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Intellectual disabilities are a type of neurodevelopmental disease caused by neurological
dysfunction. Their incidence is largely associated with neural development. Astrocytes
are the most widely distributed cells in the mammalian brain. Previous studies
have reported that astrocytes only supported and separated the neurons in the
brain. However, recent studies have found that they also play an important
role in neural development. Understanding the astrocyte mechanism in intellectual
development disorder-related diseases will help provide new therapeutic targets for
the treatment of intellectual disability-related diseases. This mini-review introduced
the association between astrocyte and intellectual disabilities. Furthermore, recent
advances in genetic and environmental factors causing intellectual disability and different
pharmaceutical effects of intellectual disability-related drugs on astrocytes have been
summarised. Finally, we discussed future perspectives of astrocyte-based therapy for
intellectual disability.
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INTRODUCTION

Astrocytes are widely distributed in the brain and are characterised as the largest glial cells in size,
and their number in the brain is greater than the neurons (Sofroniew and Vinters, 2010). They
are known as astrocytes because they resemble the stars. Astrocytes evolved from the original
neural progenitor cells and then differentiated into two types of cells based on their different
distributions in the brain: fibrous and protoplasmic astrocytes (Miller and Raff, 1984). Fibrous
astrocytes are slender with few branches mainly distributed in the white matter of the brain
marrow. Furthermore, fibrous astrocytes contain many glial filaments comprising glial fibrillary
acidic protein (GFAP). However, protoplasmic astrocytes have more cytoplasmic branches and
fewer glial filaments, which are mainly distributed in the grey matter (McGann et al., 2012). Based
on single-cell sequencing, a recent study suggested that astrocyte might contain multiple subtypes
with transcriptomic differences (Batiuk et al., 2020). These subtypes were brain region-specific with
distinct morphological and physiological functions (Batiuk et al., 2020).

Astrocytes have molecular marker specificity. The GFAP is a specific molecular marker protein
of astrocytes (Sticozzi et al., 2021). GFAP expression is closely associated with the astrocyte
activation; therefore, the GFAP can be used as a reliable and sensitive marker of reactive astrocytes
(Liddelow and Barres, 2017). Furthermore, S100β is an acidic calcium-binding protein synthesised

Frontiers in Synaptic Neuroscience | www.frontiersin.org 1 June 2022 | Volume 14 | Article 877928

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://doi.org/10.3389/fnsyn.2022.877928
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0820-1520
https://doi.org/10.3389/fnsyn.2022.877928
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2022.877928&domain=pdf&date_stamp=2022-06-23
https://www.frontiersin.org/articles/10.3389/fnsyn.2022.877928/full
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-14-877928 June 17, 2022 Time: 15:2 # 2

Wang et al. The Role of Astrocyte in Intellectual Disability

and released by astrocytes that mainly affect the growth,
proliferation and differentiation of glial cells (Donato et al.,
2013). Similar to the GFAP, S100β is also considered a
molecular marker of astrocytes (Cox et al., 2018). Upon astrocyte
activation, the S100β expression also increases (Shobha et al.,
2010). Vimentin (Vim) is also a member of the intermediate
filament family (Terriac et al., 2017)and rarely expressed in
astrocytes under normal conditions. However, in damaged
CNS, the Vim expression will increase in reactive astrocytes,
making Vima molecular marker of astrocytes (Ivaska et al.,
2007). These molecular markers provide an important basis
for investigating the roles and changes of astrocytes in the
pathological state of the CNS.

Intellectual disability (ID) is a neurodevelopmental disease
characterised by intellectual function and adaptability defects
usually occurring during the developmental stages of neurons
(Purugganan, 2018). It is the most common concomitant
symptom of many diseases, such as Rett syndrome (RS), Down’s
syndrome (DS), and fragile X syndrome (FXS) (Purugganan,
2018; Romano, 2022). The overall intelligence quotient of
patients with ID is < 70 (Shea, 2012). Neuron growth retardation
is the main cause of ID. In previous studies, neuronal morphology
and functional changes were believed to be major factors
inducing ID (McGann et al., 2012). In recent years, with
the continuous research on astrocytes, astrocytes are found
to play an important role in affecting the function of neural
development (Cresto et al., 2019). Gene sequencing results in
patients with ID show that a large number of ID-related genes are
specifically expressed in astrocytes, not in the neurons (Lelieveld
et al., 2016), suggesting that astrocytes, like neurons, are also
important ID regulators.

