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Abstract
Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisti-

cians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with

iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate

physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more

appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of

squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with

nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay dif-

ferential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based opti-

mization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos

synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear

parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of

noisy chaotic systems.
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Introduction

Pharmacotherapy assumes a reasonable degree of

predictability. However, the human body is a

complicated dynamic system in which a large number

of variables are in operation simultaneously.

J. M. van Rossum and J. E. C. M. de Bie, 1991 [1]

Learning and confirming are quite distinct activities,

implying different goals, study designs, and analysis

modes.

L. B. Sheiner, 1997 [2]

As noted elsewhere [3], the objectives of implementing

mathematical models—with or without simulation—to

explore the nature of biological systems span a continuum.

It begins at the far left where the sole objective is to predict

parameter values unambiguously and ends at the far right

where the purpose is a biological ‘Theory of Everything,’ a

fully mechanistic understanding of all systems and their

interactions. While our modeling and simulation capabili-

ties fall significant distances from either end of that con-

tinuum, it is necessary to know where we are and why we

are there.

The quoted epigraphs are a fitting reminder to assess

what can be achieved or expected with any particular

approach to modeling or modeling and simulation.
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Developments in pharmacokinetic (PK) and pharmaco-

dynamic (PD) modeling, for all the vast leaps in progress

made possible by the concomitant expansion of computa-

tional resources, still hover closer to the left (prediction)

end of that continuum. Modeling and simulation of phys-

iologically based pharmacokinetic–pharmacodynamics

(PB–PKPD) allow for a myriad of what if questions and

answers of critical importance to drug development.

Nonetheless, the treatment of PB–PKPD from the biolog-

ical systems and especially the disease systems (DS), per-

spective is of much more recent vintage. A major portion

of this effort is applied to create networks describing PB–

PKPD–DS interactions and recognize their complex

dynamics. Danhof [4] classified dynamical systems into

‘‘non-adaptive’’ and ‘‘adaptive’’—the former having prop-

erties that are functionally constant over time, the latter

whose system properties may change, particularly through

emergence of self-organization. Danhof also suggested an

organization of ‘‘fundamental properties of therapeutic

interventions on biological systems behavior,’’ viz. non-

linearity, individuality, variability, interdependency, con-

vergence, resilience, and multistationarity.

Multistationarity is a property of biological systems that

may exist in multiple stable states. It is a property that may

not be immediately apparent from modeling and simulation

based on ordinary differential equations (ODEs). Bakshi

et al. [5] presented an interesting demonstration of unex-

pected behavior in an ODE model of a nonlinear prolactin

precursor pool model with feedback to account for the

activity of antipsychotic drugs. Through a sophisticated

dynamical systems analysis, they concluded that the model

nonlinearity resulted in multistationarity, viz. two steady-

states with differing stability levels. This multistationarity

confounded their simulation, but the cause could not be

immediately identified by visual inspection.

The epigraph by van Rossum and de Bie in 1991

introduced their proffer for considering the role of chaotic

systems in understanding and predicting pharmacological

response. The issues they raised included the implication

that a shortcoming of pharmacodynamic modeling was a

paucity of dynamics, as represented by empirical receptor

occupancy models. Ever since, modeling pharmacody-

namics has been addressed by sub-models varying in

complexity that link time and concentration to concentra-

tion-effect; or more succinctly, a dynamic sub-model

linking time and concentration with a non-linear static one

linking concentration to effect. In suggesting the possibility

that a chaotic process could underlie pharmacological

mechanisms, van Rossum and de Bie put forward the

involvement of nonlinear dynamic systems, specifically

chaotic systems. The origin of their proffer was, in good

part, teleological. The emerging literature, particularly in

EEG and ECG analysis indicated the possibility of chaotic

functions that accommodated positive and negative feed-

back control; which they saw as applicable to the com-

plexity of pharmacodynamic actions.

Dokoumetzidis et al. [6] concisely reviewed the basic

principles of nonlinear dynamic systems and chaos and

considered how they can be applied to PD systems. A

classical and relatively uncomplicated presentation of

mathematical chaos theory is the logistic map based on the

following difference equation for population growth

Xnþ1 ¼ rXnð1� XnÞ ð1Þ

where 1[X[ 0.

X is a variable which defines the state of a dynamical

system and r is a constant.

Up to r & 2.5, a plot of Xn versus iteration number will

settle at a single value r�1
r
(attractor), irrespective of the

starting value of X. As r increases above 2.5, the map will

undergo a periodic doubling, but coming to the same

attractor values independent of starting value. Somewhere

between r = 3.5 and 4 (depending on the computer’s

floating point calculations), the map will appear almost

random, and the points on the map will be starting point

dependent. A return map plot of Xn versus Xn?1 will reveal

a non-random distribution.

Gontar [7] demonstrated the usefulness of difference

equations in modeling the Belousov–Zhabotinsky (B–Z)

reaction as an analogy illustrating forward and backward

control mechanisms. The B–Z reaction is a classic example

of a non-linear chemical oscillator from a non-equilibrium

state that will, depending on the reactants, colorfully

demonstrate the oscillations. There are multiple steps to the

reactions, but Gontar was able to mathematically describe,

via difference equations, the empirical reaction data from

the B–Z reaction in the form of a model illustrated by the

diagram in Fig. 1.

Figure 1 shows the information exchange wherein the

concentration of component C affects the reaction rate of A

to B and the concentration of component A affects the

reaction rate of B to C. It is not difficult to see a corre-

sponding representation for modeling the complex

dynamics of living systems. In the case of pharmacody-

namics, it could represent systems more complex than

generated by receptor occupancy mechanisms without

feedback and by presumptions of commonly accepted

Fig. 1 Schematic of Belousov–Zhabotinsky (B–Z) reaction showing

information exchange between different components
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linear and non-linear pharmacokinetic factors affecting

local target site concentration.

