Open Access Full Text Article

CLINICAL TRIAL REPORT

Impact of vitamin D on spirometry findings and quality of life in patients with chronic obstructive pulmonary disease: a randomized, double-blinded, placebo-controlled clinical trial

> This article was published in the following Dove Press journal: International Journal of Chronic Obstructive Pulmonary Disease

Ali Alavi Foumani¹ Mojtaba Mehrdad^{1,2} Alireza Jafarinezhad¹ Khadijeh Nokani³ Alireza Jafari¹

¹Inflammatory Lung Diseases Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; ²Razi Clinical Research Development Center, Guilan University of Medical Sciences, Rasht, Iran; ³Student Research Committee, Department of Internal Medicine, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Correspondence: Alireza Jafari Inflammatory Lung Diseases Research Center, Department of Internal Medicine, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Sardar Jangal Ave, Rasht, Iran Tel +98 133 354 2460 Fax +98 133 354 2460 Email Dr.alireza.jafariii@gmail.com

Abstract: COPD is an irreversible chronic illness with airflow limitation. The aim of the current study was to assess the role of vitamin D_3 on quality of life and pulmonary function in patients with COPD. A randomized, double-blinded clinical trial was conducted in 63 patients with COPD. Patients were placed into intervention and placebo groups. Each individual in the intervention group took 50,000 IU vitamin D_3 once a week for 8 weeks and then once a month for 4 months. There was no significant difference among FEV₁, FEV₁ /FVC, and number of exacerbations in patients with COPD (*P*>0.05). In the intervention group, a significant difference was observed in quality of life at 2 months (*P*<0.001) and 6 months (*P*<0.001). In addition, qualitative analysis showed that the status of exacerbation had not got worse six months after initiation in the intervention group. The current study shows that consumption of 50,000 IU vitamin D_3 , as a convenient supplementation in a daily diet, is able to increase quality of life in patients with COPD.

Keywords: airflow obstruction, chronic, 25-hydroxyvitamin D₃, life quality

Introduction

COPD is a chronic inflammatory disorder with irreversible and progressive limitation of expiratory airflow, mainly affecting the small airways, that is associated with systemic inflammation and multiorgan involvement.¹ It was estimated that COPD had caused 3.2 million deaths worldwide in 2015.² In Europe, 40 million people have different stages of COPD, of which 60% suffer from significantly impaired lung function.³

Different risk factors have been suggested for COPD development, including genetic and environmental factors; however, cigarette smoking is known to be the most damaging factor.⁴ Other risk factors include passive smoking, hyperreactivity of airways, occupational exposure, air pollution, male sex, advanced age, respiratory infection, and low socioeconomic status.^{2,5–7}

There is a significant correlation between vitamin D_3 deficiency and COPD severity. Vitamin D_3 plays an important role in COPD pathogenesis.⁸ It has a variety of effects on human bodyfunction, including reduced cell proliferation,⁹ increased apoptosis, and¹⁰ enhanced differentiation. Vitamin D_3 is also a potent regulator of such biological phenomena as angiogenesis, extracellular matrix production, and immunoresponse.¹¹ Vitamin D_3 supplementation decreases the risk of acute respiratory

infections and exacerbations of asthma.² Jolliffe et al showed beneficial effects of vitamin D_3 in patients with COPD who had suffered vitamin D_3 deficiency (<10 ng/mL).² They also confirmed that vitamin D_3 metabolites play a key role in inducing anti-infection effector mechanisms and decrease inflammatory responses.² There have been fewer studies done on the role of vitamin D_3 in patients with COPD. Vitamin D_3 may affect quality of life, lung function, and number of exacerbations in patients with COPD.^{6,7,12} Han et al investigated the effects of vitamin D_3 in rat models of COPD.¹² They showed that vitamin D_3 was able significantly to reduce inflammation and improve lung function. They believed that vitamin D_3 could be a novel clinical approach to treat patients with COPD.¹²

There have not been any randomized, double blinded, placebo-controlled clinical trials done on the effectiveness of vitamin D_3 supplementation in patients with COPD. This study was designed to evaluate the effectiveness of

vitamin D_3 on quality of life lung function, and number of exacerbations in patients with COPD.

