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Abstract: A high-speed atomic force microscope (HS-AFM) requires a specialized set of hardware
and software and therefore improving video-rate HS-AFMs for general applications is an ongoing
process. To improve the imaging rate of an AFM, all components have to be carefully redesigned
since the slowest component determines the overall bandwidth of the instrument. In this work,
we present a design of a compact HS-AFM scan-head featuring minimal loading on the Z-scanner.
Using a custom-programmed controller and a high-speed lateral scanner, we demonstrate its working
by obtaining topographic images of Blu-ray disk data tracks in contact- and tapping-modes. Images
acquired using a contact-mode cantilever with a natural frequency of 60 kHz in constant deflection
mode show good tracking of topography at 400 Hz. In constant height mode, tracking of topography
is demonstrated at rates up to 1.9 kHz for the scan size of 1 pm x 1 um with 100 x 100 pixels.

Keywords: atomic force microscopy; high-speed atomic force microscope; high-speed atomic force
microscope scan-head

1. Introduction

In atomic force microscopy (AFM), scanning speed is affected by all components of
the instrument. Although the improvement in the scanning speed of the AFM started soon
after the instrument was invented [1], the progress in the development of high-speed AFM
(HS-AFM) had been slow due to the innovations needed in the electronic, optical, and me-
chanical products and processes required for designing faster instruments [2]. One of the
earliest realizations of HS-AFM occurred nearly two decades ago [3,4]. Since then, further
advances have been made to improve the scan-head and other HS-AFM components and
methods [5-17].

When one aspect of HS-AFM is improved, usually one or more of other aspects
of the instrument requires further improvements. For example, the improved mechani-
cal bandwidth of scanners and cantilevers usually calls for faster drive amplifiers, feed-
back components, cantilever deflection detection electronics, cantilever excitation, and so
forth [6,13]. Small, high-frequency cantilevers have become commercially available, and
along with this improvement comes the requirement for redesigning the AFM scan-head
with optical elements capable of focusing a laser spot on the small cantilever area. Small
cantilevers are desirable in high-speed scanning applications since for the same spring
constant, reducing the cantilever size increases their resonance frequency, leading to faster
maximum image acquisition rates. As an alternative to the small cantilevers required for
high-speed imaging, another approach enhances the stiffness of large active cantilevers us-
ing force feedback in order to achieve high-speed imaging of large biological samples [18].
Q-control of active cantilevers has also been used to improve imaging rates in tapping-
mode AFM [19,20]. Cantilever Q-control does not necessarily call for head redesign to
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achieve high-speed imaging. In general, however, the development of HS-AFM heads is
usually directed towards using small cantilevers [4,6,7,13,21].

Some of the main considerations that constrain the mechanical design of a HS-AFM
scan-head are the optical architecture to be used and the scanning technique to be adopted.
The selection of the optical architecture depends on the cantilever deflection detection
technique to be employed. Owing to its cost and simplicity of implementation, optical
beam deflection (OBD) is the most widely adopted technique. With OBD, two optical archi-
tectures can be used to separate the incident beam of light from the reflected beam of light:
spatial separation architecture and polarization-based separation architecture [6,22,23].
The choice of one architecture or the other also depends on, among other things, the scan-
ning technique to be employed. Of utmost importance in any OBD system is the ability of
effective optical beam tracking with minimal errors, even for samples with large vertical
and lateral features.

HS-AFM designs typically employ one of three major scanning techniques: sample
scan, tip scan, and combined tip-sample scan. In sample scan HS-AFMs, the sample is
mounted on an integrated XYZ-scanner [4,6,13,23]. The advantage of this method is that
it simplifies the overall mechanical design of the head and tracking of the optical beam.
However, this approach limits the specimen size because of the limited dimensions of
the sample stage usually mounted on top of a small high-speed Z-scanner. Sample scan
HS-AFMs cannot be trivially integrated with other optical microscopy techniques [24].
Additionally, designing an integrated XYZ-scanner is more challenging than designing
separate scanners. Despite the mentioned disadvantages, sample scan HS-AFM designs
are the most widely reported in literature because of their practicality.