However, if the system is chaotic, that modeling is

problematic. As noted, chaotic systems are starting value

dependent and as illustrated using the foregoing logistic

equations, miniscule changes in the controlling functions

(as with r above) can have a significant effect on the out-

come although the outcomes can display long-range order

and cyclic patterns of outcomes can recur closely from time

to time. Thus, the commonly implemented stochastic

approaches characterizing and predicting system behavior

are likely to be inadequate for prediction in the time

domain.

There are numerous examples of nonlinear dynamical

systems in pharmacodynamics. Pharmacodynamics tradi-

tionally has been based on a receptor occupation theory

without feedback. This consideration leads to the classical

direct and indirect Emax response models which are often

applied in PD studies. However, deviations from this

behavior can be anticipated when an endogenous substance

e.g., a hormone or a neurotransmitter, is considered and a

feedback mechanism, induced by the formation of a

ligand–receptor complex, operates to maintain a basal

ligand value. Indeed, Tallarida [8] has analyzed such a

system using techniques of nonlinear dynamics and has

shown that this system can be either dynamically stable or

unstable, depending on the values of the parameters

involved. These theoretical results were confirmed exper-

imentally in a quantitative study of the control of dopamine

release by negative feedback in the rat striatum [9].

It is widely appreciated that hormone secretion is

characterized by pulsatility. The first experimental studies

of the pulsatile nature of hormone secretion started more

than 30 years ago. Hellman et al. reported in 1970 [10] that

‘‘Cortisol is secreted episodically by normal man.’’ It was

also realized that this pulsatility was not due to noise but

was actually associated with physiological processes.

Indeed, the circadian clock, the interaction between hor-

mones through feedback mechanisms, and the interaction

of hormones with central and autonomic nervous systems

are some of the reasons for this behavior. It has been

apparent that the theory of dynamical systems is the right

field to find useful tools for the study of hormonal systems.

Kuznetsov et al. [11] presented a mathematical model of

the cytotoxic T lymphocyte response to the growth of an

immunogenic tumor. As stated by Kuznetsov’’, The model

exhibits a number of phenomena that are seen in vivo,

including immunostimulation of tumor growth, ‘sneaking

through’ of the tumor, and formation of a tumor ‘dormant

state’’’. By comparing the model with experimental data,

numerical estimates of parameters describing processes

that cannot be measured in vivo were also derived. He said

that there are different explanations for the termination of a

tumor dormant state, for sneaking through of tumors, and

for immunostimulation effects. Often these explanations

are based on the ideas of immunoselection, antigenic

modulation, production by tumor cells of different types of

immune cell blocking factors, generation of immunosup-

pressor cells, changes in auto-regulatory networks in a

tumor localization region, and other more complex ideas

that are challenging to prove or disprove experimentally.

He proposed that these phenomena may be the result of

nonlinear dynamic interactions between the tumor and the

immune system.

Classical approaches for tracking and determining

parameter estimates of these nonlinear chaotic systems are

very unreliable and Konnur [12] stated the key issues while

estimating parameters of these dynamical systems. First, the

method needs to be robust in the presence of noise. Second,

themethodmust allow estimation of all parameters using any

conveniently measurable output from the system. Third, it

must be able to rapidly track changes in the operating

parameters of the experimental system. For a system with

multiple parameters, the least squares objective function

possesses multiple minima [12] and this can lead to an

erroneous estimate of parameters owing to convergence at

one of the local minima. Also, for some cases, this method is

not able to accurately track changes in operating parameters.

The error in all these approaches increaseswith an increase in

noise and decrease in data density.

Since the solutions of a chaotic system may be multi-

modal and non-convex, key challenges [33] include (1)

very flat objective function surface in the vicinity of the

solution; (2) over-determined models; (3) badly scaled

model functions and, (4) non-differentiable terms with

respect to systems dynamics. Since classical methods have

low accuracy and are computationally expensive, one can

look for methods which are robust and can overcome these

issues. Controlled chaos synchronization is one approach

that may be appropriate to address these problems [13].

Methods

Model used in current study

The hypothalamic–pituitary–adrenal axis (HPA) is one of

the most widely studied hormonal systems (see Fig. 2). The

model is nonlinear. In this model, cortisol concentration is

described by a nonlinear time-delay differential equation

[14, 15] with two terms, a secretion rate term which

adheres to a negative feedback mechanism [16, 17] and

drives the pulsatile secretion and, a first order output term.

dC tð Þ
dt

¼ k1a
nC t � dð Þ

an þ C t � dð Þn � k2C tð Þ ð2Þ
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where a ¼ a cos t � tf
� �

2p
1440

� �
þ b and C is the cortisol

concentration, Cd (C(t - d)) is the value of C at time

(t - d), n is the exponent which controls the oscillations in

the cortisol model, k1 is the input rate constant and k2 is the

output rate constant. The complex disposition characteris-

tics are modeled with a simple first-order rate constant, k2.

The circadian rhythm of cortisol secretion is implemented

by considering the ‘a’ parameter of the model as a simple

cosine function of the 24 h circadian period where a and b
are constants with concentration units, tf is a constant with

time units and t is the time in minutes [18]. The nominal

parameter values are listed in Table 1.

Data generation and processing

Four datasets were considered to demonstrate the utility of

the chaos synchronization function. Thus, the algorithm

was applied to a noiseless dataset, noisy datasets (with 20%

and 50% proportional noise) and a noiseless sparse dataset.

The simulated experimental ODE system was generated by

solving Eq. (2) using the dde23 function in MATLAB

2017a, which solves delay differential equations with

constant delays. We validated the trajectory generated by

the solver by comparing with the results provided in [18].