Methods

A randomized, double-blinded, placebo-controlled clinical trial was conducted on patients who had been referred to the respiratory clinic of Razi Hospital between August and December 2015 (Figure 1). This was a pilot study, and the sample size was set at 30 patients in both the control and intervention groups. Levels of vitamin D_3 were measured in eligible patients before intervention. Sampling was performed in the same season, with the same daily activity and the same sunlight exposure.

Patients who were included had 10-30 ng/mL vitamin D₃ as per GOLD guidelines.¹³ Cell counts, liver-function tests, ischemic electrocardiographic changes, calcium, phosphorus, andalkaline phosphatase of eligible patients

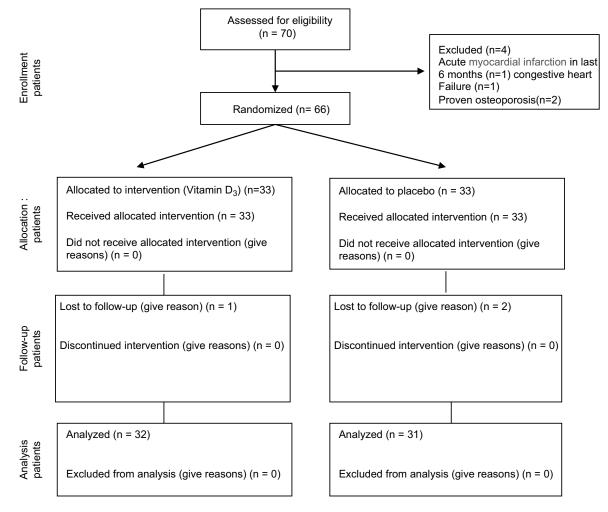


Figure I Study flowchart (CONSORT format).

were normal. Patients with COPD were stable in terms of physical and clinical health.

Patients not included had congestive heart failure, osteoporosis, acute myocardial infarction, glomerular filtration rate \leq 45 mL/min/1.73 m^{2,14} hypercalcemia (~>10.3), malignancy, and sarcoidosis. In addition, patients who had used long-term azithromycin, with very low levels of vitamin D₃ (<10 ng/mL), and who took antiepileptic drugs were excluded.

Clinical symptoms of eligible patients included shortness of breath, especially during physical activities, wheezing, chest tightness, clearing the throat first thing in the morning, and a chronic cough with mucus (sputum).

Primary outcomes of the study were quality of life measured by COPD Assessment Test (CAT) score and lung function evaluated by spirometry of patients with COPD. It is important to say that chest X-rays were not used for patients with COPD.

Study valuables comprised age, sex, body-mass index, cigarette smoking, FEV_1 , FEV_1/FVC , number of exacerbations, CAT score, COPD severity, and vitamin D_3 in blood.

Patients with COPD received 0.5–1 mg steroid per kilogram of body weight when exacerbating for 7–14 days. Both patients and questioners did not have any information from the study groups. Subsequently, placebo (gelatin) and vitamin D_3 were placed in two separate

envelopes, then classified according to random blocks. We used stored plasma samples to measure circulating vitamin D_3 metabolites, which is the accepted biomarker for vitamin D_3 .¹⁵ In the next stage, radioimmunoassays wereconducted to measure vitamin D_3 levels.¹⁶

Finally, 63 patients remained: 32 for intervention and 31 as controls. The study received ethics approval from the Committee on Publication Ethics of Guilan University of Medical Sciences, and patients filed written informed consent. General health questionnaires were used to enroll patients with symptoms of COPD. The CAT questionnairewas first translated into Persian and then back into English.

