifting ((d–f), for three purposefully chosen middle-to-
bottom ranking SNPs on chromosome 1) of the P-values of MPT when only a certain number of perturbation SNPs are randomly incorporated for the
age-related macular degeneration data. Each panel includes three lines (solid, dashed and dotted) representing three random incorporation sequences.
Each P-value is obtained from 1,000,000 rounds of permutation. The P-values initially fluctuate a lot, when the number of perturbation SNPs

incorporated is small. But beyond a certain point, the P-values become ‘fixed’ exactly to the abscissa (P-values 5 0) (a and b), or almost so (P-values < 0)

(c). By comparison, the P-values of all three purposefully chosen middle-to-bottom ranking SNPs are ‘drifting’ all the way without showing any sign of a

fixation (d–f).
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vision19,20. With FDR controlled at 0.05, in this study we are able to
identify two novel SNPs on chromosome 1 that are significantly
associated with the disease. The first SNP (rs2618034) is located in
the intron region of KCND3 gene (potassium voltage-gated channel,
Shal-related subfamily, member 3) on chromosome 1p13.2, and the
second (rs2014029), the intron region of DTL gene (denticleless E3
ubiquitin protein ligase homolog (Drosophila)) on 1q32.3. KCND3
gene encodes Kv4.3 regulating neuronal excitability21. Mutations in
KCND3 gene have been identified as a cause for cerebellar neurode-
generation22,23. In this regard, it is worthy to note that the retina
photoreceptor cells are a specialized type of neurons which may also
degenerate with aging. Meanwhile, DTL gene regulates p53 polyubi-
quitination and protein stability24 and the evidence to date suggests
that p53 is a key regulator involved in the apotosis of retinal pigment
epithelium cells25. All these findings further support that KCND3 and
DTL genes may be causally related to the development of age-related
macular degeneration. [As regards the two significant SNPs found on
chromosome 19, their associations with age-related macular degen-
eration are also biologically plausible (see Supplementary Note)].

The multiple perturbation test indeed is a very powerful test. The
two significant SNPs on chromosome 1 (rs2618034 and rs2014029)
that we identified in this study are only very weakly associated with
age-related macular degeneration (marginal association odds ratios 5

0.53 and 2.10, respectively), and the traditional n-based method
(Pearson chi-square test) comes nowhere near detecting them (P-
values 5 0.201 and 0.166, respectively) (Table 1). Even if we increase
the total number of subjects from the present n 5 146 (Klein et al.’s
data6) to n < 25,000 and n < 77,000 (Holliday et al.’s7 and Fritsche
et al.’s8 meta-analyses data), the n-based method still cannot detect
them. But this is not to say that the n-based method is useless. In fact,
Klein et al.6 themselves presented one SNP (rs380390) with an n-
based P-value of 4.1 3 1028 (significance after Bonferroni correction),
but it is undetectable with our method. The p-based MPT is good at
detecting interactive associations, i.e., associations that are prone to be
perturbed by other factors, regardless of how weak the perturbations/
interactions may be, whereas the n-based traditional test is good at
detecting marginal associations. It is important that the two different
approaches can work side by side, complementing each other.

The proposed method should have broad applications to other
high-dimension (large p) -omics studies, such as epigenomic,

transcriptomic, proteomic, metabolomic, and exposomic studies,
etc. It would be even better to have a cross-omics study, and/or with
all its study subjects further linked to existing government or private-
sector databases, such as, data of health insurances, traffic violations,
internet usages, etc. A researcher conducting such a data-mining
study has the potentials to push the p (the number of auxiliary/
perturbation variables) to the millions, billions or even trillions,
and be rewarded with a very high power for detecting a weak asso-
ciation. Such a p-based method may set a stage for a new paradigm of
statistical tests.

Methods
Crude null and sharp null in a case-control study. Let R 5 1 indicate a subject is
recruited in a study, R 5 0, otherwise. In a case-control study, the recruitment process
depends only on the disease status of a subject, that is,

Pr (R~1 Z,X,Dj )~ Pr (R~1 X,Dj )~ Pr (R~1 Dj ): ð6Þ

Under the crude null of

Pr (D Xj )~ Pr (D), ð7Þ

we have

Pr (X D,R~1j )~
Pr (X,D,R~1)

Pr (D,R~1)

~
Pr (X)| Pr (D Xj )| Pr (R~1 X,Dj )

Pr (D)| Pr (R~1 Dj )

~
Pr (X)| Pr (D)| Pr (R~1 Dj )

Pr (D)| Pr (R~1 Dj )

~ Pr (X),

ð8Þ

and therefore,

Oddscase
X ~

Pr (X~1 D~1,R~1j )

Pr (X~0 D~1,R~1j )

~
Pr (X~1)

Pr (X~0)

~Oddspopulation
X

~
Pr (X~1 D~0,R~1j )

Pr (X~0 D~0,R~1j )

~Oddscontrol
X :

