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Abstract

The DNA excision repair protein Ercc1 is important for nucleotide excision, double

strand DNA break, and interstrand DNA crosslink repair. In constitutive Ercc1-

knockout mice, microglia display increased phagocytosis, proliferation and an

enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflamma-

tion. However, the intrinsic effects of Ercc1-deficiency on microglia are unclear. In

this study, Ercc1 was specifically deleted from Cx3cr1-expressing cells and changes

in microglia morphology and immune responses at different times after deletion were

determined. Microglia numbers were reduced with approximately 50% at

2–12 months after Ercc1 deletion. Larger and more ramified microglia were observed

following Ercc1 deletion both in vivo and in organotypic hippocampal slice cultures.

Ercc1-deficient microglia were progressively lost, and during this period, microglia

proliferation was transiently increased. Ercc1-deficient microglia were gradually rep-

laced by nondeficient microglia carrying a functional Ercc1 allele. In contrast to con-

stitutive Ercc1-deficient mice, microglia-specific deletion of Ercc1 did not induce

microglia activation or increase their responsiveness to a systemic LPS challenge.

Gene expression analysis suggested that Ercc1 deletion in microglia induced a tran-

sient aging signature, which was different from a priming or disease-associated

microglia gene expression profile.
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1 | INTRODUCTION

Organisms have developed intricate mechanisms to repair different

forms of DNA damage, for example, base excision repair (BER),

nucleotide excision repair (NER), mismatch repair (MMR), inter-

strand crosslink repair (ICR), and double-strand break repair (DBR).

Repair of DNA damage is important as persistent damage induces

cell senescence or cell death (Rodier et al., 2009). Deficiencies in
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DNA repair pathways lead to various progeria syndromes both in

human and mouse (Schumacher, Garinis, & Hoeijmakers, 2008). In

many progeria syndromes, neurologic defects occur, which high-

lights the vital role of genome stability maintenance for the central

nervous system (CNS; Heng, Eggen, Boddeke, & Kooistra, 2017;

McKinnon, 2013).

Excision repair cross-complementation group 1 (ERCC1) in

complex with XPF is an essential nuclease in the NER, ICR and

DBR pathways (Ahmad et al., 2008; Klein Douwel et al., 2014; Li

et al., 2019). Besides their role in DNA damage repair, nucleotide

excision repair factors like ERCC1 and XPF are recruited to active

promoters to facilitate transcription (Le May et al., 2010). Muta-

tions in ERCC1 and XPF cause cerebro-oculo-facioskeletal (COFS)

syndrome, Cockayne syndrome (CS), and xeroderma pigmentosum

(XP) in humans (Gregg, Robinson, & Niedernhofer, 2011; Kashiyama

et al., 2013). Mice carrying a knockout (ko) and a hypomorphic (Δ)

allele for Ercc1 (Ercc1Δ/ko) display a range of progeroid changes,

including reduced lifespan, loss of the body weight, and various

aging-related pathological changes in peripheral organs (Dolle

et al., 2011). In addition, constitutive Ercc1-knockout (Ercc1Δ/ko)

mice display premature CNS aging, such as motor abnormalities

and cognitive decline, widespread astrogliosis, microgliosis and neu-

ronal degeneration in the brain, and progressive motor neuron loss

in the spinal cord (Borgesius et al., 2011; de Waard et al., 2010;

Vegh et al., 2012). Microglia in Ercc1Δ/ko mice exhibit a hypertro-

phic morphology with thickened primary processes and an increase

in soma size (Raj et al., 2014). Functionally, microglia in Ercc1Δ/ko

mice show increased phagocytosis, proliferation and reactive oxy-

gen species (ROS) production. Notably, microglia in Ercc1Δ/ko mice

are primed (Cunningham, 2013), indicated by an enhanced

proinflammatory response to a systemic peripheral inflammatory

challenge (intraperitoneal lipopolysaccharide [LPS] injection; Raj

et al., 2014). Specific deletion of Ercc1 in forebrain neurons

(Camk2wt/cre:Ercc1ko/loxP) showed that neuronal genotoxic stress was

sufficient to induce microglia priming (Raj et al., 2014).

We previously reported that a microglia priming gene expres-

sion signature is shared between Ercc1Δ/ko mice, Alzheimer's dis-

ease (AD), and amyotrophic lateral sclerosis (ALS) mouse models

and naturally aged mice (Holtman et al., 2015). This profile is char-

acterized by the upregulation of genes associated with immune,

phagosome, and antigen presentation pathways and the down-

regulation of homeostatic microglia genes (Holtman et al., 2015).

Similarly, microglia in CNS disease mouse models exhibit increased

phagocytic and immune activity and are referred to as disease-

associated microglia (DAM) or microglia in neurodegenerative dis-

ease (MGnD; Butovsky & Weiner, 2018; Keren-Shaul et al., 2017;

Krasemann et al., 2017; Mathys et al., 2017). Where constitutive

Ercc1 deletion induces microglia priming, the effect of microglia-

specific Ercc1-deficiency is unclear. In this study, the Ercc1 gene

was deleted from microglia and the effect on microglia density,

morphology, survival, proliferation, and responsiveness to LPS-

induced inflammation were determined.

2 | MATERIALS AND METHODS

2.1 | Animals

Cx3cr1wt/creERT2 (JAX stock #021160), Ercc1wt/ko and Ercc1loxP/loxP

mouse lines were crossed to obtain the experimental lines Cx3cr1wt/

creERT2:Ercc1ko/loxP and Cx3cr1wt/creERT2:Ercc1wt/loxP (Figure S1a). In

brief, Cx3cr1wt/creERT2:Ercc1wt/ko mice were generated by crossing

Ercc1wt/ko and Cx3cr1wt/creERT2 mice (both in a C57BL/6 background).

Cx3cr1creERT2/creERT2:Ercc1wt/ko were crossed with Ercc1loxP/loxP mice

(FVB background), resulting in Cx3cr1wt/creERT2:Ercc1ko/loxP and

Cx3cr1wt/creERT2:Ercc1wt/loxP mice (Figure S1a, hereafter referred to as

Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP mice). The mice were

group-housed with 2–4 same-sex littermates per cage under 12-hour

light/dark cycle conditions and ad libitum access to food and water.

All experiments were performed in the Central Animal Facility (CDP)

of the UMCG, with protocol (15360-03-002) approved by the Animal

Care and Use Committee of the University of Groningen.

2.2 | Genotyping

Genomic DNA was isolated from ear cuts for genotyping with MyTaq

Extract-PCR Kit (Bioline, BIO-21127). Primer information is provided

in Table S1. Cx3cr1-cre was genotyped by PCR with cre primers

(Table S1). Schematic representation of Ercc1wt, Ercc1ko, Ercc1loxP, and

recombined Ercc1rec alleles are depicted in Figure S1b. The Ercc1ko

allele consisted of a neo cassette insertion interrupting Exon

7, aborting the essential carboxy-terminal 74 amino acids of Ercc1

(Weeda et al., 1997). In the Ercc1loxP allele, Exons 3–5 are flanked by

loxP sites (Doig et al., 2006). After tamoxifen treatment, Exons 3–5 in

the Ercc1loxP allele will be deleted by homologous recombination,

resulting in a recombined Ercc1rec allele. In Ercc1wt/ko and

Cx3cr1-Ercc1wt/ko mouse line, genotyping of the Ercc1wt and Ercc1ko

was done by duplex PCR using wt and neo primer pairs (Table S1) as

described before (Ahmad et al., 2008). For Cx3cr1-Ercc1ko/loxP and

Cx3cr1-Ercc1wt/loxP mouse lines, a duplex PCR was performed to dis-

tinguish Ercc1wt, Ercc1ko, and Ercc1loxp alleles using loxp and neo primer

pairs (Table S1).