Patients placed in the intervention group took 50,000 IU vitamin D₃, and those in the control group received placebo once a week for 8 weeks, then once a month for 4 months. After 6 months, the same questionnaire was used. Double-blinding was applied on both patients and care providers during the study.

Statistical analysis

The χ^2 test was performed to compare qualitative variables between two groups. Normal parameter distribution was checked by Kolmogorov–Smirnov test. Student's *t*-test and paired *t*-test were used for variables distributed normally. Mann–Whitney *U* and Wilcoxon tests were performed on

	-	Group	P-value	
		Intervention (vitamin D ₃)	Control (placebo)	
The beginning of the	Age (years)	67.9±7.9	68.4±7.8	0.748*
study	Sex (male)	30 (93.8%)	30 (96.8%)	0.573**
	BMI (kg/m ²)	24.33±2.13	24.55±1.94	0.665*
	Cigarette smoking (per year) (mean ± SD)	32±14	31±13	0.866*
	FEV ₁ (mean ± SD)	57.98±17.67	57.7±17.99	0.949*
	FEV ₁ /FVC (mean ± SD)	56.75±12	58.76±9.82	0.472*
	Exacerbations, n (%)	10 (31.3%)	11 (35.5%)	0.722***
	Exacerbations (mean ± SD)	0.53±0.98	0.55±0.85	0.658****
	CAT score (mean ± SD)	15.3±7.35	15.48±9.32	0.767****
	COPD severity, n (%)	6 (18.8%)	9 (29%)	0.294**
		16 (50%)	9 (29%)	
		5 (15.6%)	9 (29%)	
		5 (15.6%)	4 (12.9%)	
	25-Hydroxyvitamin D_3 levels, ng/mL, (mean ± SD)	19.33±5.18	18.55±4.58	0.528*

 Table I Studied variables before intervention in both control and vitamin D groups

Notes: *t-test; **Fisher's exact test, ***Chi squre; ****Mann-whitney.

Abbreviations: BMI, body mass index; CAT score, COPD assessment test score; FEVI, Forced expiratory volume at first second; FVC, Forced vital capacity.

variables that did not have normal distribution. Two-tailed $P \le 0.05$ was considered significant.

Results

In this study, 30 men (93.8%) and two women (6.3%) were in the intervention group and 30 men (96.8%) and a woman (3.2%) in the placebo group. The mean age of those in the intervention group was 67.9 ± 7.9 years and in the placebo 68.4 ± 7.8 years.

At the beginning of the study, FEV_1 , FEV_1/FVC , and CAT scores, number of exacerbations, and percentage of severity did not show significant differences between the intervention and control groups (*P*>0.05, Table 1). Neither FEV1 nor FEV1/FVC showed significant differences between the intervention and control groups (Table 2). There were significant differences in serum levels of vitamin D₃ between the intervention and control

groups (51.83 vs 19.43 ng/mL) within 2–6 months from baseline (P<0.001, Table 2). There were no statistical differences in exacerbations between the groups after 2 months, within 2–6 months, or after 6 months from baseline. In addition, the qualitative analysis showed that exacerbations had not worsened after 6 months in the intervention group (Table 3). CAT scores showed statistical differences between the groups at 2 months from baseline in quality of life at every stage in the intervention group (Table 3).

Discussion

The current study reported a randomized, double-blinded, placebo-controlled clinical trial on the effect of vitamin D_3 supplementation on lung function and quality of life in patients with COPD. Janssens et alshow that serum levels of vitamin D_3 had significant correlations with the severity