Previous studies have suggested that astrocytes mainly develop
around the neurons, and their processes can extend and fill
the cell body and neurite to support and separate the neurons.
In some astrocytes, the end process becomes the end feet,
making it easier to adhere to the capillary wall or brain and
spinal cord surfaces to form glial-limiting membranes (Hanani
and Verkhratsky, 2021). With the continuous investigation of
astrocytes, they have been found to regulate the central nervous
system (CNS). Astrocytes can establish two-way communication
with the neurons, participate in synaptic composition (Kofuji and
Araque, 2021), respond to neurotransmitters released by synapses
(Durkee and Araque, 2019), and become reactive upon chemical
or physical insult. They could also be activated by the microglia
and regulate neuronal and oligodendrocyte deaths (Liddelow
et al., 2017). These reactive astrocytes are also involved in synaptic
formation and clearance and synaptic plasticity regulation (Van
Horn and Ruthazer, 2019). Furthermore, astrocyte ion channels
are also involved in the neurotransmitter and ion metabolisms,
such as glutamate and adenosine triphosphate (ATP) (Sofroniew
and Vinters, 2010), regulating the neuronal excitability and
maintaining the blood–brain barrier (Halassa et al., 2007). Taken
together, these studies indicated that reactive astrocytes play
a complicated role in the pathogenesis of ID. Therefore, this
mini-review aimed to investigate the morphology and functional
changes of reactive astrocytes in ID-related diseases and discuss
the possible effects of drugs on the astrocytes.

ASTROCYTES IN INTELLECTUAL
DISABILITY

The factors causing ID can be divided into genetic and
environmental (Table 1). Regarding the genetic factors, various
genetic syndromes can result in intellectual impairment, such as
DS, caused by chromosomal variation (another chromosome 21)
(Chen et al., 2014), Williams syndrome caused by deletion of
the region near the long-arm chromosome 7 (7q11.23) (Neuman
and Henske, 2011), FXS caused by FMR1 gene defect and its
protein product deletion (Pacey et al., 2015), RS caused by the
MECP2 gene mutation on the X chromosome (Andoh-Noda
et al., 2015), and tuberous sclerosis (TS) caused by TSC1 and
TSC2 gene mutations (Neuman and Henske, 2011). As for
the environmental factors, malnutrition, brain trauma, maternal
perinatal infection, and early childhood CNS infection may cause
an intellectual impairment (Purugganan, 2018). Several genetic
diseases, including DS and FXS, are considered to be caused
by neuronal changes (Fernández-Blanco and Dierssen, 2020).
With an in-depth investigation of astrocytes, the pathological
roles of astrocytes in neurodevelopmental disorders have been
continuously explored, suggesting that changes in astrocytes may
play an important role in the pathogenesis of ID.

From an in-depth investigation of the morphology and
function of glial cells, the significance of astrocyte morphological
and functional abnormalities to the occurrence of intellectual
impairment gradually emerged (Cresto et al., 2019). For
example, early experiments showed that RS was caused by
the MeCP2deletion in neurons (Giacometti et al., 2007; Guy
et al., 2007); however, in a recent study, Ballas et al. (2009)
reported that MeCP2 deletion was also observed in astrocytes
and that MeCP2-deleted astrocytes could not support the
normal neuronal growth. By coculturing neuronal cells with
FXS astrocytes, Jacobs et al. (2010) found that FXS astrocytes
can delay dendritic and synaptic growth. Similarly, Cheng et al.
(2016) also demonstrated that neurons showed morphological
defects and changes in the synaptic formation of the dendritic
spines when neuronal cells were cocultured with FXS astrocytes.
In the Fmr1 knockout mouse model simulating FXS, dendritic
developmental changes can also be observed (Hodges et al.,
2017). Similarly, DS astrocytes are also toxic to neurons in vivo
and in vitro (Chen et al., 2014). These experiments showed
that astrocytes are closely associated with the development
and formation of neurons and the occurrence of ID-related
diseases, although the roles of astrocytes in ID should be
further investigated.