After tamoxifen treatment, the Ercc1loxP alleles in both

Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice microglia are recom-

bined (Ercc1rec) (Figure S1c). This recombination results in full Ercc1

deletion in Cx3cr1-Ercc1ko/loxP mice microglia, but only partial deletion

in Cx3cr1-Ercc1wt/loxP mice microglia, since one Ercc1wt allele is still

present (Figure S1c). To confirm the specific deletion of Ercc1 in

microglia, all mice were genotyped by genomic PCR on sorted

microglia (Figure S1d). Mice of 6–8 weeks of age received tamoxifen

to induce Ercc1 gene recombination. At certain time points post

tamoxifen treatment, microglia were FACS-sorted and DNA was iso-

lated from these microglia for genotyping. A duplex PCR was per-

formed to distinguish Ercc1wt, Ercc1ko, and Ercc1loxP allele using loxp

and neo primer pairs (Table S1), and Ercc1rec was genotyped using rec
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primer pair (Table S1). The Ercc1wt (�1,000 bp), Ercc1ko (�800 bp),

and Ercc1loxP (�500 bp) products were separated by electrophoresis

on 1.2% agarose gels, and the Ercc1rec allele generated a �280 bp

PCR product (Figure S1d).

2.3 | Administration of tamoxifen

Mice of 6–8 weeks of age received 2 doses of 500 μl of tamoxifen

(20 mg/ml, Sigma-Aldrich, T5648) dissolved in corn oil (Sigma-Aldrich,

C8267) via oral gavage with a 48 hr interval as described previously

(Parkhurst et al., 2013).

2.4 | LPS treatment

Mice were given an intraperitoneal (i.p.) injection of 1 mg/kg LPS

(Sigma-Aldrich, Escherichia coli 011:B4, L4391) dissolved in Dulbecco's

phosphate buffered saline (DPBS, Lonza, BE17512F). Control mice

received a respective volume of DPBS. After 3 hr, animals were per-

fused with saline or PBS under deep anesthesia and the brains were

collected.

2.5 | Microglia isolation and flow cytometry

Microglia were isolated as described in our previous work (Gerrits,

Heng, Boddeke, & Eggen, 2020). Mice were perfused with saline or

PBS under deep anesthesia. Brains were placed in Hank's balanced

salt solution (HBSS, Gibco, 14170-088) with 0.6% glucose (Sigma-

Aldrich, G8769) and 15 mM HEPES (Lonza, BE17-737E). All the fol-

lowing isolation procedures were performed on ice or at 4�C during

centrifugation. Brains were mechanical dissociated using the Potter-

Elvehjem tissue homogenizer and centrifuged at 220g for 10 min. The

pellets were resuspended in 25 ml 24% Percoll (GE Healthcare,

17–0891-01) with a 3 ml PBS layer on top, followed by centrifugation

for 20 min at 950g (accelerate 4 and brake 0) to remove myelin. The

cell pellets were incubated with CD11b-PE (eBioscience,

12–0112-82), CD45-PE/Cy7 (eBioscience, 25–0451-82), and Ly-6C-

APC (Biolegend, 128015) antibodies for 20–30 min on ice. Then the

cells were washed once and filtered into FACS tubes. Microglia were

FACS-sorted as DAPInegCD11bhigh CD45int Ly6cneg events on sorter

MoFlo-Astrios or MoFlo-XDP (Beckman Coulter).

Ki67 staining was performed according to the manufacturer's pro-

tocol. In brief, the cell pellets after the Percoll gradient were perme-

abilized by adding 1 ml cold 70% ethanol drop by drop while

vortexing. After 1 h incubation at −20�C, the cells were twice washed

with 1 ml PBS with 10% FBS and incubated with CD11b-PE

(eBioscience, 12-0112-82), CD45-FITC (eBioscience, 11-0451-85),

Ly-6C-APC/Cy7 (Biolegend, 128025), and Ki67-Alexa Fluor®

647 antibody (Biolegend, 652407) for 30 min. Ki67+ microglia and

Ki67− microglia were collected.

2.6 | Genomic DNA and RNA isolation from
microglia

The AllPrep DNA/RNA Micro Kit (Qiagen, 80284) was used to extract

genomic DNA and total RNA from sorted microglia.

2.7 | Quantification of recombination efficiency in
bulk microglia by quantitative real-time PCR (qPCR)

To investigate recombination efficiency, DNA from microglia from

Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP mice was analyzed by

qPCR. Two primer sets were designed, based on the recombined

Ercc1rec allele: Ercc1-rec1 and Ercc1-rec2 (Table S1). Without recombi-

nation, the primer sets will not give products during the PCR due to

the long span between the forward and reverse primer. In addition, a

reference primer pair, Ref-Il1, which amplifies a genomic fragment of

the Il1 gene was included (Table S1). The PCR reaction mixture con-

tained 5 μl DNA template from microglia samples, 5.5 μl iTaq™ Uni-

versal SYBR® Green Supermix (Bio-Rad, 1725125), 0.3 μl ddH2O and

0.2 μl 10 μM primer mix. Each sample was quantified with three tech-

nical replicates. The percentage of microglia with a recombinant

Ercc1rec allele was calculated by the following formula (Livak &

Schmittgen, 2001).

Percentage of microglia withErcc1rec allele =

microglia Ercc1recð Þ
microglia Ercc1recð Þ+microglia Ercc1loxP

� �

=2− Ct Ercc1−rec1ð Þ+Ct Ercc1−rec2ð Þ
2 −Ct Ref− Il1ð Þ−1ð Þ

2.8 | Quantification of recombination efficiency by
single-cell qPCR (genomic DNA)

Individual microglia were FACS-sorted in 384-well PCR plates con-

taining 5 μl ddH2O in each well. The presence of the Ercc1rec allele

was determined using qPCR primer pair Ercc1-rec1. As a positive

control, individual microglia were analyzed using Ref-Il1 primers. As

negative controls, individual splenic macrophage (DAPIneg

CD11bhighCD45posLy6gneg) were sorted in 384 well plates and ana-

lyzed. 5.5 μl of iTaq™ Universal SYBR® Green Supermix, 0.3 μl ddH2O

and 0.2 μl 10 μM primer mix were added to each well. Quantitative

PCR reactions were performed using the QuantStudio 7 Real-Time

PCR system (Thermo Scientific). In the end, the number of PCR

reactions resulting in specific DNA products from Ercc1rec (with

correct melting curves) were quantified. The percentage of

microglia with recombinant Ercc1rec allele was calculated by the fol-

lowing formula.