			Intervention (vitamin D ₃)	Control (placebo)	P-value
After 2 months	FEV1 (mean ± SD)		58.69±17.68	57.87±18.06	0.857*
	FEV1/FVC (mean ± SD)		57.43±12.09	58.9±9.56	0.593*
	Exacerbations, n (%)		3 (9.4%)	3 (9.7%)	>0.999**
	Exacerbations (mean ± SD)		0.09±0.3	0.1±0.3	0.968***
	CAT score		14.25±7.43	15.29±9.53	0.842***
	COPD severity, n (%)	А	6 (18.8%)	6 (19.4%)	0.665**
		В	15 (46.9%)	14 (45.2%)	
		с	3 (9.4%)	6 (19.4%)	
		D	8 (25%)	5 (16.1%)	1
After 6 months	FEV1 (mean ± SD)		58.93±17.73	58.18±17.91	0.868*
	FEV ₁ /FVC (mean ± SD)		57.74±11.86	59.2±9.99	0.6*
	Exacerbations, n (%)		4 (12.5%)	8 (25.8%)	0.179***
	Exacerbations (mean ± SD)		0.16±0.45	0.32±0.6	0.184***
	CAT score (mean ± SD)		13±7.47	15.65±9.46	0.250***
	COPD severity	А	6 (18.8%)	6 (19.4%)	0.979***
		В	14 (43.8%)	13 (41.9%)	1
		с	5 (15.6%)	6 (19.4%)	1
		D	7 (21.9%)	6 (19.4%)	1
	25-hydroxyvitaminD ₃ levels (mean ± SD), ng/mL		51.83±7.93	19.43±5.22	<0.001*

Table 2 Studied variables at 2 and 6 months after intervention in both control and vitamin D groups

Notes: *Student's t-test; **Fisher's exact test; ***x2; ****Mann–Whitney U test. Abbreviation: CAT. COPD Assessment Test.

Abbreviation: CAI, COPD Assessment lest.

Variables	Duration	Group	Mean ± SD	P-value	
FEV	After 2 months from baseline	Intervention	0.7±1.11	0.073*	
		Control	0.18±1.19		
	Between 2 and 6 months from baseline	Intervention	0.25±0.74	0.820*	
		Control	0.31±1.44		
	After 6 months from baseline	Intervention	0.95±1.88	0.089*	
		Control	0.49±1.22		
FEV _I /FVC	After 2 months from baseline	Intervention	0.67±1.27	0.116*	
		Control	0.15±1.35		
	Between 2 and 6 months from baseline	Intervention	0.32±1.03	0.944*	
		Control	0.3±1.17		
	After 6 months from baseline	Intervention	0.99±1.28	0.640**	
		Control	0.45±1.51		
Exacerbations	After 2months from baseline	Intervention	-0.44±1.01	0.431**	
		Control	-0.45±0.77		
	Between 2 and 6 months from baseline	Intervention	0.06±0.5	0.129**	
		Control	0.23±0.5		
	After 6 months from baseline	Intervention	-0.38±0.83	0.613**	
		Control	-0.23±0.72		
CAT score	After 2 months from baseline	Intervention	-1.09±1.03	0.001**	
		Control	0.19±1.01		
	Between 2 and 6 months from baseline	Intervention	-1.25±1.63	<0.001**	
		Control	0.35±1.02		
	After 6 months from baseline	Intervention	-2.34±1.41	<0.001**	
		Control	0.16±1.04		

Table 3 Mean	differences	in studied	variables	in both	control	and	vitamin	D	groups
--------------	-------------	------------	-----------	---------	---------	-----	---------	---	--------

Notes: *Student's *t*-test; **Mann–Whitney *U* test.

Abbreviation: CAT, COPD Assessment Test.

of COPDand exacerbations.¹⁷ They also observed that vitamin D₃ consumption improved pulmonary function and quality of life in COPD patients in six months. Patients were controlled with different doses of vitamin D_3 . Serum vitamin D_3 in the intervention group increased from 19.33 to 51.83 ng/mL. Subsequently, quality of life and pulmonary function began to recover and exacerbations in patients with COPD were reduced. Furthermore, Lehouck et alreported that vitamin D₃ may reduce acute exacerbations of COPD symptoms in those with initially deficient levels.¹⁸ On the other hand, Hornikx et al showed prescribing 3 mg vitamin D₃ every 2 months over 1 year also maintain moderate or acute exacerbations, but not for upper respiratory tract infections (<50 nmol/L or 20 ngr/mL).¹⁹ They demonstrated that consuming 100.000 IU vitamin D₃ 3 months significantly improved inspiratory muscle strength and maximal oxygen uptake.¹⁹ In other words, deficient vitamin D₃ can also reduce actin and troponin, impair calcium uptake in the sarcoplasmic reticulum, adjust protein synthesis, and increase apoptosis.²⁰ Baneriee et al demonstrated that vitamin D₃