Tip scan HS-AFMs have a stationary sample, and a cantilever is attached to an inte-
grated XYZ scanner [25,26]. This approach makes it easier to integrate the HS-AFM with
an optical microscope, but it makes tracking of the optical beam cumbersome. It also limits
the achievable lateral scan rates as well as the scan range. Holding the cantilever securely
on top of the Z-scanner while still maintaining a mechanical bandwidth high enough for
high-speed imaging also becomes a non-trivial task and significant effort has been put into
providing solutions to this problem [24]. Tip-sample scan HS-AFMs combine tip scanning
with sample scanning [12,27]. This approach separates the design of the XYZ-scanner into
two (a lateral and a vertical scanner) or three (a one dimensional scanner for each axis)
separate scanners, thereby simplifying the design process of the scanners. While this config-
uration allows the possibility for the examination of large specimens by using large-range
sample stages as compared to sample scan designs, optical beam tracking still presents
a challenge.

A common tip-sample scan approach typically comprises of the XY-sample scan and Z-
tip scan, where the XY- and Z-scanners are separated [12,28]. The XY-scanner has the sample
stage while the Z-scanner has the cantilever mounted onto it. However, a more recent
approach uses separate X-, Y- and Z-scanners and then connects the Z-scanner mounted
with a cantilever holder to the Y-scanner in-order to facilitate the tip scan [27]. Separating
the design of the three scanner axes improves their individual dynamic performance.
However, since the Y- and the Z-scanners are mechanically coupled, cross-coupling between
the Y and the Z axes is unavoidable. Additionally, the extra load on the Y-scanner constrains
its design. For both tip-sample scan designs, an appropriate optical architecture is required
to simplify optical beam tracking. In the design reported in Reference [12], the employed
optical architecture is not immediately apparent. In the work reported by Liu and his
co-workers [27], a simple laser tracking method that takes into account the movement of
the tip along the Y and Z axes during scanning is reported. However, the plane of the
cantilever is tilted relative to the focal plane of the focusing lens. This inevitably leads
to OBD errors associated with the displacement of the Z-scanner [28]. In general, while
combined tip-sample scan architectures offer attractive advantages to HS-AFM designers,
optical beam tracking and appropriate cantilever holding mechanisms are problems that
need to be addressed.
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To the best of our knowledge, combined tip-sample scan designs presented in literature
also do not incorporate photothermal cantilever drive. Miyata et al. [12] only performs
imaging in contact-mode while Liu et al. [27] excites the cantilever using a piezoelectric
actuator (PEA). Problems with piezoelectric actuation include reduced stability when used
for long periods at a time and distortion of amplitude and phase curves when used in
liquid environments [29-31]. Photothermal cantilever excitation overcomes these problems
and therefore it is becoming common to implement it in HS-AFM scan-heads [13].

This work presents our contribution towards the effort to develop a combined tip-
sample scan HS-AFM with a simple optical beam tracking and photothermal drive. We
adopt the combined XY-sample scan and Z-tip scan approach in order to constrain the
optical beam tracking to the Z-direction. The optical axis is tilted from the vertical to
place the cantilever on a plane normal to the incident optical beam [32]. The arrangement
reduces the OBD errors that would emanate from large displacements by the Z-scanner.
To separate the XY- and the Z-scanners, a cantilever-mounted Z-scanner is attached onto
the AFM scan-head’s optics block. We design a collar (which we refer to as the Z-collar)
for mounting both the Z-scanner and a compact aspheric lens for focusing the laser beam
onto the cantilever. The Z-collar can be easily dismounted from the scan-head to facilitate
a cantilever exchange and/or focusing. We also incorporate the photo-thermal drive
capability to potentially provide stable dynamic mode imaging in air and liquid [30]. We
then use homemade XY-scanners and a custom-programmed controller to evaluate the
high-speed imaging capability of the developed system. Images of Blu-ray disk tracks are
acquired in contact- and tapping-modes.

Compared to sample scan HS-AFMs presented in References [3,13], our work separates
the XY-scanner from the Z-scanner, making the scanner design process simpler. In addition,
the XY-scanners can easily be changed to accommodate different imaging requirements.
Tip scan HS-AFMs also use combined XYZ-scanners in addition to fairly cumbersome
laser tracking systems as the cantilever moves laterally and vertically [25,26]. Other
than simplifying the design of the scanners by separating the XY- and the Z-scanners,
our work also simplifies laser tracking by constraining the movement of the cantilever
along the vertical dimension only. Reducing laser tracking complexity also increases the
potential scan range of our system compared with tip scan HS-AFMs. Combined tip-sample
scan approaches reported in References [12,27] do not integrate photothermal cantilever
drive that can potentially be used for stable tapping mode imaging in all environments.
Also, unlike in References [12,27], the cantilever plane is normal to the incident beam to
potentially reduce OBD errors emanating from the displacement of the Z-scanner during
imaging [28].