Percentage of microglia withErcc1rec =

number ofPCR reactions with products fromErcc1rec allele
total number ofPCRreactions
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2.9 | cDNA synthesis and qPCR

RNA isolated from microglia was mixed with 1 μl random primers

(0.5 μg/μl, Invitrogen, 48190011) and ddH2O to 10 μl. Samples were

incubated at 65�C for 15 min and kept on ice. Thereafter, 8 U/μl M-

MuLV reverse transcriptase (Thermo Scientific, EP0442), 0.8 U/μl

Ribolock RNase inhibitor (Thermo Scientific, EO0382), 0.5 mM dNTP-

mix (Thermo Scientific, R0192) and reverse transcriptase buffer were

added and incubated on a thermal cycler at 42�C for 1 hr, at 70�C for

10 min and finally at 4�C. The resulting cDNA was used for qPCR

reactions. The PCR reaction mixture contained 5 μl cDNA template

from microglia samples, 5.5 μl iTaq™ Universal SYBR® Green Super-

mix, 0.3 μl ddH2O and 0.2 μl 10 μM primer mix. Each sample was run

with three technical replicates. Quantitative PCR reactions were per-

formed using the ABI7900HT Fast Real-Time PCR System (Thermo

Scientific), LightCycler® 480 System (Roche) or QuantStudio 7 Real-

Time PCR system (Thermo Scientific). To determine relative expres-

sion levels, Hprt1 was used as the reference gene. Primer sequences

are provided in Table S2.

2.10 | QuantSeq 30 mRNA-Sequencing and
bioinformatic analysis

RNA quantity and quality were analyzed on a Fragment Analyzer

(Agilent), only RNA samples with a RIN value >6.5 were used.

Sequencing libraries were prepared with the Quant Seq 30 mRNA-Seq

Library Prep Kit FWD (Lexogen, 015.96). Quality control of the raw

FASTQ files was performed with FASTQC. Bad quality bases were

trimmed with FASTX_trimmer of the FASTX_toolkit (version 0.013).

Sequences were aligned using default parameters on HiSAT2 version

2.1 to the M. musculus (GRCm38.85) reference template obtained

from Ensembl. Quantification of the reads was performed with

HTseq-counts (version 0.6.1). Raw count matrices were loaded in R

and processed with DESeq2. Genes were identified as differentially

expressed with an FDR < 0.05 and fold change >1.5. Normalized

values (counts per million) of the differentially expressed genes were

used as heatmap input. Gene ontology (GO) term enrichment analysis

was performed using Metascape (http://www.metascape.org/).

2.11 | Immunohistochemistry and
immunofluorescence

To collect brain tissue for immunostaining, mice were perfused with

saline under deep anesthesia. Brains were fixed for 48 hr in 4% para-

formaldehyde (PFA) at 4�C. After dehydration in 25% sucrose, the

brain samples were embedded with O.C.T. compound (Sakura Finetek,

4583) and stored at −80�C.

For immunohistochemistry, 16 μm sections were prepared by

cryo-sectioning. After washing thrice with 1× PBS (identical for all

subsequent washing steps), antigen retrieval was performed by

pressure cooking in 10 mM sodium citrate, pH 6.0. The sections were

washed and incubated in PBS with 1% hydrogen peroxide (H2O2) to

block endogenous peroxidases. Again, the sections were washed and

blocked for 30 min using 5% normal donkey serum (NDS; Jackson

Immuno Research, 017-000-121) in PBS with 0.3% Triton X-100

(PBS+). Afterward, the sections were incubated with the primary

rabbit-α-ionized calcium-binding adapter molecule 1 (Iba1) antibody

(1:1,000; Wako, 01-19741) overnight at 4�C. The following day, the

slides were washed and incubated with the biotinylated secondary

donkey-α-rabbit IgG antibody (1:400; Jackson Immuno Research,

711-065-152) for 1 hr. After washing, the sections were incubated

with ABC solution (VECTASTAIN® ABC Kit, Vector Laboratories, PK-

6100) for 30 min. The sections were washed, stained using 0.04%

3,30-Diaminobenzidine (DAB) and 0.01% H2O2 for 8 min and subse-

quently dehydrated using a sequence of increasing ethanol concentra-

tions. The slides were air dried for 30 min, mounted with coverslips

using DePex (Serva) and stored at room temperature. All the slides

were scanned with the NanoZoomer 2.0-HT Digital Pathology system

(Hamamatsu Photonics, K.K., Japan) at 40 times magnification.

For immunofluorescence, free-floating brain sections were immu-

nolabeled as described (Sierra et al., 2010). For organotypic hippocam-

pal slice culture, slices were blocked for 1 hr with 5% normal donkey

serum and thereafter incubated with a primary antibody against Iba1

(1:1,000; Wako, 019-19741) overnight at 4�C. On the next day, after

washing thrice with 1× PBS, Alexa Fluor 488 donkey anti-rabbit

(1:400; Invitrogen, A21206) secondary antibody was added. After 1 hr

of secondary antibody incubation, sections were washed and incu-

bated in Hoechst solution (1 μg/ml, Sigma-Aldrich, 14530) for 5 min.

After washing, the slides were mounted with Mowiol mounting

medium on glass slides. Image acquisition was performed using a Leica

SP8 confocal microscope system (TCS SP8, Leica Microsystems).

2.12 | Microglia density and spatial distribution
analysis

Microglia densities in the frontal cortex and in cornu ammonis (CA),

and dentate gyrus (DG) were determined by counting all Iba1-positive

cells in a specified region of interest (ROI) of known dimensions using

the cell counter plugin for the ImageJ software (http://rsb.info.nih.

gov/ij/). To assess the spatial distribution of microglia in the frontal

cortex, the nearest neighbor distances—that is, the average Euclidian

distances between nearest cells—were determined using the NND

plugin for ImageJ. 2–3 ROIs were selected per animal per group for

the analysis. Three mice per group were used except the

22 months (n = 2).

2.13 | Morphometric analysis of microglia

A pipeline was developed to analyze morphological changes in

microglia (Van Weering et al., in prep.). Briefly, single-cell images of
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iba1-positive cells were first extracted from the whole slide scans,

with at least 20 cells per region per animal. Prior to analysis, the single

cell images were preprocessed to cell silhouette images by semi-

automated thresholding. Subsequently, the cell silhouettes were

converted to cell skeleton images by repeated thinning and pruning of

the branch areas. In the cell skeleton, branch endings (end nodes),

branch crossings (junctions), and all branch points emanating from the

cell soma (start nodes) were tagged to allow node quantification. Both

cell silhouette- and cell skeleton images served as input for fully auto-

mated morphometric analysis. The outputs of the pipeline included

Sholl analysis result and morphometric features per cell. A specified

list of morphometric features, as well as a detailed description of the

morphometrics pipeline is described elsewhere (van Weering et al.,

in prep.).

2.14 | Clustering of microglia based on
morphometric features

To identify groups of microglia of similar morphology, a nonsupervised

clustering approach was applied (described in detail in van Weering

et al., in prep.). In brief, after normalization and scaling of all morpho-

metric features, a principal component analysis (PCA) was applied to

reduce dimensionality and redundancy in the dataset. Subsequently, a

hierarchical clustering (Ward's method) was performed on the top

contributing principal components (PCs) with an eigenvalue >1 (here,

PC1–4, Figure S2a), resulting in nine clusters of microglia with distinct

morphological properties (Figure S2b). The morphometric properties

of each cluster are depicted in Figure S2d.

2.15 | Organotypic hippocampal slice culture

Organotypic hippocampal slice culture (OHSCs) were prepared as

described previously (Stoppini et al., 1991) with minor modifications.

