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The dissemination of tumor cells to local and distant sites presents a significant
challenge in the clinical management of many solid tumors. These cells may
remain dormant for months or years before overt metastases are re-awakened.
The components of the extracellular matrix, their posttranslational modifications and
their associated factors provide mechanical, physical and chemical cues to these
disseminated tumor cells. These cues regulate the proliferative and survival capacity
of these cells and lay the foundation for their engraftment and colonization. Crosstalk
between tumor cells, stromal and immune cells within primary and secondary sites is
fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell
dormancy and outgrowth. This review will examine the role of the extracellular matrix
and its associated factors in establishing a fertile soil from which individual tumor cells
and micrometastases establish primary and secondary tumors. We will focus on the role
of the lung extracellular matrix in providing the architectural support for local metastases
in lung cancer, and distant metastases in many solid tumors. This review will define
how the matrix and matrix associated components are collectively regulated by lung
epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy
and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell
subpopulations to prevent metastatic disease will be discussed. The development of
novel matrix-targeted strategies have the potential to significantly reduce the burden
of metastatic disease in lung and other solid tumors and significantly improve patient
outcome in these diseases.
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ECM, extracellular matrix; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; ERK, extracellular
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fibroblast growth factor; FGF2, fibroblast growth factor 2; GAS6, growth arrest -specific protein 6; HAPLN1, Hyaluronan
and Proteoglycan link protein 1; HB-EGF, Heparin-binding EGF-like growth factor; HGF, hepatocyte growth factor; HIF1a,
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associated coiled -coil kinases; SOX2, SY-box transcription factor 2; STAT5, signal transducer and activator of transcription
5; TAZ, tafazzin; TGFb, transforming growth factor beta; TLR, toll like receptor; TNFa, tumor necrosis factor alpha; uPA,
Urokinase-type plasminogen activator; VCAM-1, vascular cell adhesion protein 1; VEGF, vascular endothelial growth factor.
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LUNG CANCER DYNAMICS AND
DORMANCY

Lung cancer remains the leading cause of cancer death worldwide
(1). Non-small cell lung cancer (NSCLC), which consists
of adenocarcinoma, squamous cell carcinoma and large cell
carcinoma, accounts for more than 80% of all lung cancer
cases (2). Adenocarcinoma and squamous carcinoma are the
predominant NSCLC subtypes. Large cell carcinoma represents
less than 5% of NSCLC cases and is diagnosed when the
tumor cannot be identified by conventional adenocarcinoma
and squamous markers. Large cell NSCLC is increasingly
viewed as an undifferentiated form of squamous carcinoma
and adenocarcinoma rather than a distinct histological subtype,
as more sophisticated molecular characterization of these
tumors identifies features of the adenocarcinoma or squamous
carcinoma subtypes within these tumors. Adenocarcinoma and
squamous carcinoma have distinct anatomical growth patterns,
with adenocarcinoma and squamous carcinoma developing in
the distal and central lung, respectively. NSCLC subtypes are
believed to arise from different cells of origin in a context-
dependent manner (3) although the etiology of non-small cell
lung cancer subtypes remains to be precisely defined.

Effective management of NSCLC is hampered by the late
presentation of the disease, when metastatic foci are typically
already established. The major sites of non-small cell lung cancer
metastasis are the brain (12–47%), bone (16–39%), liver (7–22%),
intrapulmonary (to contralateral or ipsilateral lobes, 11–26%),
pleura (10–13%), thoracic lymph node (29%) and adrenal gland
(6–15%) (4–7). The specific organ tropism of lung cancer cells
for these secondary sites partly depends on the histology and
genomic profile of the primary tumor (8, 9). While the metastatic
profile of adenocarcinoma and squamous carcinoma are similar,
adenocarcinoma has a higher incidence of bone metastases
and intrapulmonary metastases than squamous carcinoma (5,
10), suggesting that adenocarcinoma and squamous carcinoma
cells, either intrinsically or through their interaction with
their tumor microenvironment, are differentially programmed
with regards to metastatic propensity and organ tropism. This
review will unravel the current understanding of how the
extracellular matrix of the primary lung tumor and secondary
sites regulate the formation of metastatic foci in non-small
cell lung cancer.

Aided by improved detection modalities (11, 12), lung
cancer is increasingly being diagnosed during the early stages
of progression, where curative-intent surgical resection is the
front line therapy and is associated with significantly greater
5 year survival than disseminated disease. However, disease
recurrence is prevalent even among early stage (stage I and
II) NSCLC patients, with 30–60% of early stage patients with
margin-negative resected lung cancer developing local or distant
disease recurrence (13, 14). NSCLC has a relatively high rate of
synchronous (25%) and metachronous (2% per year) tumors.
These tumors may develop from multiple independent tumor
initiating events or through contralateral or ipsilateral metastasis
of a primary lung tumor, making it difficult to determine the
true rate of intrapulmonary metastasis in NSCLC (15, 16).

These etiologies are distinct processes, with the former occurring
when multiple tumors are initiated independently in the lung
but emerge metachronously due to differential reawakening
of the dormant transformed cells in situ. Conversely, the
latter occurs via a conventional metastatic process whereby
cells disseminate away from the primary tumor to colonize a
niche within the lung that is anatomically distinct from the
primary tumor site.

Emerging evidence from DNA sequencing studies mapping
the clonal evolution of lung tumors is providing unprecedented
insight into the dynamics of lung tumor outgrowth, as well as
distinguishing between tumors arising from intrapulmonary
metastases or from independent transformation events.
Correlations between multiregional tumor sequencing and
smoking-associated behavior suggest that driver gene mutations
occur several decades prior to cancer diagnosis (17) and
therefore that primary and secondary NSCLC tumors are
likely to undergo some period of dormancy before becoming
re-awakened. Furthermore, intrapulmonary metastases are
associated with a longer latency than distant metastases,
commonly re-emerging more than 5 years following surgery
(13). In addition to genetic changes, widespread and dispersed
changes in the structure and composition of the lung ECM
as well as the transcriptional profile of normal bronchial
epithelia in smokers and lung cancer patients are thought to
represent a field of cancerization that promotes tumor initiation
and regulates the dissemination of lung tumor cells from the
primary site (18–22). Similarly, the severe extracellular matrix
remodeling in chronic lung diseases such as chronic obstructive
pulmonary disorder (COPD) and idiopathic pulmonary fibrosis
(IPF), which are associated with an increased risk of lung
cancer development, may also contribute to this field effect
(23, 24). Although the mechanisms underlying these clinical
associations remain unclear, these associations support the
notion that the extracellular matrix is an important regulator
of NSCLC etiology.

The mechanisms that drive the dormancy and reawakening of
lung cancer cells both within the lung and in other secondary
organs remain to be precisely defined, however, there is a clear
tissue tropism to the induction, maintenance and re-awakening
of tumor cell dormancy that occurs in a cancer type-dependent
manner (25, 26). The extracellular matrix is well recognized as
a regulator of cellular proliferation and differentiation. Studies
in other cancers have revealed mechanisms by which the matrix
regulates this dormancy and the outgrowth of metastases,
and these molecular alterations are also seen in lung cancer.
As such, valuable insights into the dormancy and metastatic
behavior of primary lung tumors come from studies of the
metastatic colonization of the lung by non-pulmonary cancer
cells, as well as studies of both primary and metastatic lung
cancer. The importance of the extracellular matrix in regulating
dormancy and re-activation is emerging as an important area of
research, and a resource from which novel therapies targeting
metastasis are being developed. This review addresses our
current understanding of the role of the extracellular matrix in
regulating the dormancy and emergence of both primary and
secondary lung tumors.
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THE ROLE OF THE ECM IN PRIMARY
AND SECONDARY DORMANCY
DYNAMICS

The accredited model of tumor dynamics is that disseminated
cancer cells interact with both local and distal stromal and
immunological cells through systemic and local signaling to
establish niches that support the engraftment and survival
of cancer cells. The seed and soil hypothesis states that for
successful metastasis to occur, disseminated tumor cells must
be compatible with the secondary niches that they go on to
colonize. Disseminated tumor cells may be maintained in these
metastatic niches in a dormant or quiescent state, and cells
that are compatible with their new environment may later re-
enter the cell cycle and start proliferating to form metastatic
foci in response to intrinsic and microenvironmental cues (27).
The extracellular matrix and associated factors engage with cell
surface receptors to regulate intracellular signaling programs that
control this exit and re-entry to the cell cycle in a context- and
cell type- dependent manner. An emerging understanding of
how these processes are co-ordinately regulated by the tumor
microenvironment is challenging claims that this quiescence
occurs stochastically (28).

The extracellular matrix of the lung incorporates a diverse
group of core matrisomal proteins that form the structural
basis of the tissue, together with the enzymes responsible for
remodeling and processing these molecules, as well as the soluble
factors that are associated with this matrix (29) (Figure 1).
Together, these matrisomal proteins function as a dynamic
network of structural and signaling effectors that undergo
constant remodeling. The function of the central airways and
distal parenchyma are profoundly shaped by regional differences
in the extracellular matrix composition and architecture of
these compartments (Figure 1A). Associations between the
ECM composition of NSCLC tumors and the risk of disease
recurrence (30), points to a role for the extracellular matrix in
regulating cancer cell dissemination, dormancy and outgrowth in
intrapulmonary and distant metastases.