2. Scan-Head Design

We set out to design a HS-AFM scan-head that incorporates a cantilever mounted
Z-scanner in order to separate the lateral and vertical scan axes. Additional considerations
were general compactness of the design, relative ease of cantilever replacement, and
similar ease of use compared to commercial AFMs. We modeled the design using a 3D
CAD software (Inventor, Autodesk, San Rafael, CA, USA), then machined and assembled
mechanical parts with optical parts. During the experiments, the entire HS-AFM scan-
head is mounted on a 1-inch optical post (SRP-35, Lee Optics, Sejong, Korea) by using
a mounting bracket that fits into a dovetail subassembly. The HS-AFM scan-head can
easily be dismounted from the optical post for cantilever exchanges, focus adjustment, and
general servicing.

2.1. Optical Design

The HS-AFM scan-head design adopted polarization optics to achieve the cantilever
excitation and deflection detection [22,33]. Figure 1 shows the optical architecture of
our design. The cantilever deflection is detected by using an 835 nm superluminescent
diode (SLD) (SLD-380-MP-TO9-PD, Superlum, Carrigtwohill, Ireland). A SLD is chosen
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because its light has a shorter coherence length than lasers, thus reducing the risk of light
interference when performing measurements on reflective samples [34]. The excitation of
the cantilever is accomplished by using a 30 mW 690 nm laser diode (HL6738MG, Thorlabs,
Newton, NJ, USA). The wavelengths of the detection SLD light and the excitation laser
should be close to minimize the focal shift between the two wavelengths [33]. The aspheric
lens (A397-B, Thorlabs) used in this work leads to a focal shift of about 85 um between the
two wavelengths. The focusing challenge that is presented by this focal shift is overcome
by first focusing the detection light, then adjusting the focus of the excitation laser and
the detection light within the focal depth of the detection light. Using a 785 nm excitation
laser instead, for instance, reduces the focal shift to about 25 um. However, the optical
filter (Hoya IR-80, Edmund Optics, Barrington, NJ, USA) used in this work to block the
excitation laser from reaching the detection photodiode allows a significant portion of
785nm laser power through to the photodiode. The transmitted excitation laser power
significantly interferes with the detection of cantilever deflection. We therefore chose to
use a 690 nm excitation laser diode to minimize the interference. To reduce the excitation
laser power reaching the detection photodiode, an optical filter that absorbs nearly all of
the excitation laser should be used.
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Figure 1. Schematic of the optical architecture of the proposed design. All components are contained
in the scan-head except the laser diode controllers, the scanning probe microscope (SPM) controller,
deflection signal readout circuit and the piezo driver.

Each diode is controlled by using a dedicated laser diode controller (LDC) (LDC501,
Stanford Research Systems) capable of modulating the light power up to 1.0 MHz in the
constant current mode. The light from each diode is collimated with an aspheric lens (A230-
B, Thorlabs) with a high numerical aperture (NA) of 0.55 and an effective focal length
of 4.51 mm. High NA ensures that more light from the source is collected. Each diode-
collimator set is fixed onto a kinematic mount to provide a means for positioning the
focal spot on the cantilever and the photodetector. After collimation, a long-pass dichroic
mirror (DMLP805T, Thorlabs) is used to combine the paths of the two beams. The two
beams are then passed through a polarizing beamsplitter (PBS) (PBS102, Thorlabs) which
allows the s-polarized light to be reflected by 90° towards a quarter-wave plate (QWP)
(WPMQO5M-830, Thorlabs). After passing through the quarter-wave plate twice—to and
from the cantilever—the s-polarized light from the PBS is rotated into p-polarized light
that is transmitted through the PBS towards the detection photodiode. The incident beams
pass through an aspheric lens (A397-B, Thorlabs) and are then focused onto the cantilever.
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The aspheric lens has a NA of 0.3 and the focal length of 11 mm to provide enough room
for mounting the Z-scanner. The Z-scanner mounted with cantilever holding mechanism
fits into the space between the cantilever and the focusing lens.