In brief, brains were rapidly isolated from Cx3cr1-Ercc1ko/loxP and

Cx3cr1-Ercc1wt/loxP mouse pups (p3) after decapitation. The hippo-

campi from both hemispheres were isolated in ice cold serum-free

HBSS supplemented with 0.5% glucose and 15 mM HEPES. Isolated

hippocampi were cut into 375 μM thick slices using a tissue chopper

(McIlwain) and were transferred to 0.4 μm culture plate inserts (Mil-

lipore, PICM03050). These culture plate inserts, containing 6 slice cul-

tures each, were placed in 6-well plates containing 1.2 ml of culture

medium per well. Culture medium (pH 7.2) consisted of 50% minimum

essential medium supplemented with 25% heat-inactivated horse

serum (Gibco, 16050-122), 25% basal medium eagle, 2 mM glutamax

and 0.65% glucose. The slice cultures were kept at 35�C in a humidi-

fied atmosphere (5% CO2). On the first day after preparation, OHSCs

were treated with 1 nM 4-hydroxy tamoxifen (Sigma-Aldrich, T176)

for 48 hr to induce Ercc1 deletion. OHSCs were kept for up to

3 months and the culture medium was refreshed every 2 days. After

fixation with 4% PFA overnight at 4�C, OHSCs were processed for

immunofluorescence staining.

2.16 | Quantification and statistical analysis

Statistical significance was determined by either a two-way ANOVA

followed by Bonferroni correction or a two-tailed Student's t-test as

indicated in the legends. For the morphometrics data, after hierarchi-

cal clustering, a Kruskal–Wallis test followed by a Wilcoxon rank sum

test with Bonferroni correction was performed for comparison of

morphometric features between microglia clusters. Statistical differ-

ences with p values lower than 0.05 were considered significant.

3 | RESULTS

3.1 | Microglia are progressively lost after Ercc1
deletion

Ercc1 is an essential endonuclease component in NER, ICR, and DBR,

and microglia will accumulate DNA lesions after Ercc1 deletion. Cell

cycle arrest, DNA repair, and apoptosis are the general responses to

DNA damage (Norbury & Zhivotovsky, 2004). To obtain conditional

Ercc1-deficient mice, Ercc1wt/ko and Cx3cr1wt/creERT2 mice were

crossed to generate Cx3cr1wt/creERT2:Ercc1wt/ko mice (Figure S1a).

Then, Cx3cr1creERT2/creERT2:Ercc1wt/ko were crossed with Ercc1loxP/loxP

mice, resulting in Cx3cr1-Ercc1ko/loxP, and Cx3cr-Ercc1wt/loxP mice

(Figure S1a). After tamoxifen-induced nuclear translocation of CreER,

the Ercc1loxP alleles in both Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP

mice microglia were recombined (Ercc1rec) (Figure S1b,c). This recom-

bination resulted in Ercc1 deficiency in Cx3cr1-Ercc1ko/loxP mice

microglia, but not in Cx3cr1-Ercc1wt/loxP mice microglia, since one

Ercc1wt allele was still present (Figure S1b,c).

To determine the effect of Ercc1 deletion on microglia, first, the

effect on microglia cell density was determined in the frontal cortex

(Figure 1a). From 2 months after tamoxifen treatment onward, the

density of microglia in the frontal cortex of Cx3cr1-Ercc1ko/loxP mice

was significantly lower than in littermate controls, and this reduction

persisted until 12 months after tamoxifen treatment (Figure 1b). A

reduction in microglia density after Ercc1 deletion was also observed

in other brain regions. In the DG and CA, a significant reduction was

observed at 6 and 12 months after tamoxifen treatment (Figure 1b).

At 22 months after tamoxifen treatment, microglia density in

Cx3cr1-Ercc1ko/loxP mice was similar to control littermates in all brain

regions investigated (Figure 1b). Together with the reduction in

microglia density, a significant increase was observed in the nearest

neighbor distance between microglia in the frontal cortex of

Cx3cr1-Ercc1ko/loxP mice, suggesting that the observed microglia loss

occurred throughout the brain and was not regional (Figure 1c). Simi-

lar to our histological data, the number of FACS-sorted microglia from

Cx3cr1-Ercc1ko/loxP mice was significantly lower than from littermate

controls. This reduction in the number of isolated microglia persisted

from 2 to 12 months after tamoxifen treatment (Figure 1d).

In addition, we generated OHSCs from Cx3cr1-Ercc1ko/loxP pups

and deleted Ercc1 by ex vivo 4-hydroxy-tamoxifen treatment.

Similar to our in vivo findings, 3 months after tamoxifen treatment,
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the number of microglia in Cx3cr1-Ercc1ko/loxP OHSCs was reduced by

approximately 50% compared to control OHSCs, in the DG, CA1, and

CA3 regions (Figure S3a,b).

3.2 | Ercc1-deficient microglia are progressively
replaced

After tamoxifen treatment, the Ercc1loxP allele recombines into an

Ercc1rec allele in both Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP mice

(Figure S1b,c). To determine the recombination efficiency, genomic

DNA was isolated from FACS-isolated microglia and analyzed by

qPCR for the Ercc1rec allele. In Cx3cr1-Ercc1wt/loxP mice microglia, the

percentage of microglia with the Ercc1rec allele was high (80–100%)

and comparable at all investigated time points after tamoxifen treat-

ment (Figure 2a). The percentage of microglia with an Ercc1rec allele in

Cx3cr1-Ercc1ko/loxP mice initially was same as in littermate controls,

but progressively declined over time, to approximately 5% at

12 months after tamoxifen treatment (Figure 2a). Ercc1 recombination

efficiency was further determined by single-cell PCR. The percentages

of Ercc1rec microglia progressively decreased in Cx3cr1-Ercc1ko/loxP

mice, and very few microglia with an Ercc1rec allele were detected at

22 months after tamoxifen treatment (Figure 2b), corroborating our

previous observations.

These data indicate that after tamoxifen treatment, Ercc1-deficient

microglia (Ercc1ko/rec) were gradually lost in Cx3cr1-Ercc1ko/loxP mice and

were replaced by Ercc1ko/loxP microglia (Figure 2c). The Ercc1ko/loxP

microglia are likely cells that escaped tamoxifen induced Ercc1 deletion,

and still carried a functional Ercc1loxp allele. At 12 months after tamoxi-

fen treatment, Ercc1-deficient microglia were almost completely rep-

laced by Ercc1ko/loxP microglia, but microglia numbers were still reduced

by approximately 40–50% (Figures 1 and 2). At 22 months after tamox-

ifen treatment, Ercc1-deficient microglia were fully replaced and no dif-

ferences in microglia densities were observed between control and

Cx3cr1-Ercc1ko/loxP mice (Figures 1 and 2).

3.3 | Altered microglia morphology in
Cx3cr1-Ercc1ko/loxP mice

An evident change in microglia morphology was observed in the fron-

tal cortex of Cx3cr1-Ercc1ko/loxP mice from 2 to 12 months after

tamoxifen treatment when compared to littermate controls

(Figure 3a). Some of the microglia became enlarged, with increased

soma sizes and branch lengths (Figure 3a). This altered microglia mor-

phology was also observed in other brain regions, including cortex,

hippocampus, cerebellum and olfactory bulb (data not shown). Strik-

ingly, at 22 months after tamoxifen treatment, all microglia in the

Cx3cr1-Ercc1ko/loxP mice displayed a morphology that was comparable

to littermate controls (Figure 3a). In OHSCs, a similar change in

microglia morphology was observed in Cx3cr1-Ercc1ko/loxP mice

(Figure S3c). Next, morphological differences in microglia were quanti-

fied across groups at different time points after tamoxifen treatment.