Reactive Astrocytes in Intellectual
Disability
When the CNS is damaged or pathological changes occur,
astrocytes will respond to abnormal nerve cells through release
of various molecules inside and outside the cells, resulting
in haemostatic, morphological, and functional changes and
transforming into reactive astrocytes (Liddelow and Barres,
2017). Increased reactive astrocytes will have beneficial or
harmful effects on the peripheral nerve and non-nerve cells
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through functional changes, and reactive astrocytes will change
with the degree of nervous system injuries (Boghdadi et al., 2020).
Increased reactive astrocytes are common in all kinds of CNS
injuries, and increased reactive astrocytes are usually regarded
as a pathological marker of CNS injuries. Furthermore, activated
astrocyte markers such as GFAP and S100β were increased
pathologically (Abdelhak et al., 2022). GFAP and S100β were also
increased in astrocytes in various neurological disease models
with intellectual impairment symptoms, such as RS, DS (Chen
et al., 2014), FXS (Yuskaitis et al., 2010), and TS (Sosunov
et al., 2008), indicating that reactive astrocytes are significantly
increased in ID-related diseases.

Increased reactive astrocytes in ID-related diseases generally
have adverse effects on the CNS, which is generally manifested in
the inflammatory response (Sofroniew, 2020). The inflammatory
factor expression levels, such as IL-1β, IL-6, and TNF-α,
were upregulated in RS astrocytes (Maezawa et al., 2009), the
expression of tumour necrosis factor receptor 2 (TNFR2) was
significantly increased in FXS astrocytes (Pacey et al., 2015) and
the increased expression of immune response regulators miR-
146 and miR-155 associated with the inflammatory response
in reactive astrocytes was also observed in a DS mouse model
(Arena et al., 2017). The inflammatory reaction brought by these
reactive astrocytes affects the CNS homeostasis, inhibiting the
normal growth or apoptosis of neurons.

Ion Channel Dysfunction of Astrocytes in
Intellectual Disability
In addition to the inflammatory response, astrocytes have
many effects on neuronal ion homeostasis in various ID-
related diseases. Ion homeostasis is very important for the
electrophysiological activities of the neurons. Ion homeostasis
imbalance is shown in various neurological diseases and results
in abnormal excitation and even neuronal death (Ramocki
and Zoghbi, 2008). DS astrocytes frequently show spontaneous
calcium fluctuations, resulting in decreased excitability of
cocultured neurons (Mizuno et al., 2018); similarly, zinc ion
concentration decreases in DS astrocytes, affecting the synaptic
transmission function (Ballestín et al., 2014). In the TS model,
the expression of K+ channels on the astrocyte surface is
reduced, which will decrease their ability to buffer potassium,
and the gap connection between astrocytes responsible for
potassium redistribution would be damaged (Wong, 2019).
A series of changes will eventually result in the overexcitation
of neurons, leading to TS complex (Jansen et al., 2005). In
addition to astrocyte K+ channels, the astrocyte ion channels
TREK-1 and Bestrophin-1 (BEST-1) mediated the fast and slow
glutamate releases in astrocytes and then affected neighbouring
neurons (Woo et al., 2012). The connexin hemichannels
controlled the ATP and glutamate release and then affected
the CNS activity (Xing et al., 2019). Therefore, astrocyte ion
channels, such as the K+ channel, BEST-1, and hemichannels,
contributed to the neurodevelopmental disability and ID (Olsen
et al., 2015), although their molecular mechanisms are needed
for further investigation. In addition to ion channels, the
metabotropic glutamate receptor 3 protein levels associated
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with calcium metabolism were also down-regulated in RS
astrocytes (Pacheco et al., 2017). The ion homeostasis imbalance
leads to neuronal damage, and the glutamate metabolism
imbalance caused by astrocyte activation is also common in
various ID-related diseases. Higashimori et al. (2013) found
that the metabotropic glutamate receptor 5 expressions and
(s)-3,5-dihydroxyphenylglycine-dependent Ca2+ response were
decreased in FXS astrocytes, weakening the expression of
neuron-dependent GLT1 and eventually reducing the neuronal
glutamate uptake. An imbalance between glutamate and GABA
in FXS astrocytes produces neurotoxicity, which shortens the
neuronal dendrite lengths (Wang et al., 2016). The expression
of glutamate transporters in astrocytes, such as GLT-1 and
GLAST, also decreased in the TS model (Wong et al., 2003),
and astrocytes have increased extracellular glutamate levels,
resulting in central nerve cell death and impaired synaptic
plasticity and learning due to excitotoxicity (Zeng et al.,
2007). However, reactive astrocytes in these diseases are not
all unfavourable. Some studies on disease models have found
that reactive astrocytes can also protect neurons against CNS
damage. In the RS model, Okabe et al. (2012) and Iyer
et al. (2014) demonstrated that the expression of metabotropic
glutamate receptor 5 increased in RS and DS astrocytes, and
the astrocytes enhanced the scavenge of the glutamate, which
could prevent neuronal overexcitation caused by glutamate and
protect the neurons.