From the back of the cantilever, the reflected light is collimated by the aspheric lens and
rotated into a p-polarized beam that gets transmitted through the polarizing beamsplitter. A
second beamsplitter (BS) (BSX05, Thorlabs) reflects 90% of the reflected beam to a long-pass
filter (Hoya IR-80, Edmund Optics) eventually arriving at a quadrant photodiode (QPD)
(QP5-6 TO, First Sensor, Berlin, Germany). The long-pass filter has a cut-on wavelength of
800nm. Its purpose is to filter out the excitation laser beam and to transmit most of the
longer wavelength detection light. The remaining 10% of the reflected light is transmitted
to a CMOS camera for viewing the cantilever and the sample during mounting, alignment,
approach, scanning, and other operations. All optical components are mounted inside the
scan-head.

2.2. Mechanical Design

The mechanical design of the scan-head facilitates mounting of the optical elements to
enable detection and/or excitation beams to be positioned onto the cantilever, the QPD,
and the camera. A 3D CAD model of the mechanical design is shown in Figure 2a. The
scan-head has three major subcomponents as shown in Figure 2c. The first part is the collar
for mounting the focusing lens and the Z-scanner. The second part is the optics block for
fixing the SLD, the laser diode, and other optical components. A horizontal section of this
part is shown in Figure 2b. The third part is the read-out block for the QPD and the camera.
The 90:10 beamsplitter mount is attached to a kinematic mount that facilitates position-
ing of the light portion reflected by the beamsplitter onto the photodiode during align-
ment. All parts are assembled securely together using stainless steel screws as shown in
Figure 2d.
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Figure 2. HS-AFM scan-head design. (a) A vertical section of 3D CAD model; (b) A horizontal
section of the optics block; (c) Assembled scan-head components: 1. read-out block, II. optics block,
III. Z-collar, and the focusing lens mount partially mounted in the Z-collar. The focusing lens mount
can be translated vertically within the Z-collar to place a focal spot on the cantilever; (d) Assembled
scan-head with the mounting bracket fixed.
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Collimation and focusing aspheric lenses are mounted in the threaded studs to pro-
vide a simple means of translation for varying the distance between the lenses and the
object/source during focusing/collimation. The collimation lens mounts are screwed onto
the detection and excitation diode kinematic mounts using M3 screws. The collimation
mounts are also fixed onto the fabricated kinematic mounts for positioning the light beams.
On the other hand, the focusing lens mount is screwed into the collar as shown in Figure 2c.
Focusing is achieved by translating the lens mount vertically within the collar to adjust
the distance between the lens and the back of the cantilever. The vertical translation of the
focusing lens mount is achieved by rotating the lens mount clockwise or counter-clockwise
within the collar. Each full rotation of the lens holder is equivalent to a vertical distance
of a single thread pitch. A lens tube (SM1L10, Thorlabs) and a thread adapter (SM1A9,
Thorlabs) connects the AFM scan-head to a complementary metal-oxide-semiconductor
(CMOS) camera.

3. Scanners

The Z-scanner consists of a Z-piezo mount, the Z-piezo (PA4JKW, Thorlabs), and a
cantilever mount. Each part is connected to the other in the order previously listed. 3D CAD
model of the scanner is shown in Figure 3. The cantilever is attached to its holder by using
a glue. Using glue simplifies the design of the cantilever mount since no extra mechanical
components are required to hold the cantilever securely. For similar Z-scanner designs,
reduced loading on the Z-scanner increases its first resonant frequency, and this was the
key reason why the use of glue was adopted. The disadvantages of using glue include
increasing the likelihood of destroying cantilevers during removal, inability to reposition
installed cantilevers once the glue cures, and the need to remove glue residue from the
mount after every use. The cantilever mount is fabricated from aluminum to minimize the
mass-loading on the Z-piezo. The Z-scanner has a travel range of approximately 2.3 um at
100 V. A separate parallel kinematic XY-scanner is also designed and fabricated. Each axis
of the XY-scanner is actuated using a dedicated piezo stack (PK4FA2P2, Thorlabs). The scan
range of the lateral scanner in either axis is approximately 3.3 um at 100 V. The sample
stage of the developed XY-scanner is 1.2 cm x 1.2cm, which is still larger than typical
sample stages available in HS-AFMs with combined XYZ-scan architectures reported in
References [3,13]. The scan ranges of the scanners is comparable to those reported by other
HS-AFM designs [7,12,13].