The generated 23 morphometric features of each microglia cell are

provided in Table S3.

To identify subsets of microglia with a similar morphology, we

performed hierarchical clustering on principal components. First, a

PCA was applied to the morphometric feature dataset. The first four

PCs with an eigenvalue >1 were retained for hierarchical clustering

(Figure S2a,b), resulting in 9 microglia clusters with distinct morpho-

logical properties (Figure 3b). Cell silhouettes representative for each

cluster are depicted in Figure 3c. Notably, microglia in cluster I and II

were almost exclusively derived from Cx3cr1-Ercc1ko/loxP mice, indicat-

ing these microglia clusters are Ercc1-deficiency related (Figure 3b).

Cluster I and II microglia were characterized by a relatively large soma

area, high total branch length values, a large number of end nodes and

relatively low cell solidity values (Figures 3c and S2). These findings

were corroborated by Sholl analysis with cluster I and II microglia

being the largest cells with most extensive ramification patterns com-

pared to other clusters (Figure 3d). Comparisons of all morphometric

features between microglia clusters can be found in Table S3. Next,

we analyzed the relative distribution of the microglia clusters over the

different mouse groups (genotype and time after tamoxifen treat-

ment). In control mice, the relative proportion of cluster II and cluster I

microglia remained low or even absent at all timepoints in control ani-

mals (Figure 3e). In Cx3cr1-Ercc1ko/loxP mice, between 2 and

12 months after tamoxifen treatment, cluster I and II microglia

accounted for 45–65% of the total population in the cortex

(Figure 3e). At 22 months after tamoxifen treatment, the microglia

cluster distribution in Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP mice

was comparable and cluster I and II microglia were almost absent

(Figure 3e).

To summarize, upon Ercc1 deletion, CNS microglia numbers

were reduced by approximately 50%, which was accompanied by

F IGURE 1 Reduced microglia numbers in Cx3cr1-Ercc1ko/loxP mice after tamoxifen treatment. (a) Representative Iba1 staining of microglia in
the frontal cortex of Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice at different time points after tamoxifen treatment. (b) Box plots depict the
number of Iba1-positive cells/mm2 in three different brain regions. Two to three sections per animal were used for density analysis. n = 3 mice

per group except the 22 months (n = 2). The box boundaries represent first and third quartiles and the center lines indicate the median. Whiskers
extend from box boundaries to the minimum and maximum values, respectively. (c) Nearest neighbor distance analysis across groups at different
time points after tamoxifen treatment. Two to three sections per animal were used for the analysis. n = 3 mice per group except the
22 months (n = 2). (d) Boxplot depicts the number of microglia (DAPInegCD11bhighCD45intLy-6Cneg) sorted from the entire mouse brain. For
Cx3cr1-Ercc1wt/loxP mice: n = 7 (1 m), 10 (2 m), 6 (3 m), 4 (5 m), 17 (6 m), 6 (9 m), 4 (10 m), 12 (12 m); Cx3cr1-Ercc1ko/loxP mice, n = 10 (1 m), 13
(2 m), 6 (3 m), 4 (5 m), 15 (6 m), 5 (9 m), 4 (10 m), 13 (12 m). A two-way ANOVA followed by a Bonferroni correction for multiple comparisons
was performed to assess significance. *, p < 0.05; **, p < 0.01; ***, p < 0.001
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the emergence of a microglia subpopulation (Cluster I and II) with

relatively large and hyper-ramified cells. This reduction in cell num-

ber and changes in microglia morphology persisted until 12 months

after tamoxifen treatment. Gradually, microglia numbers and mor-

phology returned to control levels at 22 months after tamoxifen

treatment.

3.4 | Increased proliferation compensates for
microglia loss after Ercc1 deletion

Under homeostatic conditions, the proliferation rate of microglia is

relatively low and the population is maintained by balanced prolifera-

tion and apoptosis (Askew et al., 2017). After genetic or

F IGURE 2 Ercc1-deficient microglia are gradually replaced by Ercc1ko/loxP microglia. (a) The percentage of microglia carrying an excised
Ercc1loxP allele (Ercc1rec) at a range of time points after tamoxifen treatment are depicted. The percentage of microglia with an Ercc1rec allele was
determined by qPCR using Ercc1-rec1 and Ercc1-rec2 primers and normalized to an unaffected genomic locus (the Il1b gene). Each dot represents
an individual animal. A two-way ANOVA followed by a Bonferroni correction for multiple comparisons was performed to assess significance. ***,
p < 0.001. (b) The percentage of microglia carrying an Ercc1rec allele at a range of time points after tamoxifen treatment was determined by single
cell genomic qPCR. Individual microglia were FACS-isolated and PCR amplified using Ercc1-rec1 primers specific for the Ercc1rec allele. The
percentage of wells with a PCR product of the Ercc1rec allele is shown in red, wells without a PCR product are indicated in light grey. As a positive
control, individual microglia (MG) were PCR amplified using primers for the Il1b gene, indicated in dark grey. As a negative control, individual
splenic macrophages (Mφ) were analyzed with Ercc1-rec1 primers. n = 1–3 animals per group. (c) A cartoon illustrating the progressive loss of
microglia cells and the gradual replacement of Ercc1-deficient (Ercc1ko/rec) microglia by nondeficient (Ercc1ko/loxP) microglia in Cx3cr1-Ercc1ko/loxP

mice after tamoxifen treatment
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F IGURE 3 Altered microglia morphology in Cx3cr1-Ercc1ko/loxP mice. (a) Representative images of Iba1-stained microglia in the cortex of
Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice at different time points after tamoxifen treatment. (b) Hierarchical clustering on principal
components resulted in nine cell clusters (I–IX). (c) Representative cells for each microglia cluster. (d) Sholl analysis for microglia clusters I–IX,
revealing distinct differences in cell size and branching complexity between clusters. Dots and vertical lines represent means and +/− standard
deviations respectively. (e) Distribution analysis of microglia clusters across genotypes at different time points after tamoxifen; wt/loxP:
Cx3cr1-Ercc1wt/loxP, ko/loxP: Cx3cr1-Ercc1ko/loxP
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pharmacological depletion of microglia, the remaining microglia rapidly

expand and repopulate the CNS (Bruttger et al., 2015; Elmore

et al., 2014; Rubino et al., 2018). As Ercc1-deficient microglia were

gradually replaced, we determined if microglia proliferation was

increased after Ercc1 deletion. The expression levels of Ki67, a gene

expressed by proliferating microglia (McDonough et al., 2020), was

determined in microglia at early (1 and 2 months) and late (12 months)

time points after tamoxifen treatment. Microglia from Cx3cr1-Ercc1ko/

loxP mice expressed significantly higher Ki67 levels at 1–2 months after

tamoxifen, indicating increased microglia proliferation (Figure 4a).