ð9Þ

Figure 3 | Power curve when a researcher includes the 100 informative variables (I 5 0.02) known to him/her and then other low-informativity
variables (dotted lines from left to right, for I 5 0.001, 0.00025 and 0.0001, respectively) unselectively into MPT.
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Under the sharp null of

Pr (D Z,X)~ Pr (D Z)jj , ð10Þ

we have

Pr (Z X,D,R~1j )~
Pr (X,Z,D,R~1)

Pr (X,D,R~1)

~
Pr (X)| Pr (Z Xj )| Pr (D Z,Xj )| Pr (R~1 Z,X,Dj )

Pr (X)| Pr (D Xj )| Pr (R~1 X,Dj )

~
Pr (X)| Pr (Z Xj )| Pr (D Zj )| Pr (R~1 Dj )

Pr (X)| Pr (D Xj )| Pr (R~1 Dj )

~
Pr (Z Xj )| Pr (D Zj )

Pr (D Xj )
,

ð11Þ

and therefore,

ORcase
XZ ~

Pr (Z~1 X~1,D~1,R~1j )=Pr (Z~0 X~1,D~1,R~1j )

Pr (Z~1 X~0,D~1,R~1j )=Pr (Z~0 X~0,D~1,R~1j )

~

Pr (Z~1 X~1j )| Pr (D~1 Zj ~1)
Pr (D~1 X~1j )

h i.
Pr (Z~0 X~1j )| Pr (D~1 Zj ~0)

Pr (D~1 X~1j )

h i
Pr (Z~1 X~0j )| Pr (D~1 Zj ~1)

Pr (D~1 X~0j )

h i.
Pr (Z~0 X~0j )| Pr (D~1 Zj ~0)

Pr (D~1 X~0j )

h i
~

Pr (Z~1 X~1j )=Pr (Z~0 X~1j )

Pr (Z~1 X~0j )=Pr (Z~0 X~0j )

~ORpopulation
XZ

~

Pr (Z~1 X~1j )| Pr (D~0 Zj ~1)
Pr (D~0 X~1j )

h i.
Pr (Z~0 X~1j )| Pr (D~0 Zj ~0)

Pr (D~0 X~1j )

h i
Pr (Z~1 X~0j )| Pr (D~0 Zj ~1)

Pr (D~0 X~0j )

h i.
Pr (Z~0 X~0j )| Pr (D~0 Zj ~0)

Pr (D~0 X~0j )

h i
~

Pr (Z~1 X~1,D~0,R~1j )=Pr (Z~0 X~1,D~0,R~1j )

Pr (Z~1 X~0,D~0,R~1j )=Pr (Z~0 X~0,D~0,R~1j )

~ORcontrol
XZ :

ð12Þ

Testing crude null: n-based test. In a case-control study conducted in the study
population, testing the crude null amounts to testing the equality of prevalence odds
of X, between the case group (Oddscase

X ) and the control group (Oddscontrol
X ), or

equivalently, testing whether the odds ratio of X and D equals one:

ORcase�control
XD ~Oddscase

X

�
Oddscontrol

X ~1: ð13Þ

Supplementary Table S1 presents the cell counts of a case-control study (ignore the
variable, Z, for now). One may use the following test statistic:

x2
crude~

log dOddscase
X { log dOddscontrol

X

� �2

Var log dOddscase
X

� �
zVar log dOddscontrol

X

� �

~

log
ncase

1,z

ncase
0,z

{ log
ncontrol

1,z

ncontrol
0,z

� �2

P
j[f0,1g

1
ncase

j,z
z

P
j[f0,1g

1
ncontrol

j,z

:

ð14Þ

x2
crude is distributed asymptotically as a chi-squared distribution with one degree of

freedom (df) under the crude null.

Power comparison. The power of the traditional n-based x2
crude is:

Power of x2
crude< Pr x2

df~1(l)wx2
df~1,1{a

h i
, ð15Þ

where x2
df~1(l) is a df 5 1 noncentral chi-squared distribution with noncentrality

parameter,

l~
log Oddscase

X { log Oddscontrol
X

� �2P
j[ 0,1f g

1

E ncase
j,z

� �z P
j[ 0,1f g

1

E ncontrol
j,z

� � : ð16Þ

Note that the power of x2
crude is determined by the significance level: a, the sample size:

n (or more exactly the expected cell counts), and the effect size:

log Oddscase
X { log Oddscontrol

X : ð17Þ

Assuming that a panel of independent auxiliary variables contains a certain
proportion, p (0 # p # 1), of perturbative Zs such that log ORcase

XZ

�
ORcontrol

XZ

� �
follows

a normal distribution with a mean of zero and a variance of s2 . 0 the theoretical

power of the p-based MPT based on such panel is:

Power of MPT< Pr x2
df~pw

x2
df~p,1{a

1zh2

 !
, ð18Þ

where

h2~
p|s2P

j,k[f0,1g

1

E ncase
j,k

� �z
P

j,k[f0,1g

1

E ncontrol
j,k

� � : ð19Þ

Note that in addition to a and n, the power of MPT is also determined by the total
number of auxiliary variables: p, and the ‘informativeness’ of the auxiliary variables:

I~p|s2 ð20Þ

(the product of perturbation proportion and perturbation strength).
We consider an X that is very weakly associated with D:

ORcase�control
XD ~Oddscase

X

�
Oddscontrol

X ~1:1: ð21Þ

We also consider a panel of independent Zs. The logarithm of ORpopulation
XZ follows a

normal distribution with a mean of zero and a variance of 0.5 (a probability of 95%

that an ORpopulation
XZ is between 0.25 , 4.00). We consider four different values for the

perturbation proportion (p 5 1.0, 0.2, 0.1 and 0.05, respectively), with each per-
turbative Z having a weak perturbation effect (s2 5 0.001, i.e., a probability of 95%
that the ratio, ORcase

XZ

�
ORcontrol

XZ , is between 0.94 , 1.06). The informativeness of Zs is
therefore 0.001, 0.0002, 0.0001 and 0.00005, respectively. For convenience, the pre-
valence of X and each and every one of Zs is set at 40% for the control group. The
significance level is set at a 5 0.05.

Calculation of p-value using permutation. If the Zs in the panel are independent of
one another, MPT is asymptotically a df 5 p chi-squared distribution under the sharp
null. The critical value of MPT therefore is simply x2

df~p,1{a when the level of
significance is set at a. In actual practice however, Zs may not be independent of one
another and sample size may be too small for an adequate chi-square approximation.
Therefore, we need to rely on computer-intensive methods to simulate the null
sampling distribution of MPT. With p 5 1, Buzkova et al. pointed out that the method
of parametric bootstrap is valid but the method of permutation (shuffling disease
status between subjects) is conservative (overestimating the critical value)26. However,
we found that as p increases, the permutation method remains slightly conservative
but the parametric method becomes too liberal (underestimating the critical value).
To err on the safe side, we therefore propose to use the permutation method to
approximate the null sampling distribution of MPT.

Monte-Carlo simulation. We perform Monte-Carlo simulation to study the
statistical properties of MPT empirically. The parameter setting is the same as the
previous section. The sample size is set at n 5 1,000. But to avoid the heavy
computation burdens of simulating a very large panel of Zs, this time we let Zs have a
perturbation proportion of 1.0 and a larger perturbation strength (s2 5 0.004, a
probability of 95% that ORcase

XZ

�
ORcontrol

XZ is between 0.88 , 1.13). Additionally, we
also consider dependent Zs. Specifically, we simulate Zs using a first-order Markov
chain, in both the case and the control groups, assuming an odds ratio between
successive Zs of 2.0 (mild dependency) and 5.0 (strong dependency), respectively. We
perform a total of 1,000 simulations. In each round of the simulation, we conduct
1,000 permutations to obtain an empirical P-value for MPT. The power of MPT is
then calculated as the proportion of the simulations with a P-value , 0.05.

The type I error rates of MPT for panels of independent and dependent Zs (odds
ratio between successive Zs 5 5.0) are also empirically checked using Monte-Carlo
simulations, for different number of subjects (n 5 500, 1,000, 5,000) and number of
auxiliary variables (p 5 100, 1,000, 5,000). (Both n and p are assumed to be fixed by
design.) Here X is a sharp null, that is, X has no effect on disease in any level stratified
by Zs (no perturbation effect for all Zs: I 5 p 3 s2 5 0). Other parameters are the
same as in power simulations. We perform a total of 1,000 simulations, each round
with 1,000 permutations.

Application to real data. MPT is applied to a public-domain data from a genome-
wide association study of age-related macular degeneration6. The study recruited 146
individuals (96 cases and 50 controls) and genotyped 116,212 single nucleotide
polymorphisms (SNPs). A total of 6,639 SNPs located on chromosome 1 (where
previous studies27,28 have identified a number of significant susceptibility genes) with
call rate . 95%, minor allele frequency . 5% and in Hardy-Weinberg equilibrium in
the control group is included in the analysis. At each SNP, heterozygote and variant
homozygote are grouped together.

In the analysis, each SNP takes turn to be the X, and the remaining SNPs, the Zs.
(The number of auxiliary variables is p 5 6638, for each and every one of the total
6639 SNPs. This number is set prior to the MPT analysis to avoid complicating the
multiple testing problem.) For a low-frequency SNP, some of the cells in
Supplementary Table S1 may be empty. In that case, it is totally uninformative as a
perturbation variable, because its x2

sharp statistic is zero with the convention: 0 3 log0
5 0. The P-value of the MPT for each SNP is obtained from 500,000 rounds of
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permutation. Because we repeatedly test each and every one of the 6639 SNPs for
significance, for multiple testing correction the false discovery rate (FDR) is con-
trolled at 0.05 using the q-values (QVALUE software)13. (Because of the dependence
between SNPs, the q-value approach actually controls the FDR to be less than the
nominal 0.0513,29,30.) Note that our fixation/drifting analysis does not create a multiple
testing problem by itself, because the procedure was done only after the significance of
a SNP had been determined.
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