Figure 3. A 3D CAD model of the Z-scanner.

The dynamic behavior Z-scanner was measured with a 330 kHz cantilever (RTESPA-
300, Bruker, Fremont, CA, USA) in contact with a sample. The variations in the cantilever
deflection caused by the driven response of the Z-scanner was then measured using a
sweepable digital lock-in amplifier in a commercial SPM controller (AFT-HSC50, Anfatec,
Oelsnitz, Germany). The frequency responses of the two XY-scanner axes were measured
using the sweepable lock-in amplifier and a capacitive probe (ADE-5504, Microsense, LLC,
Lowell, MA, USA) with its gauging module (ADE 5810, Microsense, LLC). The responses
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of the XY- and Z-scanners are shown in Figure 4a,b. For the XY-scanner, Figure 4a shows
the first main resonance at about 10.4 kHz for both axes.
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Figure 4. Frequency response of the (a) XY- and (b) Z-scanners.

The first resonant mode of the measured Z-scanner response occurs at 16.7 kHz.
While the measured frequency of the scanner’s first resonant mode is lower than previsouly
reported HS-AFM Z-scanner designs [7,12,14], it is still sufficient to demonstrate high-
speed scanning. Furthermore, the limitation in the bandwidth of the Z-scanner can be
improved by fixing the entire base of the Z-piezo mount to the H5-AFM head. In our
current design, one end of Z-piezo mount is attached to the HS-AFM head by using two
screws while the piezo with the cantilever holder is glued onto the mount’s free end. The
entire Z-scanner assembly is similar to a lever fixed at one end and free at the other end.
Therefore, the response of the Z-scanner is dominated by the structure of the assembly,
rather than the response of the loaded Z-piezo. In our next iteration of the design, we will
improve on the design of the Z-scanner and its assembly with the other components of the
scan-head in order to improve its mechanical bandwidth.

4. Imaging Experiments

A schematic and photograph of the setup are shown in Figure 5a,b. The main compo-
nents of the experiment for high-speed imaging were the custom-programmed controller,
the readout circuit, the lateral scanner, the high-voltage piezo drivers, and the developed
HS-AFM scan-head. We used a custom-programmed FPGA-based high-speed controller
based on National Instruments hardware and software. The vertical feedback controller has
a maximum sampling rate of 100 MHz while the scan engine can acquire 100 x 100 pixel
images at the rate of 40 frames per second. The vertical feedback control is achieved
by using a proportional-integral-derivative (PID) controller, and the amplitude estima-
tion for dynamic imaging mode is achieved by using an FPGA-based coherent detector.
The homemade readout circuit has the 3 dB bandwidth of approximately 8 MHz.

(a) NI PXle-1062Q
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Figure 5. The experimental setup. (a) Schematic of the setup; (b) Photographs of the setup.

To drive the XY-scanner, we used a homemade dual-channel piezo driver with a
maximum peak-to-peak output voltage of 290 V and the open-circuit bandwidth of 12 kHz.
The driver is built with commercially available high voltage operational amplifiers (PA-
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85A, Apex Microtechnology, Tucson, AZ, USA). The Z-scanner is driven by a commercial
amplifier (PI E-505, Physik Instrumente, Karlsruhe, Germany). The other concern to
contend with is the increasing phase lag as the scan speed increases due to the limited
slew rate of the amplifier. In the lateral axes, this results in mirroring of features near the
left (in trace images) or the right (in retrace images) of the image [4]. In the vertical axis,
the limited slew-rate of the commercial amplifier is expected to limit the vertical feedback
bandwidth of the HS-AFM. The limited vertical feedback bandwidth leads to progressive
blurring of topographical features in the scanned images as the scanning speed increases.
Additionally, the bandwidth of our current Z-scanner is limited by the first resonant mode
of the scanner at about 16.7 kHz so the benefits of using a high-bandwidth Z-scanner
driver would not be realized without first improving the scanner’s control bandwidth. The
limited bandwidth limits the maximum achievable imaging rate when vertical feedback
controller is active, but it is still sufficient to perform high-speed imaging. With these
phenomena known in advance, high-speed imaging capability of the developed HS-AFM
can be carefully demonstrated.