While mechanisms of dormancy appear strongly cell-
type and context dependent, these pathways largely converge
on mitogenic and stress response signaling pathways. In
particular, the TGFβ/BMP, FAK, Src, uPA, EGFR, and integrin
signaling pathways are integrated with LKB1/AMPK, PI3K and
metabolic signaling to modulate ERK/p38, JNK, cyclin and
downstream cell cycle regulators to control the entry and
exit of cells from the cell cycle (27, 31, 32) (Figure 1D).
For example, integrin receptor and uPAR activation converge
on the ERK/p38 pathway where low ERK1/2 activity coupled
with high p38 activity drives a dormant phenotype (33)
through transcriptional regulation that is associated with poor
progression-free survival in numerous cancers (34) (Figure 1E).
Crosstalk between integrin signaling and the EGFR and uPAR
pathways, which intersect with the downstream effectors of
integrin receptors, including FAK, also regulate dormancy by
these same p38 and p27-dependent pathways, as well as through
Akt signaling cyclin D1 activation (35, 36). In addition, stem
cell programs characterized by pro-survival, quiescent signaling

also support dormancy and metastasis. For example, cues from
the extracellular matrix interact with Wnt and Notch signaling
to mediate these quiescent phenotypes (Figures 1D,E). How
these pathways operate specifically in lung cancer remains less
clear than in other well-studied cancer types such as breast
cancer (37). However, concordant transcriptional signatures
uncovered in breast metastases within the lung and models of
aggressive metastatic lung cancer (38) suggest that common
mechanisms involving the ECM may operate across cancer
types. Understanding the effect of the extracellular matrix in
orchestrating these intersecting dormancy signaling pathways
lays the foundation for developing therapeutic approaches to
improve lung cancer treatment.

The Core Matrisome
The extracellular matrix composition of the central lung is
dominated by fibrillar collagens (primarily collagen types I
and II), while the interstitial ECM of the alveoli in the
distal lung is a relaxed network of mainly type I and II
collagens and elastin (Figure 1A). Compared with normal
lung tissue, primary lung tumors display significant changes
in the core matrisomal proteins that maintain the structural
and mechanical features of the tissue. Due to their different
anatomical locations, adenocarcinoma and squamous cancer
cells are exposed to different extracellular matrix environments
(Figure 1A), which likely shape the evolution of these tumor
types and thus contribute to differences in etiology. While direct
comparisons of the ECM landscape of adenocarcinoma and
squamous carcinoma with respect to peripheral and central
ECM composition in healthy lung have not yet been performed,
consideration of the ECM composition in different lung
anatomical compartments will be important in identifying shared
ECM remodeling programs that generally contribute to lung
tumorigenesis across multiple subtypes. Even within these broad
histological subtypes, the extracellular matrix landscape differs
between distinct molecular subclasses of adenocarcinoma and
squamous carcinomas (39). Whilst oncogenic driver mutations
are known to contribute to some of this heterogeneity in both the
primary and secondary NSCLC tumors, it is now clear that our
understanding should include extracellular matrix components
that also modulate tumor heterogeneity. Precisely how these
anatomical differences in the lung affect non-small cell lung
cancer dormancy dynamics, and indeed whether they play a role
in the preferential colonization of the lung by non-pulmonary
tumor cells, remains unclear. Emerging evidence does, however,
point strongly to roles for the core matrisome composition
and architecture in regulating the dormancy and outgrowth of
cancer cells within the lung as well as at other common NSCLC
secondary sites (Table 1).

Collagens
Collagens are a significant component of the lung ECM and
altered collagen composition and structure are known to
regulate cancer cell dormancy. Primary lung tumors of both
the adenocarcinoma and squamous carcinoma subtypes have
increased fibrillar collagen deposition and an altered collagen
architecture that is consistent with a fibrotic response (40)
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(Figure 1B). In breast cancer models, increased fibrillar collagen
activates β1- and β4- integrin signaling to promote the
colonization and proliferation of metastatic foci in the lungs (41)
as well as the re-awakening of disseminated dormant tumors
cells (42), and as such, similar mechanisms are expected to
operate in primary NSCLC tumors. Increased expression of
type IV collagen, and decreased expression of collagen III and
collagen XVIII are associated with NSCLC liver metastases,
where they activate pro-survival α2β1-integrin signaling to

sustain NSCLC cancer cells within the liver (43), although the
mechanisms driving these changes are unknown. In primary
lung adenocarcinoma, fibrosis seen in mediastinal lymph node
metastases resembles that of the primary lung adenocarcinoma
(40), suggesting that either intrinsic features of the primary
cancer cells promote a fibrotic environment at secondary
sites through crosstalk with stromal cells, or that aberrant
fibrosis at secondary sites may promote overt outgrowth of the
disseminated cells that drain there.

FIGURE 1 | Continued
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FIGURE 1 | The interaction of cancer cells with the extracellular matrix (ECM) in the lung regulates diverse intracellular signaling pathways to regulate cancer cell
dormancy, proliferation and metastases in NSCLC. Multiple cell types within the lung generate and remodel the extracellular matrix (A). The composition of the ECM
differs from the central airways and peripheral parenchyma where alveoli enable gas exchange, and is highly dysregulated in NSCLC (A). This ECM is composed of
matrisomal proteins, factors that associate with these proteins as well as enzymes involved in remodeling this matrix (B). The posttranslational modification of ECM
proteins and their interaction with each other ECM components determines the biomechanics of the tissue. ECM remodeling also releases growth factors and
reveals cryptic sites within ECM components that are recognized by cells. Receptors on the cell membrane directly interact with specific ECM components and
secreted factors (C) to activate diverse intracellular signaling programs that regulate the proliferative and metastatic characteristics of cancer cells (D). These
signaling programs drive the transcription of cell cycle regulators, stem cell markers and genes involved in EMT, migration, invasion and immune activation to
regulate tumor dynamics (E). In addition, these signaling programs activate the expression of ECM genes and ECM remodeling enzymes to drive further evolution of
the tumor microenvironment (E). Dotted lines indicate indirect interactions. ATII, Type II pneumocyte; ATI, Type I pneumocyte.

Whilst changes in the composition and architecture are
the major collagen alterations in lung tumors, mutations in
collagen type V alpha 2 chain (COL5A2) and collagen type
II alpha I chain (COL2A1) genes have also been detected in
subclonal secondary lung tumors following genomic doubling
events in both adenocarcinoma and squamous carcinoma (44).
While somatic mutations in extracellular matrix components are
considered rare, and of lesser influence on the tumor extracellular
matrix landscape than dynamic compositional and architectural
changes, the effect of these collagen mutations on the extracellular
matrix architecture and function remain to be investigated.

The collagen composition of tissues is partly determined by
the activity of proteases that process nascent collagen molecules
for assembly into the 3D environment. Bone Morphogenetic
Protein 1 (BMP1) and members of the A Disintegrin and
Metalloproteinase with Thrombospondin motifs (ADAMTS)
family, which are differentially expressed in NSCLC tumors, are
required to cleave the N- and C-termini of the pro-collagen
peptide to enable collagen fibrillogenesis and deposition (45). It
is not clear yet how altered expression of these proteases within
the primary tumor might influence the increased deposition
of fibrillar collagens in NSCLC. In addition to changes in
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TABLE 1 | Summary of functional studies identifying a direct role for ECM components in Dormancy and outgrowth in solid cancers affecting the lung.

ECM category ECM component Role Experimental system

Collagens Collagens Increased fibrillar collagen levels promotes proliferation,
metastasis and outgrowth
Increased type IV collagen, decreased type III and type XVIII
collagens promote liver metastasis and outgrowth

In vivo models and human biospecimens (40)

In vivo models and human biospecimens (43)

Glycoproteins Laminin Laminin-cleavage promotes dormant re-awakening Metastatic breast cancer model (61, 62)

Fibronectin Increased fibronectin promotes lung colonization and
outgrowth, NSCLC proliferation and invasion

Metastatic lung cancer mouse model (66)
Metastatic breast cancer mouse model (68)
Biospecimens of metastatic human breast cancer (67)
In vitro NSCLC models (70, 71)

Tenascin-C Promotes adenocarcinoma metastasis
Promotes lung colonization

In vivo and human biospecimens (40)
In vivo breast cancer model(80)
In vivo breast cancer model (84)

Periostin High expression is associated with poor prognosis
High expression supports lung colonization and outgrowth

Human biospecimens (85–88)
In vivo breast cancer model (85)

Thrombospondin High expression of thrombospondin-2 supports lung
colonization and metastasis of primary NSCLC

High thrombospondin-1 expression inhibits tumorigenesis

in vivo breast cancer model and human
biospecimens (93)
human NSCLC biospecimens (95)
in vitro and in vitro models (94)
in vivo NSCLC model (98)

Osteopontin High expression is associated with poor survival
High expression promotes invasion

Human NSCLC biospecimens (102, 103)
In vitro models (104, 105)

Proteoglycans and
Glycosaminoglycans

Versican High expression is associated with poor survival Human NSCLC biospecimens (111)

Hyaluronan High expression of hyaluronan or CD44 promotes tumor
recurrence
High expression promotes tumor proliferation and
outgrowth

Human NSCLC biospecimens (111, 117)

in vitro models, in vivo models and human
biospecimens (39, 115)

the collagen composition, the fibrillar collagen architecture is
altered in NSCLC, becoming more disordered and fragmented
at the submicron scale but more aligned at the macro scale
compared with normal lung tissue (46). The collagen architecture
is regulated at these different length scales by collagen molecules
binding to fibronectin, small leucine-rich proteoglycans and
Fibril Associated Collagens with Interrupted Triple Helices
(FACIT collagens) to nucleate the collagen network (47) as well
as the activity of remodeling enzymes (see ECM Remodeling
Factors) and cellular traction forces generated by resident cells.
However, the mechanisms governing these broad architectural
changes in the fibrillar collagen network in lung cancer remain
unclear. Aligned collagen fibers seen in higher stage lung tumors
would be expected to generate anisotropic biomechanics that
have been shown to provide contact guidance cues to regulate
cell shape and promote migration in breast cancer models (48).
However, how the discrete collagen architecture in the central
airways and distal lung contribute to the metastatic behavior of
lung cancer cells remains to be investigated.