stimulated the airway smooth-muscle cells to express vitamin D_3 receptors and regulated inflammation, contraction, and remodeling in other cell types.²¹

Other studies found higher levels of vitamin D_3 -binding protein in patients with COPD, which involved neutrophil chemotaxis and macrophage activation (which has an important role in COPD pathogenesis). Vitamin D_3 binding protein has a significant correlation with serum levels of vitamin D; therefore, increasing vitamin D_3 levels will increase those of vitamin D_3 -binding protein.^{22,23}

However, Jolliffe et al found no effect of vitamin D_3 supplementation on the rate of exacerbations among patients with COPD, but that vitamin D_3 supplementation has protective effects on patients with low vitamin D_3 (<25 nmol/L).²

The findings of this study have some limitations. Firstly, this study was single-centered; therefore, the results require further investigation. Secondly, liver function, electrocardiography, calcium, and albumin of COPD patients were not measured. Thirdly, the sample was small and there was low power to detect an effect from vitamin D_3 . There has not been a study done on lung function, number of exacerbations, and quality of life in patients with COPD. Further studies seem to be required in this field.

As believed, consumption of vitamin D_3 improves quality of life in COPD patients.

According to the evidence, getting 10,000 IU/day in patients with deficienct levels of vitamin D_3 (1,500–2,000 IU/day) would not be toxic.²² Undoubtedly, vitamin D_3 therapy cheap, which and could be one of its important advantages.²³ Finally, vitamin D_3 therapy could be a useful and safe optionsimultaneously with other procedures.

Conclusion

Vitamin D_3 (50,000 IU) supplementation can improve quality of life in patients with COPD. In fact, COPD might be controlled by different levels of vitamin D_3 in serum. We found that consuming 50,000 IU vitamin D_3 increased quality of life in COPD. In addition, we found that exacerbations had not worsened after 6 months.

Availability of data and material

Data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The approval ID of the research-ethics certificate is 1910354603 at Guilan University of Medical Sciences. This was approved on January 1, 2013.

Acknowledgments

This study was financially supported by Guilan University of Medical Sciences, Guilan, Iran. The trial is registered with the IranianRegistry of Clinical Trials (2013072114085N2). The full trial protocol can be accessed at http://fa.irct.ir/trial/13784. We gratefully acknowledge the dedicated efforts of the investigators, coordinators, and volunteer patients who participated in this study and the clinical research development units of Rasht Razi hospital. No funding to declare.

Disclosure

The authors report no conflicts of interest in this work.