For controlling the laser diodes, we used commercial laser diode controllers (LDC501,
Stanford Research Systems) in constant-current mode to avoid the added complexity of
monitoring power in constant power mode. We also automate the sample approach using
a five-phase stepper motor to limit the incidences of crashing the cantilever tip onto the
sample surface.

To demonstrate the use of the designed scan-head in high-speed imaging, we obtained
images of Blu-ray disk data tracks at different scan rates. The XY-scanner is operated in
the open-loop mode and without a compensation for hysteresis and creep. Contact-mode
imaging was carried out using a triangular cantilever with a natural frequency of 60 kHz
(NP-S, Bruker, Fremont, CA, USA). We monitored the ability of the AFM scan-head to
track lateral features of the sample as the line scan rates increased. Images are obtained
in both constant deflection and constant height modes. The constant height mode images
demonstrate the possibility of acquiring images beyond the bandwidth of the vertical
feedback loop [2,35]. In our current setup, the vertical feedback bandwidth is limited by
the control bandwidth of the Z-scanner, which is in turn limited by the first resonance
frequency of the scanner. Improving the control bandwidth of the Z-scanner should in
principle improve the image acquisition rates of the system.

5. Discussion

Figure 6 shows the results of scans obtained at 5 Hz to 100 Hz to demonstrate the
ability of the scan-head to acquire images of nearly consistent quality at low speeds as well
as at moderately high speeds. The images are acquired in constant deflection contact-mode.

5 8
.

‘ 250 nm

10

20

.

100

‘ 60 nm

\

0

Figure 6. A 1 um X 1 um scan of Blu-ray disk data tracks consisting of 100 x 100 pixels. The line rate,
in Hz, is indicated in the top left corner of each image.

To further demonstrate the capability of high-speed imaging, Figure 7 shows the
topographical images of a 1 um x 1 pm scan of Blu-ray disc tracks acquired at 100 Hz
to 500 Hz. Again, the images are acquired in constant deflection contact-mode. As the
scan rate is varied, the level of deterioration in the quality of the acquired topographical
images up to 400 Hz is barely noticeable. However, at 500 Hz, the change in the quality
of the image is more discernible. The control bandwidth of the vertical feedback loop
is no longer able to maintain cantilever deflection while tracking the topography of the
sample with the desired accuracy. To improve the imaging rates in constant deflection
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mode, the control bandwidth of the vertical feedback loop can be improved using two main
approaches: implementing control methods that account for Z-scanner oscillations [36]
and/or improving the mechanical design of the Z-scanner to increase the frequency of its
first resonant mode [3]. At present, we are only using a PID controller which quickly leads
to instability as its parameter gains are increased to match high scan rates.

500 - 60 nm

\ \ \ \ .

| | . .’ e 1
B BB A ’ ~

— o

%o » 20 - 300 ™ a00 ™
»

Figure 7. Topographical images of a 1 pm x 1 um Blu-ray disk scan consisting of 200 x 200 pixels
acquired at different line rates. The line rates, in Hz, are indicated in the top left corner of each image.

Also, as the imaging speed increases, portions of the features near the left edge of the
trace image start getting mirrored. Mirroring is caused by phase lag introduced by the
inertia of the lateral scanner and/or the AFM’s electronics [4,13]. The size of the mirrored
portion of the image increases with increase in scan rate as shown in the images acquired
at 200 Hz and 300 Hz in Figure 7. The mirroring effect can be reduced by using low phase
lag electronics and by reducing the size of the load attached to the lateral scanner [4,13].
Where the feedback of the lateral scanner’s position is available, mirroring can be eliminated
since mirroring is brought about by inaccurate matching of the XY-scanner position with
the topographical data.

Other artifacts are visible around feature edges in Figures 6 and 7, and the artifacts
increase in prominence as the scan speed increases. These artifacts are apparent from
100 Hz, and they appear close to the right edge of each feature. Response of the feedback
controller—and the Z-scanner hysteresis—to sudden changes in topography leads to
overshoot in the transition regions. As the images are acquired in trace mode, scanning
the horizontal axis from left to right, areas appearing to have the highest topography next
to the right edges of the features represent the overshoot. The images in Figure 8 which
are acquired in constant height mode are less affected by this phenomenon because the
controller is turned off. The artifacts due to sudden transitions in sample topography
can be reduced by implementing improved feedback controllers instead of using a PID
controller in isolation [36,37].