The value of the history function was fixed to 1.7, which is

the initial value of cortisol concentration. To generate a

noisy system, the simulated experimental noisy data were

generated from a normal distribution with mean equal to

the concentration value of the experimental system and

20% proportional error using the randn function in

MATLAB(Mathworks:MA) version 2017a (see Fig. 3).

Data processing and information extraction from the

above datasets required noise filtering as an initial step. We

used the wden function with a ‘symmlet’ basis expanded to

level 4 in MATLAB 2017a. This function performs an

automatic de-noising process of a one-dimensional signal

by thresholding wavelet components. The input options to

the function can be changed according to the noise level.

This function was found to be more effective for noisy

chaotic systems than a moving average filter (filter func-

tion) because it preserves geometric information of the

trajectory. Parameter estimation and system tracking were

performed on this filtered signal. We found that, unless we

preserve the geometric information, nonlinear parameters

could not be accurately estimated. While estimating the

parameters using grid search, filtering was performed at

level 4 and when the parameters were being estimated

using nonlinear least squares, extended least squares or

chaos synchronization, the filtering was performed at level

1. It was observed that chaos synchronization method

performs more accurately with a lower level of filtering

that preserves more detail. As stated in [19], noise can

induce the synchronization by stochastic resonance.

Let us now consider various approaches for estimating

parameters of the cortisol system.

Non-linear least squares regression

Classical approaches such as least squares regression and

maximum likelihood are widely used for tracking non-

linear systems. Many of these classical approaches are

numerical and, to achieve synchronization, they require the

leading Lyapunov exponent to be negative. However, it has

been recently reported that local (rather than global) neg-

ativity of conditional Lyapunov exponent is neither a

necessary nor a sufficient condition to guarantee chaos

synchronization [20, 21].

In the method of nonlinear least squares, we pick the

coefficients b to minimize the residual sum of squares

Fig. 2 A schematic representation of the hypothalamic–pituitary–

adrenal axis (HPA), together with other organs and systems that

interplay in the secretion of cortisol. Solid arrows indicate stimula-

tion, production or reaction and dashed arrows inhibition, while

double arrows indicate more complicated bi-directional interaction.

At the bottom of the graph the various components of cortisol

disposition are indicated. Free cortisol, which participates in the

feedback mechanism, is also in equilibrium with the cortisol species

bound to corticosteroid bound globulin and tissue cortisol. In

experimental studies, the measured blood cortisol levels are the

sum of free and bound cortisol. Key: ANS (autonomic nervous

system), CNS (central nervous system) (after [15])
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RSS bð Þ �
XN

i¼1

yi � RJJijbj
� �2 ð3Þ

where yi is the observed value,J is the Jacobian, Jijbj is the
fitted value and RSS(b) is a quadratic function of param-

eters whose minimum always exists, but may not be unique

[22].

We fitted the Dokoumetizidis cortisol model by non-

linear least squares using the lsqcurvefit function in

MATLAB version 2017a to fit linear parameters and grid

search to fit nonlinear parameters. This function requires

the x data i.e. time of observation, y data i.e. observed

concentration, model function and initial values for all the

parameters to be estimated. The initial values of all the

parameters were set reasonably close to their nominal

values (Table 1).

Extended least squares

In the case of Extended Least Squares (ELS) the variance

of error becomes a function of the predicted values at each

time point, rather than a function of the corresponding data

values. The objective value function for ELS is given by:

objELS h; rð Þ ¼
Xn

n¼1

Ci �M h; tið Þð Þ2

V h; r; tið Þ þ lnV h; r; tið Þ ð4Þ

where V h;r; tið Þ is a variance model, Ci represents the

observed data, M h; tið Þ represents the predicted data, h
denotes the vector of parameters of the model, and r
denotes the standard deviation [23]. In the presence of

noise, ELS performs better than Root Mean Square Error

(RMSE) due to the weighting scheme implemented in ELS.

This is important for nonlinear dynamic systems since they

may possess multiple local minima.

Chaos synchronization

Chaotic systems are dynamic systems which are highly

sensitive to initial conditions. As a result, two identical

chaotic systems starting with nearly the same initial con-

ditions can have exponential separation of trajectories with

time [24]. Chaos synchronization refers to a controlled

synchronization process wherein two or more chaotic

systems adjust a given property (either equivalent or non-

equivalent) of their motion to a common behavior due to a

coupling or forcing [24]. This common behavior ranges

from a complete agreement of trajectories to locking of

phases. Based on the coupling configuration there is a great

difference in the processes leading to synchronized states.

There are two types of coupling configurations; the first is

unidirectional coupling and the second is bidirectional

coupling. Unidirectional coupling entails the global system

being realized by two subsystems with a drive-response

configuration (see Fig. 4). One subsystem (driver) evolves

freely and drives the evolution of the other. The response

system is ‘‘slaved’’ to follow the dynamics of the driver

Table 1 Parameter list with

nominal values for the cortisol

model in [15] together with

initial values and property

Parameter Nominal value Property Initial value

Input rate constant, k1 (1/min) 0.0666 Linear 1

Output rate constant, k2 (1/min) 0.0333 Linear 0.01

Constant, a (lg/100 ml) 0.7 Nonlinear 0.01

Constant, b (lg/100 ml) 1 Nonlinear 0.1

Phase, tf (min) 250 Nonlinear 0.1

Delay, d (min) 70 Nonlinear 50

Fixed switch exponent, n 10 Nonlinear Fixed

Parameters that enter in a linear fashion were estimated using adaptive chaos synchronization while the

parameters that enter in a nonlinear fashion were estimated by combining grid search with adaptive chaos

synchronization

Fig. 3 The experimental data included undesired information in the

form of noise. To estimate parameters given these noisy data we need

to filter the undesired information without losing too much desired

information. The data were filtered by wavelet denoising according to

a wden function in MATLAB. The filtered data are input to the chaos

synchronization estimation method based on least squares or extended

least squares objective functions
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system; examples of such systems are cortisol secretion

and immune-tumor cell interactions. On the other hand, for

a bidirectional system, both subsystems are coupled with

each other. These types of systems are more complicated to

work with.