Molecular Dysfunction of Astrocytes in
Intellectual Disability
Changes in molecular pathways of reactive astrocytes are also
very common. The expression levels of many proteins in
astrocytes of various diseases will also affect their occurrences.
In the RS model, decreased brain-derived neurotrophic factor
in astrocytes may be one of the reasons leading to abnormal
neural development (Maezawa et al., 2009). In the DS model,
the sustained high S100β expression in astrocytes will increase
the production of reactive oxygen species and activate the stress
response kinase, resulting in cell apoptosis (Esposito et al.,
2007). The number of calcium-binding presynaptic proteins,
synaptophysins, and postsynaptic scaffold proteins, PSD95,
located at the neuronal synapses is reduced due to coculture
with FXS astrocytes, showing an abnormal dendritic morphology
(Jacobs and Doering, 2010). Thrombospondin-1 (TSP-1) is an
important astrocyte secretory protein (Ren et al., 2019) that helps
regulate spinal development (Torres et al., 2018) and synaptic
formation (Christopherson et al., 2005). The TSP-1 protein
expression significantly decreased in FXS astrocytes (Cheng
et al., 2016). Similarly, decreased TSP-1 protein expression
in DS astrocytes may cause an abnormal synaptic formation
(Garcia et al., 2010).

Regarding the gene expression of astrocytes, the gene Slc9a3r1
encoding scaffold protein NHERF1 was upregulated in RS
astrocytes, damaging the RNA metabolism, protein homeostasis,
monoamine metabolism, and cholesterol synthesis (Pacheco
et al., 2017). Furthermore, two genes, Chgb and Lcn2, encoding
the secretory protein chromogranin B and lipocalin-2, were also

detected and significantly up- and down-regulated, respectively,
in the RS model, and proteins secreted by the RS glial cells
may have adverse effects on the dendritic structure of the
neurons (Delépine et al., 2015). In DS astrocytes, Chen et al.
found that NFE2L2, TSP-1, and TSP-2 expression levels were
decreased, which also increased the reactive oxygen species
levels and decreased the synapse formation in astrocytes (Chen
et al., 2014). Furthermore, astrocytes were also involved in the
overactivation of the Akt/mTOR axis in DS neurons, which
eventually result in neuronal abnormalities and autonomic
dysfunctions (Araujo et al., 2018).

Astrocyte Dysfunction in Environmental
Factor-Associated Intellectual Disability
Excessive alcohol intake from environmental factors will also
affect the process of intellectual development. Ethanol has
been reported to decrease the total protein in astrocytes and
suppress the serotonin uptake by astrocytes (Lokhorst and Druse,
1993). This discovery reveals the relationship between ethanol
and CNS development. A pregnancy-related infection will also
affect the development of astrocytes and neurons. The infection
profoundly altered astrocytic biology and increased reactive
astrocytes. The offspring of rats infected during pregnancy
have higher serotonin receptor sensitivity, which increases the
risk of neurological diseases (Wischhof et al., 2015). GFAP
and IL-6 expressions were increased in the astrocytes of rat
offspring infected during pregnancy, resulting in abnormal
myelin development (Huleihel et al., 2004). Recent studies
suggested that infection during pregnancy affected neural
development, resulting in intellectual impairment and eventually
neurodegenerative diseases (Samuelsson et al., 2006), which may
be the main molecular mechanisms of intellectual impairment
due to pregnancy-related infection (Li et al., 2015). In vitro
lead exposure experiments show that Pb can activate astrocytes,
promote the release of inflammatory factors in astrocytes and
cause an inflammatory response (Baruch et al., 2015). Pb can
also produce oxidative stress in astrocytes (Qian and Tiffany-
Castiglioni, 2003), block the cell cycle of astrocytes (Rahman
et al., 2019), induce astrocyte apoptosis, and eventually result in
neurodegenerative diseases. Moreover, experiments have proven
that Pb can reduce serotonin in the mouse brain and contribute
to ID (Park et al., 2016).