Collagens, as well as laminin, fibronectin, thrombospondin,
osteopontin and other core matrisomal proteins mediate their
effects on dormancy by acting as ligands for integrin receptors
to activate intracellular proliferation pathways. Integrin receptors
are heterodimers of α and β chains that bind to a variety of
extracellular matrix molecules, and are the main cellular receptor
for collagens. Integrin receptors are capable of bidirectional
signaling across the plasma membrane. Intracellular signals
regulate the conformation and ligand affinity of the extracellular
domain while also mediating intracellular cytoskeletal signaling

(35). For example, activation of β1-integrin has been shown
to lead to activation of Src and subsequently FAK and ERK
signaling via Ras to regulate dormancy (Figure 1D). The
subsequent activation of MLCK in this signaling cascade also
regulates actin dynamics and stress fiber formation (42), driving
the translocation of p27 into the cytoplasm to initiate cell
proliferation and re-entry of dormant cells into the cell cycle
(49). Simultaneously, integrin receptor engagement activates
CDC42, which inhibits p38 expression, thus resulting in a high
ERK/low p38 profile that supports continued cell proliferation.
Conversely, loss of receptor engagement drives a low ERK/high
p38 profile that favors tumor cell dormancy, while negatively
feeding back onto ERK activation to inhibit cell proliferation (50).
Integrin signaling also has significant crosstalk with growth factor
signaling. For example, EGFR signaling and activated integrin
receptors can induce ligand-independent activation of EGFR
signaling (51) (Figure 1D). Whether activating EGFR mutations,
found in 15% of adenocarcinoma patients (52) directly perturb
integrin signaling responses in NSCLC remains to be seen.

This extensive crosstalk between signaling pathways
downstream of integrin receptors generates a network of
diverse intracellular signaling pathways that are finely tuned
to respond to heterogeneity within the extracellular matrix
environment. Specific pairs of α- and β-integrin receptors have
different affinities for extracellular matrix components, and enact
different downstream signaling events. This creates a signaling
program that can be fine tuned to interpret and respond to
the subtle shifts in the extracellular environment (53). The
collagen-binding integrin subunits β1 and α3 (which also bind
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fibronectin, laminin, and thrombospondin), together with the
α5- (binds fibronectin), β3- (binds fibronectin, von-willebrand
factor, and thrombospondin) and β4- (binds laminin) integrin
receptors have been shown to be upregulated or functionally
activated by their respective ligands within the lung niche to
promote the proliferation and metastatic potential of cancer cells
(42, 54–59). In this way, the collagen composition and presence
of other integrin ligands in the lung can act as a switch between
the dormant and proliferative state (49).

Glycoproteins
Glycoproteins are proteins that are covalently modified with
carbohydrate groups. They have diverse functions within the
primary tumor, pre-metastatic and metastatic niches including
the regulation of dormancy and outgrowth. Below we will discuss
the role of some of the most well studied glycoproteins involved
in primary and secondary lung tumors.

Laminin
Laminin is a heterotrimeric glycoprotein that acts as an important
component of the basement membrane in the lung as well as
in other tissues (29). Basement membrane ECM components
such as laminin have been shown to play an important role in
regulating the cellular proliferative response in both health and
disease (Figure 1A). Importantly, they are widely understood to
promote tumor cell dormancy in non-pulmonary tumors (60).

The laminin-111 isoform in the lung basement membrane is
known to regulate the dormancy of breast cancer cells colonizing
the lung (61). Albrengues and colleagues found that laminin-
111 digestion by neutrophil-derived matrix metalloproteinase-9
(MMP9) and elastase reveals cryptic sites that in turn activate
β1-integrin signaling to re-awaken dormant breast cancer cells
in the lung (61). This builds upon observations that MMP9
digestion of laminin-111 drives a loss of cell polarity and tumor
growth in primary breast cancer models (62). Furthermore,
oncogene-driven hyperactive Raf/MEK/ERK signaling induces
MMP9 expression in breast cancer cells (62), suggesting that
oncogenic features of the cancer cells may accelerate ECM
remodeling-dependent mechanisms of reawakening. It is not
known if these mechanisms also operate in primary lung
tumors or intrapulmonary metastases derived from lung tumors,
however, further investigations are warranted since neutrophil
infiltration and Raf/MEK/ERK hyperactivation are both features
of NSCLC tumors (63, 64).

Fibronectin
The glycoprotein fibronectin directly interacts with multiple
extracellular matrix proteins as well as integrin receptors α3,
α5, αV, α8, β1, and β3, which together regulate the structure
of fibronectin fibrils, cell-ECM engagement and activate pro-
proliferative intracellular signaling programs. Under cellular
contraction, tensile forces applied to fibronectin reveal cryptic
sites that bind to other fibronectin fibers, inducing fibronectin
fibril formation that further stretches the fibers (65). These
stretched fibronectin fibers act as binding sites for collagen fibers
to regulate the fibrillar collagen network architecture. Fibronectin
is widely implicated in regulating tumor cell dormancy in breast
cancer and melanoma metastasis to the lung by regulating the

architecture of surrounding ECM proteins, as well as by direct
engagement of integrin receptors (66, 67). Growing evidence
suggests that fibronectin may also play a similar role in primary
lung cancer progression as well as intrapulmonary metastases.

Fibronectin expression is increased in primary lung tumor
sites and at pre-metastatic sites of breast cancer metastasis to the
lung (40, 66, 67). In breast cancer models, fibronectin is expressed
by fibroblasts in the pre-metastatic niche due to the recruitment
and activation of hematopoietic progenitors recruited to the
lungs (66, 68). β1-integrin receptors on colonizing cancer cells
are then activated upon fibronectin binding. This in turn activates
MLCK and actin stress fiber formation that switches breast cancer
cells from dormancy to proliferation (49). In primary NSCLC
tumors, fibronectin-mediated β1-integrin activation also results
in PI3K/Akt and FAK activation to drive pro-proliferative and
pro-invasive signaling (69–71). To date, it is not yet clear if
the arrangement of fibronectin fibers is significantly altered in
NSCLC to regulate focal adhesion formation and FAK activation
in a similar manner (72).

In addition to its direct stimulation of integrin signaling,
fibronectin can indirectly influence growth factor signaling
and cell proliferation by interacting with Bone Morphogenetic
Protein-1 (BMP-1), Hepatocyte Growth Factor (HGF), Fibroblast
Growth Factor 2 (FGF-2), Platelet-derived Growth Factor
(PDGF) and latent TGFβ, although this is yet to be demonstrated
specifically in NSCLC tumors (73). It is by these manifold
mechanisms affecting cellular proliferation and migration that
fibronectin is assumed to regulate lung tumor progression and
metastasis. However, the role of this ECM protein in regulating
gap junction formation in type II pneumocytes in healthy lung
tissue (74, 75) suggests that fibronectin may also influence
lung adenocarcinoma tumorigenesis by contributing to altered
epithelial structure, cell polarity and potentially self renewal
programs in this histological subtype.

Tenascin-C
Tenascin-C is a large multi-domain glycoprotein that undergoes
extensive post-transcriptional and post-translational regulation.
It is highly expressed in lung development during branching
morphogenesis and alveolarization. However, in adult lungs
it is only transiently expressed in response to injury (76).
Loss of tenascin-C during lung development alters TGFβ

signaling, reduces fibroblast to myofibroblast transformation and
increases collagen deposition in small airways (76). Conversely, in
response to injury, Tenascin-C stimulates TGFβ responsiveness
to promote collagen deposition and fibrosis (77). Tenascin-C,
like its binding partner fibronectin, is significantly upregulated in
fibrotic lungs and in lung adenocarcinoma (40) raising the notion
of a potentially overlapping mechanistic contribution to these
disease processes. Tenascin-C transcription is also repressed
by the canonical lung adenocarcinoma transcription factor
Nkx2-1 (40). As adenocarcinoma progresses, Nkx2-1 expression
decreases, releasing the suppression of Tenascin-C expression,
which is thought to feed into accelerating tumor progression and
metastasis (40).

Tenascin-C is also a ligand for β1-containing integrin
receptors and is known to activate pro-proliferative integrin
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signaling. Together with its close association and interactions
with fibronectin, its engagement with integrin receptors is a
major mechanism by which this glycoprotein regulates tumor
dynamics. Tenascin-C also contains EGF-like domains which
can potentially directly activate EGFR signaling (78). While
evidence that it directly activates EGFR signaling in NSCLC
tumors is currently lacking, it remains possible that Tenascin-C
may mediate some of its effects through this mechanism in EGFR
wild type tumors. Tenascin-C also binds a number of pleiotropic
growth factors, including TGFβ, PDGF, FGF and insulin-
like growth factor (IGF) family members, and therefore likely
plays an important role in regulating growth factor availability
and proliferative signaling within the lung environment (79).
Importantly, the role of tenascin-C as a regulator of TGFβ

signaling appears to be central to its effects on dormancy in breast
cancer cells colonizing the lungs and parallels may be drawn to
primary lung tumors or intrapulmonary metastases. Following
the dissemination of single breast cancer cells to the lungs, TGFβ

signaling is downregulated in dormant cells, switching them into
a pro-proliferative phenotype that establishes macrometastatic
foci (80). This switch from dormancy to proliferation is
determined by TGFβ availability, which is tightly regulated.
TGFβ is sequestered to the matrix and remains unavailable by
its complexation with the latency associated peptide, which is
itself bound to integrin receptors, and latent TGFβ binding
proteins, which are tethered to fibronectin, fibrillins, fibulins,
proteoglycans and other fibrillar ECM components (73, 81,
82) (Figure 1B). This complex holds TGFβ in an inactive
state, while its release from these complexes frees TGFβ to
bind TGFβ receptors and activate pro-dormancy signaling. By
interacting with TGFβ (79), tenascin-C sequesters TGFβ in an
inactive state to prevent the induction of pro-dormancy cellular
reprogramming and thereby enable proliferative signaling (83)
(Figure 1E), although it is not clear if this is the central
mechanism by which this ECM component contributes to
aggressive NSCLC.