The coupling factor induces adjustment of cyclic

rhythms onto a common synchronized manifold resulting

in mutual synchronization behavior. Examples of such

systems are physiological systems such as cardiac, neural

and respiratory systems which are bi-directionally coupled.

When we talk about coupled identical systems, synchro-

nization appears as near equality of a state variable

evolving in time. This type of synchronization is referred to

as complete synchronization. The existence of complete

synchronization implies that the response system is

asymptotically stable i.e. the difference between the out-

puts of the driver and slave systems asymptotically tends to

zero. For complete synchronization, there is asymptotically

perfect locking of chaotic trajectories of two systems

achieved by means of a coupling signal and the trajectories

evolve to remain in step with each other in the course of

time [24].

In this paper, we concentrate on an adaptive coupling

scheme proposed by Huang [25] which supplies a simple,

analytical and systematic controller to synchronize almost

arbitrary similar chaotic systems that are uniform Lips-

chitz, including systems whose first derivatives (or Jaco-

bian) are of bounded variation everywhere.

He proved by using the invariance principle [26] of

differential equations that a linear feedback coupling with

an adaptively-updated feedback strength proportional to

the square of the residuals can asymptotically perfectly

synchronize two almost arbitrary identical chaotic systems

[25]. This method can solve for all parameters which

appear in a linear fashion and the asymptotic global sta-

bility guarantees asymptotic global exponential stability in

the noiseless case, i.e. asymptotic global negativity of

conditional Lyapunov exponents for the augment system

(receiver).

In mathematics, a Lyapunov exponent of a dynamical

system is a quantity that characterizes the rate of separation

of infinitesimally close trajectories [27]. Quantitatively,

two trajectories in phase space with separation dZ0 diverge

at a rate given by

dZðtÞj j � ekt dZ0j j ð5Þ

k ¼ lim
t!1

lim
dZ0!0

1

t
ln

dZ tð Þj j
dZ0j j ð6Þ

where k is the leading Lyapunov exponent.

By inspection of Eq. (6), the leading Lyapunov expo-

nent is inversely proportional to the time to convergence.

To use this approach, the model structure must be

already known, including the number of independent

variables and the structure of the underlying equations. The

augment system is based on artificial unidirectional cou-

pling to a replica of the system. We apply the approach to

the cortisol secretion model developed by Dokoumetzidis

et al. [18].

We synchronized the system by unidirectional (drive-

response) coupling (see Fig. 4). This coupling is realized

by two subsystems, one of which evolves freely (the Dri-

ver) and drives the evolution of the other (the Response/

Receiver).

Within this coupling configuration, the robustness of

synchronization depends on the coupling scheme. Our

research is based on the coupling scheme proposed by

Huang [25] which guarantees an asymptotically non-posi-

tive global conditional Lyapunov exponent for the

sequence of residuals in the noiseless case [28] and is

discussed in the following section.

Huang’s adaptive coupling scheme

We applied adaptive chaos synchronization according to

Huang’s scheme to the cortisol model [18], for which the

chaotic system (driver System) is given by Eq. (2) and the

time series for the concentration of cortisol C(t) is available

as the experimental output of the cortisol system. We note

that synchronization does not always require all the vari-

ables to be available, especially when the system is rep-

resented by a time-delay embedding [35]).

To estimate all unknown linear parameters from these

time series we defined a receiver system whose governing

equations are identical to the driver system although cor-

responding parameters may not necessarily take the same

values. The evolution of the receiver system is guided by

the driver trajectory by means of the driving signal (first

and second terms of Eq. 7). These parameters are initial-

ized to arbitrary initial values and their values are updated

iteratively until complete synchronization is obtained.

The receiver system is controlled by adaptive linear

feedback according to the following equation

dC tð Þ
dt

¼ k1a
nC t � dð Þ

an þ C t � dð Þn � k2C tð Þ þ � tð Þ

� C tð Þ � Cobs tð Þð Þ ð7Þ

where C tð Þ � Cobs tð Þð Þ is the synchronization error denoted

by ei and �ðtÞ is the time-dependent feedback strength.

Fig. 4 A schematic representation of a unidirectional coupling

configuration. The solid arrow indicates the direction of flow of

information
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ei ¼ C tð Þ � Cobs tð Þð Þ ð8Þ

The feedback strength �i is then adapted according to the

following nonlinear update law

d�ðtÞ
dt

¼ �C� eið Þ2 ð9Þ

where C is a tuning parameter that affects the rate of

convergence.

The parameters are adapted according to the following

update rules which are similar to the delta rules encoun-

tered in machine learning

dk1 tð Þ
dt

¼ �d1 � eið Þ � dF1 ð10Þ

where dF1 ¼ anC t�dð Þ
anþC t�dð Þn

dk2 tð Þ
dt

¼ �d2 � eið Þ � dF2 ð11Þ

where dF2 ¼ �C tð Þ.
Here d1 and d2 are tuning parameters that also affect the

rate of convergence. The values of d1 ¼ d2 ¼ 1 and C ¼ 1

were utilized and fixed based upon the conclusion derived

from the Lyapunov exponent and tuning parameter analysis

presented in the Results section of this paper.

Theoretically, the receiver system should track the dri-

ver system accurately for any value of C and d, however,
the key issue is the rate of convergence of parameters,

especially for noisy data. The values of C and d were

chosen so that even for noisy systems the parameters

converge to about their nominal value (given in [18])

within about 6 cortisol cycles (about 6 days) of the sparsely

sampled time series.