Another artifact that is visible in the images in Figures 6 and 7 is the presence of hori-
zontal and vertical lines in some of the images. The horizontal lines are caused by electronic
noise. Filtering out the noise during post-processing of the acquired imaging data was not
effective for all the the scan rates, as is visible in the images acquired from 200 Hz to 400 Hz.
Computing the frequency spectrum of the acquired cantilever deflection data revealed
noise components with a fundamental at 60 Hz, and multiple harmonics. Improved design
of the signal acquisition system to attenuate the noise components is expected to reduce this
effect. The vertical lines are due to vibrations that are caused by the (1) sharp turnaround
edges of the fast-axis triangular positioning signals, and (2) positioning the scanner in
steps, from one pixel to the next. As the scanning speed increases, the vertical lines become
more spaced out horizontally, making them less apparent at 500 Hz in Figure 7. These
effects can be reduced by appropriate shaping of positioning signals [5,11].

Additional images were acquired in constant height mode, with the vertical feedback
controller disabled. The images obtained in constant height mode demonstrate the ability
of the system to acquire images at rates that are unencumbered by the Z-scanner bandwidth.
However, in constant height mode, the interaction between the cantilever and the sample is
not controlled, and sensitive samples can easily be destroyed during imaging. The results
obtained were as shown in Figure 8. The artifacts visible in these images are attributed
to the dynamics of the cantilever and the lateral scanner. To further reduce the effects of
XY-scanner dynamics, the images are acquired using approximations of sinusoidal scan
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waveforms in the fast axis. However, the scanner displacement from one point to the next
is still implemented in steps, leading to harmonics that can potentially excite the scanner’s
resonant modes, albeit to a lesser degree. The sinusoidal scan waveforms used to acquire
the images are digitally synthesized using 198 points per waveform cycle. Each scan has
an area of 1 pm x 1 pm and a pixel size of 100 x 100. The constant height mode images
demonstrate the ability of the system to acquire images at 1900 Hz using the contact-mode
cantilever with a natural frequency 60 kHz in air. While in constant height mode the system
can potentially acquire images at higher rates, beyond 1900 Hz the drive current from the
amplifier is no longer sufficient to produce sinusoidal output voltages while driving the
scanner. The turn-around edges of the output drive voltages become sharp again, creating
harmonics that can induce larger vibrations in the lateral scanner. The results in Figure 8
show that the limitations of the vertical feedback bandwidth are the cause of considerable
deterioration in image quality above a line rate of 400 Hz in the constant deflection mode
images shown in Figure 7.

1004 3008 . |00 & |700Mm & [oook & |[[60nm
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Figure 8. Topographical images of a 1 pm X 1 um Blu-ray disk scan consisting of 100 x 100 pixels

»

acquired at different line rates. The line rate, in Hz, is indicated in the top left corner of each
image. The images are acquired using sinusoidal raster scan waveforms to reduce the effects of
XY-scanner dynamics.

To demonstrate the ability of the scan-head to be used in dynamic mode imaging,
scans of a Blu-ray disk were acquired in tapping-mode using a cantilever with a first
natural bending frequency, fy, of 316 kHz (RTESPA-300, Bruker, Fremont, CA, USA). The
cantilever is photothermally excited by modulating the excitation laser power. The mean
power for the excitation laser is 10 mW. The modulation depth is about 50% (10 mW peak
to peak). Cantilever oscillation amplitude is estimated once every 10 us. The Q-factor of
the cantilever’s free resonance curve was estimated at 360 in air. The high Q-factor value

fo

limits the cantilever’s imaging bandwidth, B ~ =52, in tapping-mode, to an approximate
value of 2.7 kHz [38]. In this case, the slow response of the cantilever becomes the limiting
factor in the vertical feedback loop.

Figure 9 shows the images acquired in tapping-mode at different line rates. At 50 Hz,
the deterioration in the quality of the acquired image is visible. When the scan area is
reduced, the reduction in probe-sample velocity leads to improvement in the acquired
image quality at 50 Hz, as shown in Figure 9f,g. In Figure 9h, acquired at 100 Hz, further
deterioration in the image quality is noticeable. The line rates are limited by the slow
response of the cantilever in tapping-mode. Faster imaging rates can be achieved in tapping-
mode by using a high-frequency cantilever with a low Q-factor or by the artificial reduction
of the cantilever’s Q factor by the Q-control technique [3,19].