High expression of Tenascin-C in breast cancer is associated
with increased risk of lung metastases, suggesting that it
affects more than proliferative signaling in cancer cells. Here
Tenascin-C acts in an autocrine manner on disseminated
cancer cells to support their self-renewal, survival and lung
colonization characteristics. Tenascin-C-mediated breast cancer
cell reprogramming inhibits JAK2-STAT5 signaling to enhance
MSI1 expression and drive pro-metastatic NOTCH signaling
(84) (Figures 1C,D). Whether these interactions occur in
subpopulations of cancer cells or equivalently across all cancer
cells remains to be determined. As larger metastatic foci form
in the lungs, Tenascin-C is increasingly expressed by activated
fibroblasts in the metastatic niche (84). How this switch from
cancer to fibroblast-mediated expression occurs, and whether
these same mechanisms occur in primary and intrapulmonary
secondary lung tumors remains unclear. Similar mechanisms
observed in bone-tropic breast cancer metastases (84) suggests
that Tenascin-C also supports metastatic outgrowth in bone
metastases and may contribute to the metastasis of lung cancer
cells to the bone microenvironment. Taken together, Tenascin-
C appears to play a role in metastatic colonization at multiple

sites, both those naturally rich in Tenascin-C and also in tissues
that are activated to upregulate Tenascin-C in response to the
presence of cancer cells. Further studies are warranted to dissect
the mechanisms by which Tenascin-C affects the progression
and dissemination of lung tumor cells, with particular attention
to where these mechanisms converge with and diverge from its
more established role in breast cancer metastasis.

Periostin
Periostin is a secreted glycoprotein that has also been shown
to induce awakening of dormant cancer cells within the lung.
High expression of periostin, as well as the aberrant expression
of alternatively spliced isoforms of this gene, are also associated
with poor prognosis in primary lung cancer (85–88). In
metastatic breast cancer models, TGFβ2 and TGFβ3 expressed
by disseminated tumor cells induce periostin expression in
lung fibroblasts and endothelial tip cells (85, 89). Periostin
within the lung environment directly interacts with Wnt agonists
Wnt1 and Wnt3a to potentiate Wnt signaling and promote
the stemness characteristics of disseminated breast cancer cells
(85). This supports the survival of these cells and their self-
renewal capacity in initiating secondary tumors. Together with
its interaction with core matrisomal proteins (Tenascin C,
fibronectin, and type I collagen) and ECM remodeling proteins
such as lysyl oxidases, the high expression of periostin in
lung cancer contributes to the structural and functional ECM
network within lung tissue that enhances the metastatic potential
of cancer cells (90). Importantly, in breast cancer metastasis
models, periostin-mediated tumor initiation is specific to the
lung microenvironment, since it does not affect the progression
of primary breast tumors (85). For this reason, the pro-
metastatic effects of periostin may also play a role in promoting
intrapulmonary metastasis of lung cancer and this mechanism
warrants investigation.

Thrombospondins
The glycoproteins of the thrombospondin family, primarily
thrombospondin-1 and thrombospondin-2, are produced by
immune, vascular and stromal cells within the lung and are
known to inhibit the initiation of primary tumors and the
outgrowth of secondary tumors in the lung (33, 91). One of
the major mechanisms by which thrombospondin-1 regulates
tumor outgrowth and dormancy is by interacting with the latency
associated peptide in complex with TGFβ to release TGFβ into
the local environment (92) and thereby stimulate TGFβ signaling
(see Tenascin-C above). While this has been demonstrated
in vitro, it is not clear if thrombospondin-TGFβ interactions
regulate dormancy in the lung and at secondary lung cancer sites
in vivo.

Studies in breast cancer models of lung metastasis have
identified that cancer cells with high AXL expression also
highly express thrombospondin-2 and this drives TGFβ1-
dependent lung colonization (93). Upon colonization, interaction
with fibroblasts in the lung triggers a phenotypic switch
in the disseminated tumor cells to a proliferative, epithelial
phenotype with activation of BMP-dependent SMAD 1-5
signaling, and downregulation of TGFβ-dependent SMAD 2/3
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signaling to promote tumor outgrowth (93) (Figure 1D). In
contrast, thrombospondin-2 expression by lung cancer cells
promotes lung cancer bone metastasis through osteoclastogenesis
(94) which may explain the association of this isoform
with recurrence in adenocarcinoma (95). These data point
to a role for thrombospondin-2 in promoting cancer cell
proliferation in metastatic foci within the lung, although it is
not clear what role this protein plays in primary tumor onset,
progression, and evolution.

The role of thrombospondin-1 in lung tumors, however,
remains contentious. Serum and intratumoral levels show
conflicting associations with patient outcome (95–97), which
may reflect differences in the release of thrombospondin-1 from
the tumor microenvironment into the systemic circulation,
or its specific localized effects within the tumor environment.
This discrepancy may also be partly explained by differential
effects of thrombospondin-1 on the initiation compared with
the progression of lung tumors. Unlike thrombospondin-2,
thrombospondin-1 acts as a tumor suppressor in pre-malignant
Kras-mutant lung carcinoma, by inducing p53-dependent
epithelial cell senescence (98). It is not known if this role
for thrombospondin-1 is abrogated in the development
of p53-mutant lung tumors, which lack functional DNA
damage checkpoints. This may, however, point to a larger
genetic dependency for the role of thrombospondin-1 in
tumor progression. High MYC expression in breast and
prostate cancer cell lines, which mimics MYC amplification
seen in a significant proportion of NSCLC tumors, leads
to the transcriptional upregulation of prosaponin (99).
Prosaponin induces thrombospondin-1 via p53 activation
in fibroblasts within the tumor environment, thereby increasing
thrombospondin-1 levels in the local tumor microenvironment.
The context dependency of thrombospondin-1’s involvement
in lung cancer initiation, primary tumor progression and the
establishment of secondary tumors remain to be clarified.

Osteopontin
Osteopontin is a secreted matrix–associated phospho-
glycoprotein that is activated by MMP3/7 or thrombin protease
(100, 101). High expression of osteopontin is associated with
poor survival and tumor aggressiveness in NSCLC (102, 103).
Osteopontin interacts directly with α4- and α9β1 integrins to
promote tumor cell invasion (104), with the alternatively spliced
C-terminally truncated form of the protein being particularly
pro-invasive (105). Follistatin-like protein 1, which regulates
alveolar maturation in the developing lung by inhibiting
BMP4/SMAD1/3/5 signaling (106) and inhibits emphysema
development in response to injury (107) also binds directly
to pro-osteopontin to prevent its proteolytic activation and
thus inhibit lung cancer metastasis. This likely underpins why
the expression of follistatin-like 1 protein is downregulated in
NSCLC and low expression of this protein is associated with
poor survival (101).

Proteoglycans and Glycosaminoglycans
Proteoglycans have a central protein core from which covalently
attached linear repeating glycosaminoglycan chains or

sulfated polysaccharides extend outward. Proteoglycans are
considered a subclass of glycoproteins that specifically contain
unbranched and repeating O-linked carbohydrate molecules
called glycosaminoglycans. The major glycosaminoglycan
classes are hyaluronan, chondroitin, dermatan, heparin and
keratan. Proteoglycans are commonly secreted by cells and are
enriched in the basement membrane where they act as nucleating
components for the fibrillogenesis of collagens and the assembly
of elastin fibers (108, 109).

Versican
Versican is a chondroitin sulfate proteoglycan that regulates the
perialveolar tissue volume and contributes to alveolar maturation
during lung development (110). Although the mechanisms
governing versican’s role in lung development remain unclear,
its interaction with CD44 and β1-integrin is likely to play an
important role in these processes. In lung cancer, versican is
highly expressed in NSCLC and its expression is tightly correlated
with hyaluronan (111). The particular association of versican
with patient outcome in adenocarcinoma, but not squamous
NSCLC (111) also suggests that its effects may be specific to the
progression of the adenocarcinoma histological subtype.

Versican has been shown to be produced by lung cancer cells
and activate alveolar macrophages via TLR2, TLR6 and CD14
signaling to induce TNFα and IL6 production that subsequently
supports lung colonization (112). The association of versican with
proliferative signaling in breast, brain, prostate and melanoma
cancer cells (113), suggests it may also play a role in regulating
the growth of both primary tumors and metastatic foci alike.

Hyaluronan
Hyaluronan is an unbranched heteropolysaccharide
glycosaminoglycan that does not form proteoglycans but
non-covalently interacts with proteoglycans and other ECM
components. It is present within the basement membrane of
bronchial and bronchiolar epithelium, within the perivascular
region of large blood vessels, and on the cell surface of alveolar
macrophages in the healthy lung. CD44, the main cellular
receptor for hyaluronan (Figures 1B,C), is localized to the
basolateral surface of the bronchial epithelia, enabling these
cells to bind to hyaluronan in the basement membrane.
CD44 expression is increasingly associated with the stemness
characteristics of cancer cells, although the presence of cancer
stem cells in NSCLC subtypes remains equivocal. At present
it also remains unclear whether ECM-CD44 engagement
drives stemness phenotypes, or whether the engagement of
already upregulated CD44 ligands with ECM components
such as hyaluronan preferentially supports cancer cells with
stem-like phenotypes. In the normal lung, hyaluronan is
expressed by multiple cell types in response to injury, where
it is involved in the fibrosis and wound repair response
and modulates lung inflammation (114). However, in lung
cancer, hyaluronan has been shown to promote the outgrowth
of NSCLC tumors (39). During tumor progression, high
p38 expression in cancer-associated fibroblasts also induces
hyaluronan deposition into the lung tumor environment that
subsequently promotes the proliferation and outgrowth of
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NSCLC (115). Hyaluronan may also promote the colonization
and outgrowth of distant or intrapulmonary metastases, since
high hyaluronan levels are associated with increased recurrence
rates in lung adenocarcinoma (116). Similarly, high expression
of the hyaluronan receptor CD44 on NSCLC cells is associated
with squamous histology, as well as increased metastasis and
poor survival in adenocarcinoma patients (117). In response
to hyaluronan, CD44 receptor engagement activates multiple
downstream signaling pathways including activating TGFβ

signaling as well as Nanog-Stat2, Oct4-Sox2-Nanog and c-Src-
kinase signaling that culminate in STAT3 or CBP/p300 mediated
transcriptional reprogramming (including inducing MMP,
cyclin-D1, pro-survival, and EMT gene expression) as well as
actin cytoskeletal remodeling (Figures 1C–E). Together these
collectively promote the self-renewal capacity of lung cancer cells,
support the survival of cells at the primary tumor site and prime
them for metastatic dissemination and colonization (118, 119).