EFFECTS OF ID DRUGS ON
ASTROCYTES

Five approaches have been used for ID management: physical,
training, psycho-, dietary, and drug therapy. This mini-review
focuses on drug treatment. Multiple drugs have already been
used for the treatment of mental disorders, such as piracetam,
aniracetam, monosialotetrahexosylganglioside sodium (GMI),
mecobalamin, vitamin B12, and methylphenidate hydrochloride.

Cetam drugs can reverse the effects of scopolamine of
reducing glucose utilisation in the cerebral cortex (Piercey
et al., 1987). In the Alzheimer’s disease model, mitochondrial
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ATP production and membrane potential were enhanced
after the piracetam treatment, which reduced apoptosis and
finally enhanced neuronal plasticity (Leuner et al., 2010).
Simultaneously, studies have shown that cetam drugs can slow
down the inactivation of the AMPA receptor (Jin et al., 2005)
and increase the calcium level in astrocytes (Marisco et al.,
2013). Slowing the AMPA receptor inactivation can also block
the potassium current in astrocytes by increasing an endogenous
Na+ level (Robert and Magistretti, 1997) and protect against the
toxicity caused by neuronal overexcitation. Cetam drugs can also
reduce the oxidative stress damage in astrocytes (Gabryel et al.,
2002) and reduce the GFAP and reactivity of astrocytes (Pimentel
et al., 2009) to improve patients’ memory and brain function
(Malykh and Sadaie, 2010).

Monosialotetrahexosylganglioside sodium (GMI) is an
important component of the mammalian nerve cells (Wang et al.,
2021) and can partially prevent an abnormal release or reuptake
of excitatory amino acid neurotransmitters, such as glutamate
(Zhang et al., 2015); thus, it can inhibit excessive glutamate
expression from damaging brain nerves and tissues (Hinzman
et al., 2012). GMI can also improve cerebral blood circulation,
increase blood oxygen, protect neurons (Aureli et al., 2016)
and reduce N-methyl-D-aspartate-dependent excitotoxicity from
astrocyte morphological swelling (Häussinger and Schliess,
2005).

Vitamin B12 was needed for nerve development (Selhub et al.,
2000). Reactive astrocytes were increased in the grey matter
of vitamin-B-deficient rats, accompanied by microglial oedema
and myelinolytic lesions (Scalabrino, 2009). Mecobalamin and
vitamin B12 can supplement vitamin B12 in the brain;
promote nucleic acid and protein synthesis; enhance axonal
transportation, axonal regeneration, and myelin formation to
prevent axonal degeneration; repair damaged nerve tissues; and
improve the damaged glial cells in the brain (Wu et al., 2019).

Furthermore, a previous study reported that the antibiotic
minocycline can partially correct the pathological phenotypes of
astrocytes by specifically regulating the S100β, GFAP, inducible
nitric oxide synthase and thrombospondins 1 and 2 expressions
in DS astrocytes (Chen et al., 2014), which may provide a new
treatment for DS.

SUMMARY AND PROSPECT

With an in-depth investigation of astrocytes in recent years,
their roles in neural development have been gradually explored.
Their changes are also closely associated with the occurrence and
progression of many neurological diseases. The aetiology of ID
is complex, and several mechanisms remain unclear. Therefore,
this mini-review shows that functional changes of astrocytes
under the action of various pathogenic factors are closely related
to ID, and various drugs for ID can also attenuate astrocyte
lesions to varying degrees. However, a few effective drugs have
been administered for functional changes of astrocytes under
pathological conditions to treat ID-related diseases. This suggests
that morphological and functional changes of astrocytes may be
one of the important mechanisms of these diseases. Dissecting
the contribution of distinct astrocyte subtypes to ID-related
diseases might provide a potential therapeutic approach and
benefit these patients. Therefore, drugs that inhibit astrocyte
lesions may become a new and important treatment strategy for
ID in the future.
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