Dividing microglia were observed in the Cx3cr1-Ercc1ko/loxP mouse

hippocampus 1.5 months after tamoxifen treatment (Figure 4b, indi-

cated by white arrows). At 12 months after tamoxifen, when almost

all Ercc1-deficient microglia were replaced, Ki67 expression levels had

F IGURE 4 Increased microglia proliferation in Cx3cr1-Ercc1ko/loxP mice after tamoxifen treatment. (a) Ki67 gene expression was determined
by qPCR and normalized to Hprt1 expression levels. Each dot represents one animal, n = 3–5 mice per group. A two-way ANOVA followed by a

Bonferroni correction was performed. ***, p < 0.001. (b) Example of a mitotic microglia in a Cx3cr1-Ercc1ko/loxP mouse, 1.5 months after tamoxifen
treatment. (c) FACS plots showing the isolation of Ki67+ and Ki67− microglia from Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice at 2–3 months
after tamoxifen treatment. Percentage of Ki67+ and Ki67− microglia from Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice was indicated in the
plot. (d) Quantification of the percentage of Ki67+ and Ki67− microglia in Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice at 2–3 months after
tamoxifen treatment, n = 4 mice per group. An unpaired two-tailed t-test was performed. ***, p < 0.001. (e) The percentage of Ki67+ and Ki67−

microglia with Ercc1rec allele was determined by genomic qPCR, n = 3–6 mice per group. A two-way ANOVA followed by a Bonferroni correction
for multiple comparisons was performed to assess significance
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returned to levels observed in control microglia (Figure 4a). Next, we

determined if Ki67 expressing, proliferating microglia were cells carry-

ing an Ercc1loxP allele or if Ercc1-deficient microglia also proliferated.

Microglia were isolated 2–3 months after tamoxifen treatment when

the majority of the cells are still Ercc1-deficient (see Figure 2). These

microglia were separated in Ki67+ and Ki67− subpopulations by FACS

(Figure 4c). The percentage of Ki67+ cells was more than two-fold

higher in microglia from Cx3cr1-Ercc1ko/loxP mice compared to

Cx3cr1-Ercc1wt/loxP controls (Figure 4c,d). Genotyping of Ki67+

microglia population revealed that the percentage of microglia with an

Ercc1rec allele from both Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP

mice was comparable, indicating that Ercc1-deficient microglia

(Ercc1ko/rec) also proliferated (Figure 4e).

In summary, tamoxifen treatment resulted in Ercc1 excision, lead-

ing to a progressive loss of Ercc1-deficient microglia in

Cx3cr1-Ercc1ko/loxP mice. In parallel, the remaining microglia, including

Ercc1-deficient microglia, displayed increased expression of prolifera-

tion marker Ki67. At 12 months after tamoxifen treatment, when

nearly all Ercc1-deficient microglia (Ercc1ko/rec) were replaced by

Ercc1ko/loxP microglia, Ki67 expression returned to control levels.

3.5 | Ercc1-deficient microglia are not immune
activated or primed

In Ercc1Δ/ko mouse microglia, the expression of genes like Axl, Lgals3

(Mac2), Apoe, and Itgax (Cd11c) is upregulated (Holtman et al., 2015;

Figure 5a). The expression of these genes was also determined in Ercc1-

deficient microglia from Cx3cr1-Ercc1ko/loxP mice at different time points

after tamoxifen treatment. The expression of Axl was significantly higher

in Cx3cr1-Ercc1ko/loxP microglia only at 12 months compared to

Cx3cr1-Ercc1wt/loxP microglia, but the level of induction was much lower

than in Ercc1Δ/ko mice (Figure 5a,b). Lgals3, Apoe, and Itgax expression

was not significantly induced in microglia from Cx3cr1-Ercc1ko/loxP mice,

suggesting microglia were not primed (Figure 5b).

In agreement with our previous findings, basal expression levels

of Ccl2 and Tnf were slightly higher in Ercc1Δ/ko mice (Figure 5c) and

Ercc1Δ/ko mice microglia showed an increased responsiveness to LPS

compared to controls in terms of Ccl2 and Tnf expression (Raj

et al., 2014; Figure 5d). For Cx3cr1-Ercc1ko/loxP microglia, basal expres-

sion levels of Ccl2 and Tnf were similar to Cx3cr1-Ercc1wt/loxP

microglia, again suggesting Cx3cr1-Ercc1ko/loxP microglia were not

primed (Figure 5e). In response to LPS, Cx3cr1-Ercc1ko/loxP microglia

only showed a (modest) enhanced Ccl2 expression at 2 and 6 months

after tamoxifen treatment (Figure 5f). For Tnf expression, no increase

in LPS responsiveness was observed in Cx3cr1-Ercc1ko/loxP microglia.

(Figure 5f). In summary, microglia-specific deletion of Ercc1 did not

induce an immune activated or primed phenotype in microglia.

3.6 | Gene expression profiling of microglia after
Ercc1 deletion

To delineate the effect of Ercc1 deletion on microglia, we compared

the gene expression profiles between Cx3cr1-Ercc1ko/loxP and

Cx3cr1-Ercc1wt/loxP microglia, before and at different times after

tamoxifen treatment (Figures 6a and S4).

Genes in Cluster 1 were more enriched in Cx3cr1-Ercc1wt/loxP

microglia at 12 months than 5 days after tamoxifen treatment (Figure 6b),

suggesting changes in expression of these genes are age-related. Cluster

1 genes were associated with GO terms such as brain development, neu-

ronal system, synapse, and morphogenesis (Figure 6c). Some cluster

1 genes, that showed increased expression in microglia isolated from

mice 12 months after tamoxifen (from both genotypes), were also tran-

siently increased in Cx3cr1-Ercc1ko/loxP mice microglia at 1 and 2 months

after tamoxifen treatment, when most microglia were still Ercc1-deficient

(Figures 6b and 2). However, with ongoing microglia replacement, around

6 months after tamoxifen treatment. The expression level of these genes

was reduced, suggesting Ercc1 deficiency caused a transient aging phe-

notype in microglia 1–2 months after tamoxifen treatment (Figure 6b).

When microglia were fully replaced in Cx3cr1-Ercc1ko/loxP mice at

12 months after tamoxifen treatment (Figure 2), the transcriptional pro-

files of Cx3cr1-Ercc1ko/loxP and Cx3cr1-Ercc1wt/loxP mice microglia were

again very similar (Figure 6b).

To get more insight into the transient microglia aging phenotype,

several homeostatic microglia signature genes, inflammatory genes

expressed by potentially senescent human microglia (Geirsdottir

et al., 2019), and DAM genes were investigated (Geirsdottir

et al., 2019; Keren-Shaul et al., 2017). Expression levels of homeo-

static microglia genes, such as Sall1, Cx3cr1, and Csf1r were unaf-

fected by Ercc1 deletion (Figure S5a). However, at 2 and 6 months

after tamoxifen treatment, microglia isolated from Cx3cr1-Ercc1ko/loxP

mice displayed a transient aging phenotype with higher expression

levels of some senescence-associated genes (Tnf, Ccl3 and Ccl4) and

F IGURE 5 Ercc1-deficient microglia are not immune activated or primed. (a) The expression of Axl, Lgals3, Apoe, and Itgax was determined by
qPCR in microglia from Ercc1Δ/ko mice and normalized to Hprt1 expression levels. An unpaired two-tailed Student's t-test was performed for
statistical analysis. ***, p < 0.001. (b) Axl, Lgals3, Apoe and Itgax gene expression was determined by qPCR in microglia from Cx3cr1-Ercc1wt/loxP

and Cx3cr1-Ercc1ko/loxP mice at different time points after tamoxifen treatment and normalized to Hprt1 expression levels. A two-way ANOVA
followed by a Bonferroni correction for multiple comparisons was performed for statistical analysis. **, p < 0.01. Gene expression levels of Ccl2
and Tnf were determined by qPCR in microglia from Ercc1Δ/ko and control mice 3 hr after an i.p. PBS (c) or 1 mg/kg LPS (d) and normalized to
Hprt1 expression levels. Each dot represents a mouse. An unpaired two-tailed Student's t-test was performed for statistical analysis, ***,
p < 0.001. Gene expression levels of Ccl2 and Tnf were determined by qPCR in microglia from Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice
3 hr after an i.p. PBS (e) or 1 mg/kg LPS (f) and normalized to Hprt1 expression levels. Each dot represents a mouse. A two-way ANOVA followed
a Bonferroni correction was performed. **, p < 0.01, ***, p < 0.001
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some of the DAM genes (Apoe, Cst7, and Axl) (Figure S5b,c). But this

microglia aging phenotype was no longer detected at 12 months after

tamoxifen treatment in Cx3cr1-Ercc1ko/loxP mice (Figure S5b,c).