Age-related loss of the hyaluronan and proteoglycan link
protein 1 (HAPLN1), which directly binds hyaluronan (120), has
also been associated with increased lymph node permeability and
increased lymphatic metastasis in melanoma (121, 122). While
it is not clear if this mechanism also operates in lung cancer,
it reflects broader changes in extracellular matrix secretion by
pulmonary fibroblasts seen during aging and paralleled in chronic
lung diseases (123), that may explain observed increases in
metastatic propensity associated with age in this NSCLC.

MATRISOME-ASSOCIATED FACTORS IN
LUNG DORMANCY

Structural matrisomal proteins in the lung extracellular matrix
directly interact with soluble growth factors and ECM degrading
enzymes (124). Secreted factors specific to the lung are
likely to contribute to the lung tropic characteristics of
dormancy and outgrowth.

Many proteins that associate with the core matrisome regulate
dormancy and outgrowth in a tissue- and context-specific
manner. The most prominent of these is TGFβ, which is
physically tethered to the matrix and is released upon matrix
remodeling. The lung has a uniquely high expression of the TGFβ

superfamily member BMP4, which promotes the dormancy of
disseminated tumor cells within this tissue (125). In breast cancer
models, disseminated cancer cells can overcome the suppressive
microenvironment of the lung by expressing Coco, which directly
binds to BMP4, preventing the activation of TGF receptors and
triggering the re-awakening of dormant cells (125) (Figure 1B).
Importantly, this mechanism appears to be specific to lung tissue
and may explain the lung tropic behavior of non-pulmonary
primary tumors. Low endogenous levels of another ligand of the
TGFβ superfamily, TGFβ2, in the lungs has also been proposed as
a mechanism supporting the outgrowth of disseminated tumor
cells and may explain the short latency of metastatic foci in the
lungs compared with other organs (126). However, it is not clear
if these same mechanisms contribute to the dynamics of primary
lung tumors or their intrapulmonary metastases.

The canonical ligands regulating stemness also interact with
the extracellular matrix and modulate the metastatic capacity and
dormancy phenotypes of cancer cells at primary and secondary
sites. Both lung cancer cells and disseminated cancer cells
that colonize the lung are enriched for stemness characteristics
(127). This stem-cell like population of lung and breast cancer
cells are more responsive to collagen remodeling and integrin-
mediated reawakening mechanisms (28, 128). Wnt and Notch
signaling are fundamental pathways that regulate these stemness
characteristics of NSCLC cells and support the survival of
disseminated cancer cells in the lung (129–131) (Figure 1E).
Lung and breast cancer cells with high expression of the
Wnt inhibitor DKK1 and the stemness factor SOX2 survive
in dormant colonies within the lung, brain and kidneys (28).
In this context, high DKK1 and SOX2 expression induces a
slow proliferative state and self-renewal phenotype that enables
these disseminated cells to persist. Furthermore, DKK1-driven
evasion from Natural Killer (NK) cell–mediated clearance by
downregulation of NK cell activators supports the maintenance
of these dormant colonies (28). High expression of DKK1 also
mediates the outgrowth of bone-colonizing lung adenocarcinoma
cells by inhibiting osteoblast differentiation in the pre-metastatic
niche as well as the induction of the Wnt signaling transcription
factor LEF1 and embryonic development gene HOXB9 (132,
133). The interaction of extracellular matrix components with
Wnt ligands regulates their availability to induce the proliferation
and differentiation of multiple pulmonary cell types as well as
lung cancer cells (133).

The association of these signaling effectors with the core
matrisome in the lung creates a dynamic functional network that
directs the behavior of primary and disseminated cancer cells
alike. An improved understanding of how the dynamics of these
protein-protein interactions influence cancer cell dormancy and
dissemination will generate a more complete picture of the role
of the extracellular matrix as a functional, as well as a structural
component of the tumor microenvironment. The dynamics of
extracellular matrix synthesis and turnover, which regulates the
release and sequestration of these matrisome-associated factors,
is therefore a significant consideration in the functional dynamics
of the tumor microenvironment.

THE DYNAMIC MATRIX AND ITS ECM
REMODELING FACTORS

The extracellular matrix is a dynamic component of the tumor
microenvironment that regulates the capacity of tumor cells
to migrate away from the primary tumor and colonize local
or distant sites to form overt metastases. The structure and
composition of the extracellular matrix is remodeled by multiple
enzymes, such as the lysyl oxidases, MMPs and ADAMTS families
that mediate both the crosslinking and degradation of ECM
components. The degradation products of these remodeling
processes are far from passive byproducts. Many of these
products of catabolic ECM remodeling have individual signaling
roles that mediate crosstalk between cell types within the
tissue environment or are released systemically to influence
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the function of multiple organ systems. Therefore the dynamic
remodeling by these enzymes significantly contributes not only
to the ECM composition within the local tissue environment but
also to the functional responses of cells within both the local and
systemic environments.

ECM Cross-Linking and Stabilization
Collagen architecture is largely built up by the crosslinking of
collagen fibrils to form highly bundled collagen fibers. Collagen
crosslinking is initiated by lysyl hydroxylases, which catalyze the
intracellular hydroxylation of lysine residues. Lysyl hydroxylase
2 is highly expressed in adenocarcinoma, where it promotes
NSCLC metastasis by increasing tumor stiffness to activate
cancer cell invasion, PI3K signaling and modulates collagen
remodeling (134–136). These studies indicate that although lysyl
hydroxylases typically operate on intracellular collagen at the
endoplasmic reticulum, lysyl hydroxylase 2 is also secreted into
the extracellular compartment of the tumor microenvironment
where it modifies collagen fibers (136). It is not yet clear if the
intracellular or extracellular activity of lysyl hydroxylase-2 more
significantly contributes to its pro-metastatic effect.

Enzymes of the lysyl oxidase family catalyze the oxidative
deamination of hydroxy-lysine and lysine to reactive aldehydes
once the collagen has been secreted into the extracellular
compartment. These reactive aldehydes can then spontaneously
crosslink neighboring fibers. This lysyl oxidase-mediated collagen
cross-linking is essential to the formation of mature collagen
fibrils and fibers that underpin the structural integrity of
the collagen matrix. This highly crosslinked collagen is also
more resistant to MMP–mediated degradation (137) and the
crosslink density is known to determine the stiffness of the lung
tissue (138).

In non-pulmonary cancers, the lysyl oxidase family
profoundly promotes the dissemination of cancer cells from
the primary site as well as the colonization of and outgrowth
at distant sites, including the lung, through direct effects on
collagen architecture and tissue biomechanics (41, 139–144), and
through the recruitment of myeloid cells to the premetastatic
niche (68). The secretion of lysyl oxidase (LOX) by tumor cells
in response to intratumoral hypoxia, or as a wound healing
response to surgery, can increase the systemic LOX activity,
thereby catalyzing collagen crosslinking at distant sites, including
within the lung (68, 145). This systemically elevated LOX
activity can therefore promote metastatic colonization and
outgrowth at distant sites. In NSCLC, the expression of LOX and
lysyl oxidase-like 2 (LOXL2) are upregulated and increase the
metastatic potential of lung tumor cells (144). These enzymes are
insufficient to drive cancer cell invasion alone (144) and instead
appear to operate in concert with mesenchymal phenotypic
programs to facilitate dissemination.

The importance of lysyl oxidases in lung cancer dynamics
is dependent on the histological subtype and genomic profile
of the tumor. In particular, loss of LKB1, which occurs in
34% of adenocarcinoma and 19% of squamous carcinomas
(146), induces mTOR-HIF1α signaling to induce lysyl oxidase
expression within the tumor microenvironment. Lysyl oxidase-
mediated collagen crosslinking then increases the stiffness of the

tumor tissue and activates pro-proliferative β1-integrin signaling
(142). Interestingly, increased LOX activity in this context is also
associated with increased transdifferentiation of adenocarcinoma
cells toward a squamous phenotype (142), suggesting that
remodeling of the local ECM and increases in tissue stiffness
may contribute to the development of the squamous histological
subtype of NSCLC.

ECM Turnover
Proteases play an important role in the degradation and
turnover of all matrix components in the lung and at distant
sites. In the lung, neutrophil-derived MMP9, cathepsin G
and elastase cleave laminin-111 (61) and thrombospondin-1
(147) to promote the outgrowth of cancer cells within the
lung. High MMP2 and MMP9 expression are also associated
with increased intrapulmonary metastatic potential of lung
adenocarcinoma (148). In addition, high MMP13 expression
drives the colonization of the brain by lung adenocarcinoma cells,
but was not found to functionally influence the growth of these
micrometastases after their colonization (8).

Proteases within the lung environment also cleave ECM
components to release growth factor ligands that regulate pro-
proliferative intracellular signaling events. For example, BMP1
cleaves latency associated binding peptides thereby releasing
TGFβ into the microenvironment to promote dormancy (149).
Conversely, MMP14 expressed by NSCLC cancer cells and
myeloid cells in the tumor microenvironment digests the
heparin-binding EGF-like growth factor (HB-EGF) to generate
both soluble and membrane-bound heparin-independent growth
factors that can activate EGFR signaling (150, 151). EGF-
like signaling ligands are also released by MMP14-mediated
degradation of the laminin 5 γ2 chain to generate EGF-like
fragments that drive EGFR signaling toward increased NSCLC
tumor growth (150, 151). Similar MMP14-mediated remodeling
operates in the wound healing response of the normal lung to
regenerate alveoli (150, 151), supporting the notion that aberrant
wound healing responses significantly contribute to disease
progression in NSCLC. Amplification of another member of the
metalloproteinase family, MMP13, promotes brain metastases
specifically in Kras-mutant lung adenocarcinoma (8). Although
the precise mechanism underlying this association has not yet
been dissected, this does suggest that the role of MMPs in
lung tumor dissemination is likely to depend on the genetic
profile of the tumor.