References

- 1. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* 2015:CD003793.
- Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D to prevent exacerbations of COPD: systematic review and meta-analysis of individual participant data from randomised controlled trials. *Thorax.* 2019;74:337–345. doi:10.1136/thoraxjnl-2018-212092
- Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. *Am J Respir Crit Care Med.* 2013;187:347–365. doi:10.1164/rccm.201204-0596PP
- 4. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. *The Lancet*. 2009;374:733–743. doi:10.1016/S0140-6736(09)61303-9
- Sin DD, Man SP. Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. *Proc Am Thorac Soc.* 2005;2:8–11. doi:10.1513/pats.200404-032MS
- Ferrari R, Caram LMO, Tanni SE, Godoy I, Rupp de Paiva SA. The relationship between Vitamin D status and exacerbation in COPD patients- a literature review. *Respir Med.* 2018;139:34–38. doi:10.1016/j.rmed.2018.04.012
- Pourrashid MH, Dastan F, Salamzadeh J, Eslaminejad A, Edalatifard M. Role of vitamin D replacement on health related quality of life in hospitalized patients with "acute exacerbation of chronic obstructive pulmonary disease". *Iran J Pharm Res.* 2018;17:801–810.
- Janssens W, Bouillon R, Claes B, et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. *Thorax*. 2010;65:215–220. doi:10.1136/thx.2009. 120659
- Colston K, Berger U, Coombes RC. Possible role for vitamin D in controlling breast cancer cell proliferation. *The Lancet*. 1989;333:188–191. doi:10.1016/S0140-6736(89)91204-X
- Audo I, Darjatmoko SR, Schlamp CL, et al. Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. *Invest Ophthalmol Vis Sci.* 2003;44:4192–4199.
- Rahman A, Hershey S, Ahmed S, Nibbelink K, Simpson RU. Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice. *J Steroid Biochem Mol Biol.* 2007;103:416–419. doi:10.1016/j.jsbmb.2006.12.081
- Han J, Cheng C, Zhu Z, et al. Vitamin D reduces the serum levels of inflammatory cytokines in rat models of periodontitis and chronic obstructive pulmonary disease. *J Oral Sci.* 2019;61:53–60. doi:10.2334/josnusd.17-0357
- Donaldson G, Seemungal T, Bhowmik A, Wedzicha J. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. *Thorax.* 2002;57:847–852. doi:10.1136/thorax.57.10.847
- 14. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. *BMJ*. 2009;339: b3692. doi:10.1136/bmj.b2651
- 15. Hollis BW. *The Determination of Circulating 25-Hydroxyvitamin D: No Easy Task.* Oxford: Oxford University Press; 2004.
- Hollis B, Kamerud J, Selvaag S, Lorenz J, Napoli J. Determination of vitamin D status by radioimmunoassay with an 1251-labeled tracer. *Clin Chem.* 1993;39:529–533.
- Janssens W, Mathieu C, Boonen S, Decramer M. Vitamin D deficiency and chronic obstructive pulmonary disease: a vicious circle. *Vitam Horm.* 2011;86:379–399. Elsevier.

- Lehouck A, Mathieu C, Carremans C, et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. *Ann Intern Med.* 2012;156:105–114. doi:10.7326/ 0003-4819-156-2-201201170-00004
- Hornikx M, Van Remoortel H, Lehouck A, et al. Vitamin D supplementation during rehabilitation in COPD: a secondary analysis of a randomized trial. *Resp Res.* 2012;13:84. doi:10.1186/1465-9921-13-84
- Barreiro E, Peinado VI, Galdiz JB, et al. Cigarette smoke-induced oxidative stress: a role in chronic obstructive pulmonary disease skeletal muscle dysfunction. *Am J Resp Crit Care*. 2010;182:477–488. doi:10.1164/rccm.200908-1220OC
- Banerjee A, Panettieri R Jr. Vitamin D modulates airway smooth muscle function in COPD. *Curr Opin Pharmacol.* 2012;12:266–274. doi:10.1016/j.coph.2012.01.014
- 22. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–281. doi:10.1056/NEJMra070553
- Brakta S, Diamond JS, Al-Hendy A, Diamond MP, Halder SK. Role of vitamin D in uterine fibroid biology. *Fertil Steril*. 2015;104:698–706. doi:10.1016/j.fertnstert.2015.05.031

International Journal of Chronic Obstructive Pulmonary Disease

Dovepress

Publish your work in this journal

The International Journal of COPD is an international, peer-reviewed journal of therapeutics and pharmacology focusing on concise rapid reporting of clinical studies and reviews in COPD. Special focus is given to the pathophysiological processes underlying the disease, intervention programs, patient focused education, and self management protocols. This journal is indexed on PubMed Central, MedLine and CAS. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/international-journal-of-chronic-obstructive-pulmonary-disease-journal-of-c