The expression of the majority of the genes in Clusters 2 and

3 was increased at 1 and 2 months after Ercc1 deletion, and progres-

sively returned to control levels from 6 to 12 months (Figure 6b).

F IGURE 6 Legend on next page.
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Some genes in these clusters were associated with mitosis/cell cycle,

corroborating the observed increased microglia proliferation at 1 and

2 months after tamoxifen treatment (Figures 6c and 4). In addition,

some GO terms of Clusters 2 and 3 genes were related with apoptosis

processes such as p53 signaling, release of cytochrome c from mito-

chondria and intrinsic apoptotic signaling pathway in response to

DNA damage (Figure 6c). This supports the excessive loss of Ercc1-

deficient microglia between 1 and 6 months after tamoxifen treat-

ment (Figure 1).

Cluster 7 contained genes that were downregulated in Ercc1-

deficient microglia at 1, 2-, and 6-months after tamoxifen treatment.

GO enrichment indicated that these genes were involved in regulation

of protein folding, extracellular exosome assembly, and lysosomal

transport (Figure 6c).

To determine if tamoxifen treatment affected gene expression, the

transcriptomes of microglia from Cx3cr1-Ercc1ko/loxP mice without tamox-

ifen treatment and Cx3cr1-Ercc1wt/loxP mice 5 days after tamoxifen treat-

ment were compared. We only identified 28 differentially expressed

genes which were involved in p53 signaling and cell cycle (Figure 6d),

indicating a limited influence of tamoxifen treatment on microglia gene

expression. No differentially expressed genes were detected between

Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice microglia 5 days after

tamoxifen treatment, indicating that 5 days of Ercc1 deficiency was not

sufficient to affect microglia gene expression (Figure 6b).

The number of differentially expressed genes, both up- and

down-regulated, in microglia at different times after tamoxifen treat-

ment, and associated GO terms are depicted in Figure 6d. The gene

lists and enriched GO terms are provided in Table S4.

Microglia-specific deletion of Ercc1 resulted in a gene expression

signature distinct from the priming signature of aged and disease-

associated microglia we previously reported (Holtman et al., 2015).

Only 19 of the 458 genes upregulated at 2 months after tamoxifen

treatment in Cx3cr1-Ercc1ko/loxP microglia overlapped with this priming

gene expression module consisting of 295 upregulated genes,

suggesting microglia were not primed by intrinsic DNA damage repair

deficiency (Figure 6e).

4 | DISCUSSION

Here, we analyzed the effect of Ercc1-deficiency on microglia. Dele-

tion of Ercc1 resulted in progressive microglia loss and to compensate

for this cell loss, microglia proliferation was transiently increased.

Interestingly, the remaining Ercc1-deficient and nondeficient microglia

both displayed increased proliferation activity. Gradually, likely due to

ongoing loss of Ercc1-deficient microglia, the CNS gradually rep-

opulated with nondeficient (Ercc1ko/loxp) microglia. Unlike constitutive

Ercc1-knockout mice, intrinsic Ercc1 deletion did not induce microglia

activation or priming. Microglia-specific deletion of Ercc1 transiently

induced an aging-associated gene expression profile, which was dif-

ferent from the gene expression signature of aged and CNS disease-

associated microglia (Holtman et al., 2015).

4.1 | Phenotypes of microglia in conditional
Cx3cr1-Ercc1ko/loxP mice compared to constitutive
Ercc1Δ/ko mice

In constitutive Ercc1Δ/ko mice, Ercc1-deficiency was already present in

the zygote, and in all cell types. However, in Cx3cr1-Ercc1ko/loxP mice,

Ercc1-deficiency in Cx3cr1-expressing cells was induced by tamoxifen

treatment in young adult mice (6–8 weeks of age). In constitutive

Ercc1Δ/ko mice, microglia density was increased but in Cx3cr1-Ercc1ko/

loxP mice, microglia were lost after Ercc1 deletion. Constitutive Ercc1

deletion resulted in a microglia priming gene expression signature

(Holtman et al., 2015). In a previous study, we showed that

Camk2creER-driven Ercc1 deletion in forebrain neurons also resulted in

a microglia phenotype reminiscent of what was observed in Ercc1Δ/ko

mice (Raj et al., 2014). In contrast, although microglia from

Cx3cr1-Ercc1ko/loxP mice transiently displayed an aging gene expres-

sion profile at 2 months after tamoxifen treatment, no clear gene

expression signature of priming was detected. Together, these results

suggest that microglia priming can be triggered by neuronal genotoxic

stress (Raj et al., 2014), but not by microglia-intrinsic genotoxic stress

after Ercc1 deletion. Nonetheless, Ercc1 is an essential protein for

microglia, as microglia deficient for Ercc1 are progressively replaced

by microglia with a functional Ercc1 allele.

4.2 | Turnover of microglia in Cx3cr1-Ercc1ko/loxP

mice after tamoxifen treatment

Using genetic labeling and long-term in vivo imaging, Füger et al.

reported a median lifetime of mouse neocortical microglia of

F IGURE 6 Gene expression profile of microglia after Ercc1 deletion. (a) Outline of microglia sampling. Microglia were isolated from
Cx3cr1-Ercc1wt/loxP and Cx3cr1-Ercc1ko/loxP mice before and 5 days to 12 months after tamoxifen treatment. The gene profiles were generated by
30 QuantSeq. Cx3cr1-Ercc1ko/loxP mice microglia without tamoxifen treatment served as nontamoxifen controls. (b) Heatmap of 1,670 differentially

expressed genes through pairwise comparisons as described in Figure S4 (FDR < 0.05 and fold change >1.5). These genes clustered into 7 groups.
(c) GO analysis of different clusters. The genes in Clusters 2 and 3 were combined for GO analysis. The top 20 GO terms are shown. (d) The
number of differentially up- and down-regulated genes between the indicated comparisons and associated GO terms are depicted (FDR < 0.05
and fold change >1.5). (e) Venn diagram showing unique and overlapping genes and associated GO terms between 458 upregulated genes (ko 2m
tam vs. -tam microglia) and priming signature of aged and disease-associated microglia (Holtman et al., 2015). The full lists of genes and enriched
GO terms above mentioned are available in Table S4. ctrl, Cx3cr1-Ercc1wt/loxP mice after tamoxifen treatment; ko, Cx3cr1-Ercc1ko/loxP mice after
tamoxifen treatment; -tam, Cx3cr1-Ercc1ko/loxP mice without tamoxifen treatment
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15 months (Füger et al., 2017). In a similar study, the turnover time of

mouse microglia was estimated to be 41, 15, and 8 months in the cor-

tex, hippocampus, and olfactory bulb, respectively (Tay et al., 2017).