These equations were solved in MATLAB using the

dde23 solver with initial values (k1= 0.01, k2= 0.01

� ¼ 0:1) and an initial concentration of cortisol set to

1.7 lg/100 ml.

Although the adaptive chaos synchronization method

identifies the parameters that appear in a linear fashion it is

not immediately applicable to parameters that enter in a

nonlinear fashion. To estimate these parameters, we com-

bined grid search with chaos synchronization.

When CS estimates parameters that enter into a noise-

less system of uniform Lipshitz ODEs in a linear fashion, it

converges to a global minimum because the Lasalle

Invariance Principle of ODEs applied to trajectories of the

augmented system consistent with a Lyapunov function

that is constructed to be monotonic decreasing guarantees

that the sequence of residuals is asymptotically stable at the

origin, see Huang [29]. A denoised system or a system with

only a few percent of noise still converges to the global

minimum with intermittent fluctuations due to phase slips

that can be resolved by filtering or averaging.

Theesar et al. [35] extends the Huang [29] analysis to

uniform Lipshitz Stochastic Differential Equations (SDEs)

with Wiener noise, with similar results based on the Lasalle

Principle for SDEs i.e., on the trajectories of their aug-

mented system, the sequence of residuals is asymptotically

stable at the origin. To understand how the nonlinear

parameters may be estimated, please note that dissimilar

systems may be synchronized using trajectories of an

augmented system according to a Lyapunov function that

has been constructed without updating i.e., the learning rate

is set to zero. Since dissimilar systems with different

parameter sets can be synchronized in the sense that, when

constrained to trajectories of their augmented system the

sequence of residuals is asymptotically stable at the origin,

the search method can search for linear or nonlinear

parameters with the guarantee that the sequence of resid-

uals will remain bounded and cannot spiral outwards from

the origin on trajectories of the augmented system.

Grid search

A traditional approach to hyperparameter optimization has

been grid search or parameter sweep, which is simply an

exhaustive search through a specified subset of the hyper-

parameter space of a learning algorithm. A grid search

algorithm must be guided by some performance metric,

which we selected to be the RMSE between the observed

and predicted concentrations.

Grid search is particularly useful because we cannot

guarantee the existence of any derivatives higher than the

first nor can we guarantee the local continuity of the

objective function in the time domain for the uniform

Lipschitz systems considered by Huang [29]. While the

system remains on the trajectories of the augment system,

this confers global asymptotic stability according to the

invariance principle provided the largest invariant set of

residuals to which the trajectories converge, converge to a

unique value zero. If the sequence of residuals were

asymptotically not chaotic, grid search would be expected

to be as effective as for the parameters of a similar system

that was not in a chaotic regime.

How grid search works

We created a grid for the variables a and b in the cortisol

model [Eq. (2)]. The grid range was selected based on

multiple runs. After each run, the lower and upper limits of

the grid were modified, and the grid was refined to obtain

precise estimates of parameter values.

We parse the entire grid by nested loops and for each

combination of parameter (a and b) values obtained from

the loop, call the chaos synchronization function, estimate

the values of k1 and k2 by chaos synchronization and
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determine the cortisol concentration at output time points.

We compare the predicted concentration with the observed

concentration and store the Root Mean Square Error

(RMSE).

When the complete grid has been parsed, we store the

values of parameters corresponding to the minimum value

of RMSE.

Sensitivity analysis

We evaluated the sensitivity of the predicted cortisol

concentration to various parameter values to determine the

uncertainty in the model output. Sensitivity analysis is

defined as the study of how uncertainty in the output of a

model can be attributed to different sources of uncertainty

in the model input [30].

Each parameter was varied according to a pre-specified

grid defined in Table 2. While the parameter under con-

sideration was varied, all other parameters were set to their

nominal values in Table 1.

The RMSE was calculated by comparing the concen-

tration obtained for the nominal parameter values and the

concentration obtained with the new set of parameters. We

can visualize the sensitivity by inspecting graphs of total

error versus parameter value.

Error metric

RMSE between the observed and predicted concentration

was employed as a metric to measure the error and to find

the optimum configuration from the grid search algorithm.

When we fitted data using chaos synchronization we

observed transient effects during a burn-in period. To

reduce the impact of transient effects we implemented

oversampling. In this approach, we generated sample sets

longer than needed and early samples were discarded.

In the dense data and noisy data cases, we sampled data

equivalent to about two cortisol cycles and discarded out-

put from the first cycle. The error was calculated by

comparing the data observed and predicted in the second

cortisol cycle. For the sparsely sampled case, we sampled

the data equivalent to about six cortisol cycles and dis-

carded the first five cortisol cycles. The error was calcu-

lated by comparing the data observed and predicted in the

sixth cortisol cycle. For the sparsely sampled case, due to

the density of the data, grid search required an increased

number of data points to accurately estimate the optimum

parameter values. To compare the accuracy with which the

final parameters were estimated across configurations, we

calculated the percent error.

Results

Pre-processing experimental data

We applied the wden function to filter noise from the data.

Parameter estimation and system tracking were performed

on this filtered signal (Fig. 3). For a fair comparison

between the estimation methods, the same input options

were selected for filtering the data.

Estimating linear parameters

We initially compared the performance of the classical

least squares method and extended least squares method

with chaos synchronization while estimating only the linear

parameters, k1 and k2 with initial parameter values of k1
and k2 set to 0.01. The nonlinear parameters were fixed to

their nominal value.

We considered four scenarios with respect to data den-

sity and noise level. In the first scenario, we considered the

dataset to be noiseless with data points at 1-min intervals.