Proteases that directly modify core matrisomal proteins also
activate other ECM remodeling enzymes. For example, BMP1
which activates fibrillar pro-collagens by removing their N and
C-termini, also cleaves the pro-LOX protein to release the
mature active enzyme (45). This pleiotropic activity synchronizes
extracellular matrix secretion and deposition with its stabilization
and remodeling within the microenvironment. Furthermore, the
pleiotropic activity of BMP1 and other proteases in releasing
growth factor ligands that are either tethered to the extracellular
matrix (e.g., TGFβ), or as motifs sequestered within intact
protein targets of these proteases (e.g., EGF-like domains),
also orchestrates both ECM and growth factor signaling (152),
which converge on the same intracellular signaling pathways
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(Figure 1D). This synchronization of extracellular events and
the symmetry of intracellular signaling means that extracellular
matrix remodeling can generate profound changes in cancer
cell behavior to collectively regulate tumor dynamics by
multiple mechanisms.

ECM BIOMECHANICS IN LUNG CANCER
PROGRESSION AND DORMANCY

The network behavior of matrisomal proteins determines the
biomechanical properties of lung tissue. Elevated fibrillar collagen
content and higher levels of crosslinking between collagen fibrils
in NSCLC tumors increases the mechanical stiffness of the tissue
(138). Mechanosensitive receptors then activate intracellular
signaling networks that promote the dissemination of cells away
from the primary tumor and support the establishment of
intrapulmonary and distant metastases.

The increased stiffness of the lung tumor environment,
driven by many of the processes described above, is sensed by
lung fibroblasts through a number of mechanisms, including
β1-integrin engagement. This mechanosignaling then directs
their transition to a myofibroblast-like phenotype that secretes
high levels of matrisomal proteins as well as ECM remodeling
enzymes (153). This mechanoresponsive signaling creates a self-
reinforcing amplification loop that further increases the ECM
stiffness in the tumor microenvironment to promote the growth
of primary NSCLC tumors (154–156) (Figure 1E). In in vitro
models, this mechanoresponsive fibroblast activation can persist
for several weeks once the matrix stiffness is reduced, suggesting
that transient stiffening of lung tissue in response to injury may
also induce long lasting effects on cellular behavior that can
potentiate tumorigenic processes (157). In experimental models
of idiopathic pulmonary fibrosis, stiff matrices signal through
FAK and Rho kinase in lung fibroblasts to regulate multiple
downstream pathways including YAP/TAZ, which converge on
apoptotic mediators to inhibit fibroblast apoptosis, as well as
further accelerating pro-fibrotic remodeling (158). Overlapping
mechanisms are seen in NSCLC, where stiff matrices also drive
FAK activation and β-catenin accumulation that increase the
responsiveness of intracellular Wnt signaling and drive self-
renewal programs in NSCLC cells (159). These effects are also
seen in breast cancer models where stiff matrices promote
focal adhesion assembly and enhance cytoskeletal tension to
increase the activation of ERK and PI3K in response to growth
factor ligands in tumor cells (160–162). In pancreatic ductal
adenocarcinoma cells, oncogenic Ras activity can further amplify
these responses by stimulating ROCK activity to subsequently
stiffen the extracellular matrix and drive tumor growth (163),
although this is yet to be demonstrated in non-small cell lung
cancer where activating Ras mutations are common.

Lung tissue is under constant mechanical stress due to
strains induced during normal breathing. On a micro scale,
cellular contraction pulls on the extracellular matrix components
to also generate strain within the lung. The tensile and
compressive strain within the lung extracellular matrix regulates
the sequestration and release of matrix-associated factors. For
example, TGFβ is tethered to the extracellular matrix by latent

TGFβ binding proteins, which interact with fibronectin, fibrillins,
fibulins, proteoglycans, and other fibrillar ECM components, as
well as the latency associated peptide (LAP), which binds to
integrin receptors (73, 81, 82). Mechanical tension induced by
cellular contraction, including by highly contractile pulmonary
myofibroblasts (164), causes a conformational change in the
TGFβ-LAP complex that releases the TGFβ ligand and enables
it to activate the TGFβ receptor (73, 81). While this operates at
a low level to drive localized lung regeneration in the wound
healing response, the severe impairment of lung regeneration in
idiopathic pulmonary fibrosis causes extensive alveolar loss that
significantly elevates the tensile forces that type II pneumocytes
are exposed to (165). This increases the release of TGFβ into
the alveolar environment to activate pro-fibrotic TGFβ signaling
in lung fibroblasts (165). Because alveolar loss occurs in the
periphery, this generates progressive fibrosis from the distal
parenchyma toward the central airways, that is a feature of
idiopathic pulmonary fibrosis progression. This newly described
mechanism raises the possibility that altered force distribution
throughout the lung as a result of perturbed ECM remodeling
in lung tumors or in chronic lung diseases, including COPD,
may also induce TGFβ signaling to support tumor dormancy
or, conversely, a pro-fibrotic environment that drives cancer
cell proliferation. This mechanism may partly explain why IPF
patients are at increased risk of developing lung tumors and why
these tumors develop close to the fibrotic regions in IPF lungs
(24, 166, 167).

Integrin signaling is responsive to mechanical strain
within lung tissue, which occurs during normal breathing
and is perturbed by ECM remodeling. In addition to having
different affinities for different ECM components, integrin
receptor subtypes display different temporal kinetics in
response to mechanical force, allowing them to activate
different mechanotransduction pathways in response to
specific changes in lung biomechanics (168). For example,
cyclic strain, which mimics breathing biomechanics, induces
gefitinib resistance via β1-integrin signaling in EGFR
mutant lung adenocarcinoma (169). Integrin clustering also
mediates downstream signaling diversity, while stress-induced
conformational changes in focal adhesion proteins, such as
talin, can fine-tune the response of cells to the magnitude
of local forces (170). Moreover, the biomechanics of the
tumor microenvironment feed back onto the architecture
of the extracellular matrix itself. For example, fibronectin
assembly and collagen fibrillogenesis are both regulated
by tension applied to fibronectin (65, 109, 171). In this
way the lung biomechanics create positive and negative
amplification loops that can accelerate the outgrowth of
primary and disseminated tumor cells or drive tumor cells into
sustained dormancy.

STROMAL CELLS AND THEIR ROLES IN
DORMANCY AND OUTGROWTH

Fibroblasts
As the major producer of extracellular matrix components, lung
fibroblasts play an important role in regulating the lung ECM in
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FIGURE 2 | The tumor microenvironment contributes to matrix remodeling that regulates tumor cell dormancy and outgrowth in NSCLC. (A) Cancer cells release
TGFβ, PDGF, and FGF2, which activate fibroblasts to a myofibroblast state. Activated myofibroblasts in the tumor microenvironment produce increased amounts of
collagen I, collagen IV, Tenascin C, Thrombospondin-2 as well as remodeling enzymes and signaling effectors such as CTGF and MMPs. The resulting increased
matrix stiffness further activates fibroblasts in a TGFβ-dependent manner. Stromal cells expressing α11β1-integrin engage with this extracellular matrix to promote
the proliferation, migration, invasion and survival of cancer cells in the tumor microenvironment. (B) The extracellular matrix components of the perivascular niche
support dormancy in cancer cells. The sprouting vasculature produces TGFβ and periostin that promote cancer cell proliferation and metastatic potential. Endothelial
cells of the sprouting vasculature also produce MMP14, which cleaves laminin 5 γ2 to release EGF-like fragments that activate EGF signaling in cancer cells.
(C) Activated infiltrating macrophages secrete TGFβ into the tumor microenvironment to activate fibroblasts and TGFβ-dependent signaling in cancer cells.
α4β1-Integrin-expressing macrophages engage with VCAM-1 expressing cancer cells to induce pro-survival Akt-PI3K signaling. Proteases produced by neutrophils
and other immune cells cleave ECM components including elastin and thrombospondin-1. These cleavage products awaken dormant cancer cells and act as
chemotactic agents to recruit immune cells into the tumor microenvironment. Collectively the stromal and immunological components of the tumor
microenvironment regulate cancer cell dormancy and outgrowth in the lung. BMDC, bone marrow-derived progenitor cell.

both health and disease. The lung fibroblast population is highly
heterogeneous and the aberrant expansion of specific fibroblast
phenotypes contributes to ECM remodeling in lung tumors. In
addition to the effects of increased matrix stiffness discussed
above, growth factors such as TGFβ, PDGF and FGF2 secreted
by cancer cells and tumor-infiltrating immune cells recruit
and activate fibroblasts to a myofibroblast-like state (Figure 2).
This state is characterized by transcriptional and signaling
programs that promote fibroblast proliferation, inhibit apoptosis
and drive ECM remodeling leading to increased mechanical
stiffness. This increased matrix stiffness within the tumor
microenvironment creates a TGFβ-dependent amplification
loop that further increases both ECM stiffness and fibroblast
activation (172–174). These activated fibroblasts also secrete large
amounts of collagen I, collagen IV, extra domain A-fibronectin,
heparin sulfate proteoglycans, secreted protein acidic and rich
in cysteine (SPARC), tenascin–C, thrombospondin-2, connective
tissue growth factor, MMPs and plasminogen activators. These
each contribute to the significant remodeling of the matrix in the
primary lung tumor microenvironment and subsequently alter
the behavior of tumor and neighboring untransformed epithelia
(93, 172, 174–177).