Askew et al. showed that 0.69% of the microglia population is prolifer-

ating with an estimated turnover time of 96 days (Askew et al., 2017).

Despite these differences in reported turnover times, microglia are

relatively long-lived cells in the CNS. Strikingly, after experimental

depletion of microglia by either using mice expressing a CD11b-TK

transgene (Gowing, Vallières, & Julien, 2006), CSF1R inhibitors (Rice

et al., 2017), or the Cx3cr1creER:iDTR system, remaining microglia rep-

opulated the CNS very fast (Bruttger et al., 2015; Elmore et al., 2014;

Rubino et al., 2018; Varvel et al., 2012). The disadvantage of these

approaches is the very fast depletion and repopulation, resulting in

(transient) astrogliosis. And the repopulated microglia in the

Cx3cr1creER:iDTR system have an altered, interferon regulatory factor

7-driven activation phenotype (Rubino et al., 2018; Waisman, Gin-

houx, Greter, & Bruttger, 2015).

In the Cx3cr1-Ercc1ko/loxP mice used in this study, Ercc1-deficient

microglia were gradually lost, which was associated with a transient

increase in proliferation. Similarly, Varol et al. reported a progressive

replacement of Dicer-deficient microglia in Cx3cr1creER:Dicer ko/loxP

mice after tamoxifen treatment. Importantly, they further showed that

Dicer-deficiency could induce DNA damage in newborn microglia

(Varol et al., 2017). Most likely, Ercc1 deficiency resulted in microglia

apoptosis, reflected by the increased expression of apoptosis-related

genes in Cx3cr1-Ercc1ko/loxP microglia at 1 and 2 months after tamoxi-

fen treatment (Figure 6bc, Cluster 2 and 3). Importantly, this gradual

replacement of microglia did not result in microgliosis.

After pharmacologic depletion by CSF1R inhibitors, the rep-

opulated microglia are derived from the remaining microglia popula-

tion without contribution from peripheral myeloid cells (Elmore

et al., 2014; Huang et al., 2018; Zhan, Sohn, Zhou, Li, & Gan, 2019).

For genetic microglia ablation using the Cx3cr1creER:iDTR system, Bru-

ttger et al. also showed that microglia exclusively renew from the

remaining cells (Bruttger et al., 2015). However, Lund et al showed

that the repopulated microglia originated from remaining

CX3CR1+F4/80loClec12a− microglia and CX3CR1+F4/80hiClec12a+

microglia-like macrophages originated from Ly6Chi monocytes (Lund

et al., 2018). These monocyte-derived macrophages can acquire some

key features of microglia but still are transcriptionally and functionally

distinct from CNS resident microglia even 12 weeks after depletion

(Lund et al., 2018). In our study, at 12 months after tamoxifen treat-

ment, the repopulated microglia are transcriptionally similar to

microglia from control mice, suggesting that the repopulated microglia

in Cx3cr1-Ercc1ko/loxP mice are most likely derived from microglia that

escaped Cre recombination.

4.3 | Morphology of microglia after Ercc1 deletion

Microglia are pleomorphic and can adapt to different environments.

Ramified microglia are relatively quiescent and surveil the paren-

chyma, while microglia with a more amoeboid phenotype are more

migratory, phagocytic and immune activated (Kettenmann, Hanisch,

Noda, & Verkhratsky, 2011). Microglia morphometrics revealed signif-

icant alterations in microglia morphology in Cx3cr1-Ercc1ko/loxP mice

after tamoxifen treatment. Further analysis revealed this was mainly

due to changes in a subset of microglia. Interestingly, this subset of

microglia consisted of both Ercc1-deficient and nondeficient microglia,

since this subset was detected at both 2 months (when the majority

of microglia is Ercc1ko/rec; Figure 2) and 12 months (when the majority

of microglia is Ercc1ko/loxP; Figure 2) after tamoxifen treatment. This

suggests that, in compensation for the cell loss, both Ercc1-deficient

(Ercc1ko/rec) and nondeficient (Ercc1ko/loxP) microglia became larger in

size and more extensively ramified, likely in order to surveil a larger

parenchymal area. However, potential functional differences between

these enlarged cells and homeostatic microglia are still unresolved.

4.4 | Spontaneous recombinase activity of CreER

In this study, we used Cx3cr1creER mice to delete Ercc1 in microglia.

Microglia deficient for Ercc1 were gradually lost and replaced by

Ercc1ko/loxP microglia. The transcriptional changes we determined at

different time points after tamoxifen treatment were generated using

all microglia isolated from mouse brain. As a consequence, the effects

of Ercc1-deficiency on gene expression might be diluted by Ercc1ko/loxP

microglia that progressively populate the brain after tamoxifen treat-

ment. In order to separate Ercc1-deficient Ercc1
ko/rec

microglia and non-

deficient Ercc1ko/loxP microglia, we generated a Cx3cr1creERT2:Ercc1ko/

loxP:R26CAG-tdTomato mouse line. In these mice, Ercc1ko/rec microglia

would also express the tdTomato reporter, where Ercc1ko/loxP

microglia do not. This assumes that the excision of the floxed Ercc1

and floxed stop cassette upstream of the tdTomato reporter gene are

equally efficient. However, we found 70% of the microglia already

expressed the tdTomato reporter prior to tamoxifen treatment (data

not shown). This “leaky” Cre activity of the Cx3cr1creER transgene was

confirmed by other studies (Chappell-Maor et al., 2020; Fonseca

et al., 2017). In addition, for our Cx3cr1creERT2:Ercc1ko/loxP:R26CAG-

tdTomato reporter mouse line, we observed that the spontaneous activ-

ity of Cre only affected the floxed stop cassette upstream of

tdTomato, but not the floxed sequence of our target gene Ercc1. This

is most likely due to the size of the floxed fragment of our target gene

Ercc1, which is around 2.5 kb (Doig et al., 2006), which is longer than

the 0.8 kb floxed stop cassette in the tdTomato reporter (Madisen

et al., 2010). The different susceptibility of constructs in response to

basal CreERT2 activity has also been shown in other studies (Alvarez-

Aznar et al., 2020; Van Hove et al., 2020). This tamoxifen-

independent Cre activity made it impossible to distinguish between

Ercc1-deficient and nondeficient microglia in our Cx3cr1creERT2:

Ercc1ko/loxP:R26CAG-tdTomato mice.

In summary, our data indicate that Ercc1 is an essential protein

for microglia and its deletion leads to cell death. As a consequence,

microglia are gradually replaced by nondeficient Ercc1ko/loxP microglia

carrying a functional Ercc1loxP allele. The replacement of Ercc1-defi-

cient microglia by nondeficient microglia is not accompanied by
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extensive immune activation or gliosis in the CNS. These data further-

more indicate that the functionality and gene expression changes

observed in constitutive Ercc1Δ/ko mice are not microglia intrinsic but

likely caused by an aging environment, in agreement with earlier pos-

tulations (Raj et al., 2014).
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