In Figure 9, the horizontal and vertical lines are not visible in the images. The hori-
zontal lines have disappeared because the lock-in detection method used to estimate the
amplitude of vibration of the cantilever filters out the electronic noise. Additionally, each
line is composed of 256 pixels as opposed to 100 pixels used for the images in Figures 6-8.
Since the same area is scanned, increase in the number of pixels reduces the step sizes
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as the XY-scanner moves from one pixel location to the other. This in turn reduces the
likelihood of exciting undesired lateral scanner vibrations. The imaging rates are also fairly
low, reducing the risk of vibrations induced by triangular scan waveform.
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Figure 9. Topographical images of a Blu-ray disk sample consisting of 256 x 256 pixels acquired at
different line rates. The scan area is 1 um x 1 um for images (a—f) and 0.75 um x 0.75 um for images
(g/h). The scan rates in Hz are (a) 2; (b) 5; (c) 10; (d) 20; (e) 40; (f) 50; (g) 50, and (h) 100.

Ultimately, the extent to which a HS-AFM is applicable is dependent on its ability to
acquire images from samples that can easily be damaged or distorted by probe-sample in-
teractions in less than ideal environments. In a number of studies, HS-AFMs are developed
for biological applications [3,6,13]. Biological samples are challenging to image because
they are usually contained in liquid cells and they can easily be damaged if probe-sample
interaction is not carefully controlled. By contrast, a Blu-ray disk sample is considerably
easy to image using a HS-AFM. It is typical to use high frequency cantilevers to perform
high-speed imaging of soft biological samples in tapping-mode. However, we note that if
the optical design is able to focus excitation and detection lasers appropriately, selecting
small high frequency cantilevers can enable imaging of soft samples in tapping mode
at high speeds. Our configuration can potentially be optimized to create focused spot
diameters, w, = %, that are small enough to be used with some small high-speed
cantilevers [21,33]. Other than the laser spot size, other requirements for high-speed
imaging may be met by adjusting feedback controller designs [39], and implementing
advanced tapping-mode techniques [14], for greater control of probe-sample interactions.
For samples that are less sensitive to mechanical damage, larger high-speed tapping-mode
cantilevers can be used with the system as is [27]. In addition, our system implements
photothermal cantilever excitation that has been demonstrated to work reliably in chal-
lenging imaging environments and over large excitation frequency ranges, as opposed to
the widely used piezoelectric cantilever excitation [30]. We have not demonstrated the
imaging of challenging samples with our system. However, we believe that with minor
modifications, our system can potentially be used for high-speed imaging of a sample with
a sensitive surface in a liquid environment.

6. Conclusions

In this work, we have developed a tip-sample scan HS-AFM scan-head. For the
presented design, the procedures for loading cantilevers and focusing are relatively simple
once all the components of the scan-head have been assembled. Also, the cantilever is
placed in the focal plane of the focusing lens in order to reduce the problems associated
with laser tracking. We have demonstrated the capability of high-speed imaging in contact-
and tapping-modes. In tapping-mode, the high Q-factor of the cantilever has limited the
line rate to about 100 Hz for a scan area of 0.75 um x 0.75 um. However, we believe that
much faster rates can be attained by using tapping-mode cantilevers with high imaging
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bandwidth. In constant deflection mode, the imaging rate of our instrument is limited to
around 400 Hz by the bandwidth of the Z-scanner while in constant height mode tracking
of the sample topography has been obtained at 1900 Hz for an image size 100 x 100 pixels
and a scan area of 1 pm x 1 um. Improving the control bandwidth of the Z-scanner would
potentially improve the constant deflection imaging rates of our current HS-AFM setup in
the future.
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Abbreviations

The following abbreviations are used in this manuscript:

AFM Atomic Force Microscope
BS Beamsplitter
CAD Computer-Aided Design

CMOS Complementary Metal-Oxide-Semiconductor
HS-AFM  High-Speed Atomic Force Microscope

LDC Laser Diode Controller
NA Numerical Aperture
OBD Optical Beam Deflection
PBS Polarizing Beamsplitter
PEA Piezoelectric Actuator
PID Proportional-Integral-Derivative
QPD Quadrant Photodiode
QWP Quarter-Wave Plate
SLD Super Luminescent Diode
SPM Scanning Probe Microscope
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