Multiple transcriptional programs have been identified that
distinguish cancer-associated fibroblasts from healthy lung
fibroblasts in NSCLC (40, 174, 178). These transcriptional
signatures are associated with poor prognosis in NSCLC and
center on genes that modulate cell-ECM interactions (40, 174,
178). In addition, increased matrix stiffness due to higher levels
of collagen crosslinking within the tumor activates stromal
α11β1-integrin signaling to promote the proliferation and
increase the metastatic potential of NSCLC cancer cells (154).
Emerging evidence indicates that the somatic mutational profile
of pancreatic cancer cells can contribute to these phenotypic
perturbations by re-educating their surrounding stroma and
tissue architecture through paracrine mechanisms to further
promote tumor aggressiveness (179). It remains to be determined
if particular mutational profiles in non-small cell lung cancer
cells drive the specific reprogramming of nearby resident lung
fibroblasts in a similar way to indirectly support tumorigenesis.

The metabolic activity of cancer-associated fibroblasts has
also been recognized as a means of regulating ECM-dependent
dormancy in addition to more established bioenergetic co-
dependencies between these cell types (180). Cancer-associated
fibroblasts have increased glycolytic and autophagic activity
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compared with normal lung fibroblasts, and have been shown
to promote rapid cancer cell proliferation as well as maintain
cancer-associated fibroblast survival (27, 180). Since collagen
turnover is partially regulated by autophagic proteins (181), the
increased autophagic activity of cancer-associated fibroblasts may
support more rapid collagen remodeling and an increasingly
dynamic extracellular matrix framework. Furthermore, as
autophagy activation integrates quiescence and survival signals
(27), it is plausible that collagen fibrillogenesis may reciprocally
influence autophagy activity to regulate cell survival and
dormancy in the lung.

Finally, the long range stiffness gradients generated by
fibroblast-mediated ECM remodeling (182) may contribute to
field of cancerization effects within the lung, which may promote
intrapulmonary metastasis. Crosstalk between epithelial cells
and fibroblast subtypes within different lung compartments
would generate location-specific regulatory loops that specify
the dormancy and outgrowth behavior of tumor cells in
a spatial manner. How these processes might contribute to
the heterogeneity within and between tumors has not been
elucidated. An improved understanding of spatial cues within
and between lung compartments may reveal cell extrinsic
mechanisms that dictate the emergence of different primary lung
cancer subtypes in specific anatomical locations, the character of
heterogeneous regions within individual primary tumor masses
as well as the location of metastatic foci within the lung.

Immune Cells
Inflammation plays a major role in lung tumorigenesis and
etiology (183) and emerging evidence points to extracellular
matrix remodeling as both a consequence and instigator of
inflammatory processes within the lung. While a comprehensive
understanding of the immunological landscape of the lung
during the metastatic dissemination, dormancy and reawakening
is lacking, emerging evidence is revealing that immune cells
interact with the extracellular matrix to contribute to these
processes. The different immunological landscapes associated
with specific oncogenic driver mutations in NSCLC (184) may
also contribute to the heterogeneity in extracellular matrix
remodeling during tumor progression.

Immune cells can re-educate resident fibroblasts in and
around tumors, and likely play an important role in establishing
a permissive environment that supports lung colonization and
outgrowth. In addition, immune cells are capable of synthesizing
extracellular matrix proteins, although they not a major source
of extracellular matrix components within tissues. For example,
myeloid cells produce versican (185) while activated and
infiltrating macrophages secrete TGFβ to induce the pro-fibrotic
transformation of resident fibroblasts. Immune cells also remodel
extracellular matrix proteins to regulate cancer cell dormancy and
the local immune landscape, while the proteolytic products of
these reactions also recruit and activate other immune cells. For
example, as discussed above, neutrophil–derived proteases such
as elastase cleave laminin-111 and thrombospondin-1 to awaken
dormant breast cancer cells within the lung (61, 147), and the
cleavage products of elastin are highly chemotactic for monocytes
(Figure 2) (186). Furthermore, the degradation product of type

I collagen, Proline-Glycine-Proline tripeptide (PGP), mimics
CXC chemokines such as IL-8 and interacts with the CXCR1
and CXCR2 receptors to attract neutrophils to the ECM
remodeling site (187). This further amplifies extracellular matrix
remodeling within the tumor microenvironment and regulates
the proliferative behavior of tumor cells in this environment.

These tumor infiltrating immune cells also directly interact
with disseminated tumor cells in the lungs to regulate their
proliferative state through ECM responsive integrin and TGFβ

signaling. Activated α4β1 integrin-expressing macrophages
associate with VCAM-1 positive cancer cells in the lung
to induce pro-survival Akt-PI3K signaling in tumor cells
(188). Similarly, bone-marrow derived progenitors recruited to
the premetastatic lung induce the mesenchymal to epithelial
transition of tumor cells through downregulation of SMAD2
signaling in the canonical TGFβ pathway, and a switch to
macrometastatic growth (185). Characterization of the NSCLC
immune landscape will further define how complex interactions
between these immune cells, cancer cells and stromal cells
within the tumor microenvironment modulate the extracellular
matrix, and subsequently the dynamics, of primary and
secondary NSCLC tumors.

Vascular Architecture and Dormancy
The dynamics of the pulmonary capillary also regulates tumor
cell dormancy and outgrowth, although primarily in the context
of metastasis to the lung from non-lung primary tumors. Once
primary tumor cells have disseminated from the primary tumor
site, contact with the epithelial basement membrane is replaced
by binding to the endothelial basement membrane that surrounds
capillaries. In metastatic models of primary lung tumors, the
metastatic colonization of distant sites involves extravasation of
lung tumor cells at vascular branch points and the outgrowth of
tumors at these perivascular locations (189). While the physical
size of the capillary bed may play a role in physically trapping
disseminated tumor cells in the pulmonary capillary bed or at
vascular branches in distant organs, this perivascular niche that
surrounds the vasculature also presents specific cues that regulate
the proliferation of lung epithelia and disseminated tumor cells
alike (151). The destabilization of pulmonary vasculature occurs
early in NSCLC as well as in breast cancer metastasis to the
lung (190–192), supporting the notion that remodeling of the
perivascular niche significantly contributes to tumor progression.

In breast cancer metastasis, endothelial tip cells within
the perivascular niche deposit increased levels of periostin,
tenascin-C, versican, S100 proteins, TGFβ and MIF, which act to
maintain cancer cell dormancy (Figure 2) (193). Non-sprouting
endothelial cells also produce thrombospondin-1 which
associates with the mature microvascular basement membrane
to sustain quiescence (89). Conversely, the production of TGFβ1
and periostin by tip cells of the sprouting neovasculature
can promote tumor outgrowth (89). In this way cancer cells
become dormant in the presence of dormant microvasculature,
and become reactivated during angiogenic sprouting through
interactions with the extracellular matrix of the perivascular
niche. Furthermore, VEGF and FGF signaling in pulmonary
endothelial cells induces MMP14 expression, which releases
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EGF-like ligands from the laminin 5 γ2 chain and drives pro-
proliferative EGF signaling in epithelial cells (151). Together
these mechanisms link the remodeling of the extracellular matrix
within the perivascular niche to the proliferative behavior of
disseminated tumor cells.

EXPLOITING THE TUMOR ECM TO
IMPROVE CLINICAL PRACTICE

Using the ECM to Inform Clinical
Decision Making
The extracellular matrix features that characterize NSCLC
patients at high risk of poor outcome outlined above have
the potential to be utilized as clinical decision-making tools in
determining the most effective therapy for a patient’s condition.
In NSCLC, where there are currently no clinicopathological
features identifying early-stage patients at high risk of disease
recurrence following surgery, there is a clear need to identify the
distinguishing characteristics of this population. Transcriptional
signatures associating matrisomal gene expression with lung
cancer recurrence holds promise that such approaches may
robustly identify early stage patients at high risk. This will become
more important as early stage diagnoses continue to increase (11).
Improvements in treating NSCLC will require an understanding
of the burden of disseminated tumor cell dormancy at diagnosis,
as well as the relative threat posed by the likely presence of
metastatic niches and dormant disseminated tumor cells in terms
of their ability to grow into macrometastases, or alternatively
remain dormant for many decades.

The substantial progress in understanding the extracellular
matrix dynamics occurring during primary tumor development
and metastatic colonization of many tumor types to date provides
hope that this knowledge may improve clinical practice in the
future. Although, our understanding of these processes in lung
cancer is lagging behind that of other common cancers, such
as breast cancer. Of critical importance in realizing this goal
will be developing biomarkers of these processes that perform
with satisfactory sensitivity and specificity. Moreover, it remains
a challenge to develop tests that are capable of extending beyond
robust performance on population level data to predict risk
for an individual patient. Such readouts must also be readily
appropriated to existing clinical management pipelines.

This understanding could also establish a path to develop
therapies targeting tumor cell dormancy in NSCLC. Dormant
cells largely escape immune surveillance and are resistant to
conventional and targeted chemotherapies (194). Therefore,
strategies to treat metastasis by targeting tumor dormancy follow
two main approaches (33): (1) trap disseminated tumor cells in
a dormant state in the long term or (2) reawaken dormant cells
into a proliferating state and eradicate them using standard of
care treatments. Distinguishing between patients where dormant
cells are at high risk of becoming reactivated, for example
by extracellular matrix remodeling in response to injury or
environmental exposure, compared with those that may remain
dormant indefinitely, is key to effectively managing cancer as a
chronic and ultimately curable disease.