In the second and third scenario, a proportional noise of

20% or 50% was applied to the data set. In the fourth

scenario, we considered a noiseless data set sampled at

45-min intervals. Tables 3 and 4 illustrate the results of the

analysis when we estimated linear parameters using all

three methods. It may be feasible to obtain clinical cortisol

data sampled at 45-min intervals via microdialysis.

Estimating linear parameters using classical non-linear least
squares regression

The cortisol model was solved using classical non-linear

least squares regression with four scenarios with respect to

data density and noise level. In all four scenarios (discussed

in the above section) the least squares signal fails to track

the data accurately. A substantial offset between the least

squares signal and the observed values can be observed

(see supplementary). Also, from Table 3 the error in sys-

tem tracking using this classical approach is about

1000-fold higher when compared to system tracking using

Table 2 Mesh for sensitivity analysis

Parameter Initial value Final value Step size

n 1 20 1

k1 0.01 0.1 0.01

k2 0.01 0.1 0.01

a 0.1 2 0.1

b 0.1 2 0.1

tf 50 700 50
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our proposed chaos synchronization approach for noiseless

data (both dense and sparse) and, the error is about 70-fold

higher for noisy data.

Estimating linear parameters using extended least squares

The cortisol model was solved using the ELS method with

four scenarios with respect to data density and noise level.

It was observed that when we were estimating linear

parameters, the ELS method was found to be very accurate

(Table 4). A slight offset can be observed for tracking of

noisy data (panel b and c) in Fig. 5. In this case, the ELS

objective function was used within a grid search to estimate

linear parameters.

Estimating linear parameters using adaptive chaos
synchronization

Adaptive chaos synchronization according to Huang [25]

tracks the nonlinear chaotic signals with high accuracy

even when the noise is increased or when data density is

decreased. Figure 6a illustrates the tracking of cortisol

model with noiseless data sampled at 1 min intervals. For

which the method tracks the noiseless data with high

accuracy. Figure 6b shows the system tracking when the

input signal (‘‘observed data’’) includes 20% proportional

noise.

Figure 6b, c illustrate what happens when the noise

level is increased. This method is still capable of tracking

the filtered data with high accuracy. Figure 6d shows the

performance of this method when the noiseless system is

sparsely sampled.

Table 3 shows that RMSE is low for chaos synchro-

nization when compared to the classical least squares

approach but increases with increase in noise while that for

classical non-linear least squares regression RMSE remains

almost constant because the synchronization signal adapts

to accommodate the noise (Fig. 6b, c) so that the param-

eters can be estimated accurately. Also, as pointed out by

Konnur [12] a system can possess multiple minima and, it

is possible that the least squares method is converging to

one of those local minima due to poor starting values or as

pointed out by Jafari [31], poor initial conditions. However,

with our fixed initial conditions, the adaptive chaos syn-

chronization method converges to the global minimum.

Analyzing the effect of tuning parameters on convergence

For different combinations of C and d the final estimates of

k1 and k2 were calculated and the Error [%] of estimated

parameters and RMSE between observed and predicted

concentration were plotted (see Fig. 7). The parameters d
and C were observed to affect the rate of convergence and

the accuracy with which predictions track the observed

Table 3 The RMSE between

the predicted and the observed

concentrations for various

methods of parameter

estimation

Dataset RMSE

NLS CS/grid search NLS/grid search ELS/grid search

No noise, dense dataa 0.89 2.76e-04 1.07 0.5013

20% proportional error, dense dataa 0.93 0.0131 1.11 0.4973

50% proportional error, dense dataa 1.03 0.0162 1.07 0.5241

No noise, sparse datab 0.91 0.0019 1.06 0.5029

The RMSE is measured over one cortisol cycle with units lg/100 ml
a1 min sampling interval
b45 min sampling interval. RMSE when only the parameters that enter in a linear fashion were estimated by

adaptive chaos synchronization is the same as the RMSE obtained when all parameters were estimated

using a combination of adaptive chaos synchronization and grid search

Table 4 Estimation of parameters that enter in a linear fashion by

chaos synchronization (CS), nonlinear least squares (NLS) and

extended least squares (ELS)

Estimation method Nominal CS NLS ELS

Noiseless system with dense dataa

k1 0.0666 0.069 0.01 0.0666

k2 0.0333 0.0344 0.01 0.0333

Noisy systemb with dense dataa

k1 0.0666 0.0629 0.01 0.0666

k2 0.0333 0.0340 0.01 0.0333

Noiseless system with sparse datac

k1 0.0666 0.0615 0.01 0.0666

k2 0.0333 0.0303 0.01 0.0333

To estimate parameters for the noisy system we filter the data using

the wden function provided by MATLAB (MathWorks: MA) version

R2017a as input to the CS, NLS or ELS method
aDense data signifies data sampled at 1 min intervals
bNoisy system signifies 20% proportional error
cSparse data signifies data sampled at 45 min intervals
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cortisol profile. The rate of convergence depends on the

relative values of C and d. It was observed that if d[C the

error [%] of estimation of k1 and k2 are very high (see

Fig. 7). Since the observation data set has a finite duration,

configurations for which the system converges to the true

value of parameters in shorter time are expected to yield

lower error[%] for the parameter estimate. From Fig. 7a it

Fig. 5 The system tracking

performance of Extended Least

Squares regression: a noiseless

data sampled at 1 min intervals;

b data with 20% proportional

error sampled at 1 min

intervals; c data with 50%

proportional error sampled at

1 min intervals; d noiseless

sparse data with data measured

at 45 min intervals. The data

were filtered by wavelet

denoising. The line marked ELS

represents the fit obtained using

extended least squares

regression. There is a small

phase offset between case a and

cases b or c

Fig. 6 The system tracking

performance of the adaptive

chaos synchronization method:

a noiseless data sampled at

1 min intervals b data with 20%

proportional error sampled at

1 min intervals; c data with 50%
proportional error sampled at

1 min intervals; d noiseless

sparse data sampled at 45 min

intervals. The data were filtered

by wavelet denoising.