A deeper understanding of the role of the tumor
microenvironment will also assist in determining which
existing therapies are the most appropriate for the patient. It
will also be important to determine whether surgical resection
in early stage cancers is likely to increase the risk of activating
already disseminated tumor cells and therefore worsening
the patient prognosis (145). Similarly, chemotherapy- or
radiotherapy-induced lung fibrosis may also accelerate the
awakening of otherwise dormant cancer cells in the lung (195).
Some conventional chemotherapy agents that induce DNA
damage may also activate quiescent cells to re-enter the cell
cycle (33) and may be preferred in patients suspected to have a
high burden of dormant disseminated tumor cells. Conversely,
existing therapies that are effective at inducing dormancy in
disseminated cells may be used as maintenance therapies to keep
these cells in a dormant state (34, 196, 197). For example, the
EGFR targeted therapy erlotinib in combination with a BH3
mimetic induced prolonged quiescence in preclinical models of
NSCLC xenografts (198), suggesting that therapeutic approaches
that achieve disease control in the long term may require
combination therapies that simultaneously inhibit mitogenic and
apoptotic signaling pathways. Whether these approaches can be
applied in the stromal targeting context remains to be seen.

However, consideration must be given to the impact of such
therapies on stromal cells within the tumor microenvironment.
For example, cisplatin treatment induces AXL and GAS6
expression by cancer associated fibroblasts to promote the
migration of AXL-expressing lung cancer cells (199). An
increasing number of clinical trials testing the ability of
conventional therapies to target disseminated tumor cells
as primary endpoints of their clinical trials (200) coupled
with technological advancements to detect disseminated
tumor cells, will be critical to facilitate the testing of more
ECM-centric targeted therapies that reawaken or eradicate
dormant tumor cells.

Novel Therapeutic Targeting of the ECM
Recent advances in our understanding of how the matrix is
impacting tumor cell dormancy has also led to the development
of novel therapeutic strategies aimed at maintaining dormancy or
eradicating dormant cells.

The recognition of common fibrotic mechanisms in idiopathic
pulmonary fibrosis and lung cancer has led to interest in
repurposing anti-fibrotic IPF therapies to the treatment of lung
cancer. Many anti-fibrotic therapies have met limited success in
clinical trials for their ability to inhibit metastatic colonization
and promote dormancy maintenance. However, the VEGF,
PDGF and FGF inhibitor Nintedanib, which is used in the
treatment of idiopathic pulmonary fibrosis, has been approved
in some jurisdictions as a second line therapy in combination
with conventional chemotherapy (e.g., pemetrexed) in NSCLC
and renal cell carcinoma (201). By blocking the activation of
fibroblasts to myofibroblasts, it significantly reduces the degree of
ECM remodeling within tumors. Pirfenidone, the other approved
anti-fibrotic IPF therapy, is still being tested for its efficacy as
a NSCLC treatment. Other IPF treatments targeting galectin-
3 (TD139), TGFβ (GC1008), αvβ6 integrin signaling (BG0011,
GSK3008348) and inflammatory mediators (QAX576, Carlumab)
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are currently under clinical development for IPF but may yet find
utility as NSCLC therapies (24). The lack of treatments targeting
mechanisms underlying COPD precludes repurposing of these
agents into the oncology space, although it is hoped that emerging
treatments for COPD may also prove efficacious in treating lung
cancer patients.

Additionally, LOX-neutralizing antibodies that block collagen
I deposition and cross-linking have shown utility in preclinical
studies targeting metastasis of non-pulmonary tumors to the lung
(68, 143). Preclinical development of LOX inhibitors for non-
pulmonary tumors are ongoing, although their efficacy in NSCLC
remains untested. Antibody targeting of LOXL2, which is the
other member of the lysyl oxidase family that is highly expressed
in NSCLC, have yielded disappointing results in clinical trials in
pancreatic and metastatic colorectal cancer (202, 203) but, like
LOX inhibitors, may yet prove effective in NSCLC treatment.

Directly targeting the extracellular matrix components
themselves has also shown promise. Antibodies against the pro-
proliferative proteolytic fragment of laminin-111 suppressed the
outgrowth of breast cancer metastases in the lungs in a preclinical
model (61), although its efficacy in primary lung tumors has
not yet been tested. Glycoproteins or short peptides derived
from quiescence-inducing proteins such as the thrombospondin-
1-inducing glycoprotein prosaposin have successfully induced
systemic thrombospondin-1 to inhibit the metastatic outgrowth
of prostate and breast cancer lung metastases (91, 99). However,
due to the contentious role of thrombospondin proteins in
NSCLC progression, it is not yet clear whether this approach will
also be effective in inhibiting the growth of primary lung tumors
or their intrapulmonary metastases.

Other experimental approaches are targeting key signaling
processes downstream of matrix engagement. Suppression of
MAPK signaling, or by targeting EGFR, MMP9, amphiregulin,
FAK, SRC kinases, ROCK or PI3K, as well as by sustaining
or inducing p38 and HOXD10 signaling have proven effective
at inducing dormancy in breast and pancreatic cancer models
(193, 204) and similar approaches may be effective in NSCLC.
Targeting MLCK to inhibit actin remodeling that switches
cells from dormancy to proliferation in response to the
extracellular matrix is also being explored in breast cancer
and osteosarcoma models that metastasize to the lung (49).
α5β1- and α5β3- integrin targeting antibodies, cyclic peptides
or peptidomimetics have also been trialed to suppress lung
colonization and outgrowth in breast cancer metastasis but
have yielded disappointing clinical trial results (53). Similarly,
integrin-targeting antibodies are being developed as PET imaging
tracers for the diagnosis of cancer (205).

Other approaches are using matrix component epitopes to
target drugs directly to the tumor site. For example, the collagen-
binding properties of lumican have been exploited to target
collagen-rich melanoma tumor environments with interleukins
(206) and may be applicable to the high collagen content
of NSCLC tumors. Similarly, immune checkpoint therapies
conjugated to a heparin binding domain peptide with a high
affinity for glycoproteins and some collagen proteins have
also shown promise in preclinical studies in melanoma and
breast cancer models (207). Matrix-targeting nanobodies are
also being developed as PET tracers which may be adapted

to mediate ECM-targeted drug delivery (208). The diverse and
complementary approaches being pursued to exploit the role
of the extracellular matrix in tumor dormancy and outgrowth
provide promise that effective therapies will be developed to
manage NSCLC cancer as a chronic disease.

FUTURE CHALLENGES

While tremendous progress has been made in understanding
the complex interplay between cancer cells, the extracellular
matrix and the surrounding stromal cells in regulating the
dynamics of primary and secondary tumors in many cancer
types, the interrelated functions of these components in lung
cancer are still being revealed. The complex interplay of
ECM components and cell types within the healthy lung,
coupled with the highly heterogeneous landscape of lung
tumors themselves make this particularly challenging. Defining
the phenotypic plasticity of these cell types in healthy and
diseased tissue will be fundamental to determining how crosstalk
between these cell types orchestrates the extracellular matrix
composition of primary and secondary lung tumors. This is
particularly the case for fibroblasts and epithelial cells, where
lineage-tracing experiments will be invaluable in revealing the
extent to which different cell types assume the myofibroblast
phenotype in the tumor microenvironment or pre-metastatic
niche. Furthermore, as a load-bearing organ, consideration
should be given to the mechanical cues that regulate cell behavior
within these lung compartments.

The development of in vitro and in vivo models that more
accurately recapitulate the dynamic ECM remodeling in these
tumors will be key to dissecting the contribution of individual
cell types and matrix components to the broader network. In
particular, robust models of the squamous NSCLC subtype and
of metastatic processes in NSCLC more generally are currently
lacking. Importantly, directly comparing these models and the
genomic features associated with them will clarify the context-
dependent cues that are currently preventing the development
of an integrated model of these processes. It is not currently
clear how quickly the ECM is remodeled within the healthy or
diseased lung, how long the remodeled matrix persists in a given
state, or the temporal hierarchy of how these ECM features evolve
over time. An understanding of how early ECM remodeling
occurs in the initiation of lung tumors, and whether this tumor-
associated ECM remodeling persists following remission will be
fundamental to understanding the temporal dynamics of lung
tumor progression and relapse.

Our current understanding has identified the impact of
ECM composition at the level of individual ECM components.
However, the ECM acts a three-dimensional network of
matrisomal proteins together with matrisome-associated factors
and signaling effectors. An improved understanding of the role
of the ECM in regulating dormancy and outgrowth will rely
on clearly defining the protein-protein and protein-carbohydrate
interactions that form these networks and how individual nodes
manipulate the collective three-dimensional architecture of the
ECM. High-resolution optical imaging and spatial proteomic
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technologies to map these interactions will be invaluable in
defining these spatial relationships.

Historically, the late presentation of NSCLC has obscured
our understanding of early stage disease processes. Furthermore,
there is currently no way to establish when tumor cell
dissemination establishes intrapulmonary and distant dormant
micrometastases to facilitate the direct study of the ECM in
these events. However, improved early detection strategies are
increasing the proportion of patients diagnosed with early stage
disease, and thereby providing opportunities to gain insight into
these early dynamics. The analysis of these early stage tumors
using improved sequencing and proteomic technologies will also
shed light on the true incidence and clonal evolution of the
primary and metastatic tumors. Accurate determination of the
incidence of intrapulmonary metastases and the contribution
of ECM-driven processes to recurrence following surgery will
be fundamental to improving patient outcome in early stage
disease. Similarly, an understanding of how extracellular matrix
remodeling in chronic lung diseases such as chronic obstructive
pulmonary disorder and idiopathic pulmonary fibrosis affects
the transformation of lung epithelia and the progression of
established NSCLC tumors may partly explain why these
conditions are associated with an elevated risk of developing
these tumors. Inhibition or reversal of ECM remodeling in these
fibrotic diseases may be a crucially important approach to prevent
lung cancer initiation in these patients.

Taken together, these developments in understanding the
structural and functional role of the ECM in NSCLC progression
will reveal novel potential therapeutic strategies that are able
to identify patients at high risk of developing recurrent disease

as well as the optimal therapeutic approaches based on both
the cell-intrinsic and -extrinsic mechanisms operating within
the tumor microenvironmental rather than focusing on cell-
intrinsic somatic genomic alterations alone. Novel therapeutic
approaches that sustain disseminated cells in a dormant state,
or awaken and eradicate the residual disease, will see lung
cancer become a manageable chronic illness and ultimately a
curable condition.
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