Predictions based on chaos

synchronization and grid search

track the input data with

relatively high accuracy. The

adaptive chaos synchronization

algorithm combined with grid

search avoids local minima even

when the choice of initial values

of the parameters is poor.

Although we display results

corresponding to one cycle for

clear visualization, the

prediction closely overlap the

input data for the entire six-

cycle data set
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can be observed that when the ratio of C=d is the same, the

error[%] of estimation for k1 and k2 are similar.

In particular, note that clusters are formed for the cases

that have similar ratio of C=d. From Fig. 7b one can

observe that when the ratio of C=d is increased the value of

RMSE between the predicted and observed concentration

decreases. Also, when C=d ¼ 1 (Fig. 7a) the error[%] for

parameter estimation were least. This information was used

for selecting tuning parameters.

For grid search, we initially set C=d to a high value.

Once a and b were estimated using grid search we selected

a lower value of C=d ¼ 1 to accurately predict the value of

k1 and k2 using adaptive chaos synchronization in the

shortest possible time frame.

Estimating linear and non-linear parameters

After comparing the performance of adaptive chaos syn-

chronization, extended least squares and non-least squares

regression for estimating linear parameters, our next step

was to compare the performance of these methods while

estimating the nonlinear parameters along with the linear

parameters.

The previously discussed four scenarios were used to

compare the performance of the combination of adaptive

chaos synchronization and grid search with the combina-

tion of non-linear least squares regression and grid search

and extended least squares with grid search to identify the

nonlinear parameters.

Estimating non-linear parameters by combining adaptive
chaos synchronization/non-linear least squares regression/
extended least squares with grid search

Adaptive chaos synchronization according to Huang’s

approach estimates only the linear parameters (k1 and k2).

Our next step was to estimate those parameters which were

nonlinear accurately. For a fair comparison between non-

linear least squares regression, extended least squares and

adaptive chaos synchronization, the nonlinear parameters

were estimated using grid search in all three cases.

We performed a structural identifiability analysis using

GenSSI 2.0 software based on a generating series method

(e.g., Chis, O. et al., Bioinformatics 2011 Sep 15;

27(18):2610–2611). We described the delay in terms of the

well-known Green’s function for a catenary of m first order

transit compartments with individual transit time ktr

expressed in terms of the overall delay tau by ktr = tau/

(m ? 1).

We observed that the parameters we labeled in the

manuscript as (a, b, k1,k2) are all locally structurally

identifiable, however the circadian cycle phase is not

identifiable separately from its amplitude.

Since the above quantities (a, b, k1,k2) are locally

structurally identifiable for all m, they are also identifiable

in the limit of crisp delay tau as m ? !.

Since we were able to uniquely identify the parameter

combination (a, b, k1,k2), we decided to compare the per-

formance of adaptive chaos synchronization with grid

search to that of non-linear least squares with grid search

and extended least squares with grid search while esti-

mating these parameters with the phase parameter (tf) fixed

based upon external knowledge of the nadir of the circa-

dian cycle as may be obtained by experiment.

The parameter ‘n’ affects the oscillation of the cortisol

secretion cycle and, its value is highly uncertain. From

sensitivity analysis (see the next section) we observed that

the concentration was moderately sensitive to changes in

‘n’. We thus decided to fix the value of ‘n’. Values of n[ 5

were required to obtain a sufficiently sharp step for oscil-

lations to occur. An excessively large value of ‘n’ resulted

in system destabilization with increasing oscillations

especially for n[ 20. The fixed value n = 10 was chosen

because the dde23 solver was able to solve that model with

high precision and accuracy.

Figure 8 illustrates the performance of the grid search.

For visualization, the grid search is illustrated for opti-

mization of parameters a and b with all other parameters

set to their nominal values. For a = 0.7 and b = 1 an

Fig. 7 Variation of a percent

error for k1 and k2 with the ratio

of C=d b RMSE between the

predicted and observed

concentration with C=d. The
root mean square error has units

of concentration
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optimum configuration is obtained as the configuration

with minimum RMSE. The value of the time delay d was

fixed to 70 min which corresponds to about one cortisol

secretion burst per hour in accordance with experimental

observations and, the value of tf was fixed to 250 [32].

Parameter estimation and signal tracking

Table 5 shows the result of parameter estimation using

adaptive chaos synchronization/non-linear least squares

regression/extended least squares combined with grid

search.

Figure 9a and Table 5 show that when the data are

dense and noiseless, all the parameters converge close to

their true value. When sparse and noisy data (Fig. 9b, c)

drive parameter estimation, the estimated parameters fluc-

tuate about their true values. The median was computed

from these fluctuating values to extract the parameter value

using the MATLAB median function with input as the

output vector (of respective parameters) obtained from the

output of the dde23 solver.

For noisy and dense data, the parameter estimates were

extracted as the median of the data values corresponding to

the last cycle while for the sparse data, the parameter

estimates were determined by the median of the entire

output vector. For the sparsely sampled case, the median

function required an increased number of data points to

accurately estimate the median of the parameter value

compared to the densely sampled case.

Combination of nonlinear least squares regression and

grid search resulted in parameters converging to inaccurate

values in all three cases (Table 5). The starting values of

the parameters for the nonlinear least squares regression

method are provided in Table 1 with final parameter values

shown in Table 5.

The performance of systems tracking based on the

combination of least squares and grid search is shown in

supplementary section. The error is large when compared

to the error obtained when we were estimating only the

linear parameters and the system was being tracked with

only nonlinear least squares regression (see Table 3).

Figure 10 shows the performance of system tracking

based on the combination of extended least squares and

grid search. The error is large when compared to the error

obtained when we were estimating only the linear param-

eters (error was zero since the parameters converged to

their true value). The error in this case is intermediate when

compared to nonlinear least squares with grid search and

chaos synchronization with grid search (see Table 3).

When estimating the system with the combination of

chaos synchronization and grid search the grid search

accurately estimated the nonlinear parameters a and b.
Since nonlinear parameters were accurately estimated, we

were able to determine the linear parameters (k1 and k2)

with the same accuracy as when we estimated only the

linear parameters using adaptive chaos synchronization.

Hence, system tracking for the combination of grid search

and chaos synchronization is the same as that shown in

Fig. 8 Variation in RMSE with

change in alpha (a) and beta (b).
From the plot, the grid for a and

b can be clearly visualized. The

method calculates the predicted

concentration at each

combination of a and b and

compares it with the observed

concentration to calculate the

RMSE in units of concentration.

The inset shows the location of

the optimal (least) RMSE
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Fig. 6 and the error values are the same as those shown in

Table 3.

It was not possible to estimate all parameters simulta-

neously using adaptive chaos synchronization according to

Huang’s method alone since the parameters a and b appear

in a nonlinear manner.

Sensitivity analysis

We evaluated the parameter sensitivity of the predicted

cortisol concentration.

Figure 11a demonstrates that when the exponent ‘n’ is

varied from 1 to 20 in steps of 1 while fixing the values of

the other parameters to their nominal value (Table 1), a

minimum is obtained at n = 10. At this position, the error is

close to zero. Any deviation from n = 10 increased the

error value. Thus, n = 10 was considered the optimal value

of ‘n’. Similarly, for parameter tf the least error was

obtained when value of tf was set to 250.

From Fig. 11 it can be observed that the predicted

concentration is highly sensitive to changes in input or

output rate constant (k1 or k2), moderately sensitive to the

constants a, b and fixed switch exponent ‘n’ and only

slightly sensitive to changes in phase ‘tf’.

Discussion

Parameter estimation and signal tracking for chaotic sys-

tems using a nonlinear least squares regression approach

with grid search were considerably less accurate than

adaptive chaos synchronization with grid search (see

Table 5 Estimation of

parameters that enter in a linear

fashion by chaos

synchronization (CS), nonlinear

least squares (NLS) and

extended least squares (ELS)

Estimation method Nominal CS/grid search NLS/grid search ELS/grid search

Noiseless system with dense dataa

k1 0.0666 0.0690d 0.01f 0.0666e

k2 0.0333 0.0344d 0.01f 0.0333e

a 0.7 0.7e 0.8e 1e

b 1 1e 0.7e 0.7e

tf 250 Fixed Fixed Fixed

d 70 Fixed Fixed Fixed

n 10 Fixed Fixed Fixed

Noisy systemb with dense dataa

k1 0.0666 0.0629d 0.01f 0.0666e

k2 0.0333 0.0340d 0.01f 0.0333e

a 0.7 0.7e 0.7e 1e

b 1 1e 0.7e 0.7e

tf 250 Fixed Fixed Fixed

d 70 Fixed Fixed Fixed

n 10 Fixed Fixed Fixed

Noiseless system with sparse datac

k1 0.0666 0.0615d 0.01f 0.0666e

k2 0.0333 0.0303d 0.01f 0.0333e

a 0.7 0.7e 1e 1e

b 1 1e 0.7e 0.7e

tf 250 Fixed Fixed Fixed

d 70 Fixed Fixed Fixed

n 10 Fixed Fixed Fixed

To estimate parameters for the noisy system we filter the data using the wden function provided by

MATLAB (MathWorks: MA) version R2017a as input to the CS, NLS or ELS method
aDense data signifies data sampled at 1 min intervals
bNoisy system signifies 20% proportional error
cSparse data signifies data sampled at 45 min intervals
dParameter estimated with adaptive chaos synchronization method
eParameter estimated using grid search method
fParameter estimated using least squares method (MATLAB lsqcurvefit)
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supplementary). Extended least squares method was found

to be accurate when only linear parameters were being

estimated but when both linear and nonlinear parameters

were being estimated it was found to be less accurate than

the adaptive chaos synchronization method. This illustrates

the limitations of classical approaches for estimating non-

linear physiological systems and is likely attributable to the

multiple minima often found with nonlinear systems.

The adaptive chaos synchronization with grid search

method appears to be more robust than non-linear least

squares regression with grid search and extended least

squares with grid search. Unlike classical approaches,

adaptive chaos synchronization helps to avoid the tendency

of the gradient-based optimization algorithms to converge

to a local minimum. Parameter estimation and system

tracking using this hybrid method with noiseless data with

data sampled at 1-min intervals performed well and the

parameters converged to about the nominal values

provided in Table 1 (see Figs. 6, 9). In the presence of 20%

or 50% proportional noise, this method was able to track

the signals with high accuracy and, the estimated param-

eters (Table 5) are close to the nominal values (see Figs. 6,

9).

When the data were sparsely sampled (at 45-min inter-

vals), the method was still able to track the system well

and, the parameters converged close to their nominal val-

ues (Tables 1, 5, Fig. 9) by contrast with nonlinear least

squares regression where we observed a substantial offset

between the data and model predictions (see supplemen-

tary). For all the cases we analyzed, the adaptive chaos

synchronization with grid search method converged to the

global minimum and was robust to the selection of starting

values and the nonlinear least squares regression with grid

search and extended least squares with grid search most

likely converged to a local minimum and thus failed to

estimate the parameters accurately. In case of extended

Fig. 9 Estimation of cortisol

model parameters for

a noiseless data sampled at

1 min intervals, b data with

with 20% proportional error

sampled at 1 min intervals,

c noiseless data sparsely

sampled at 45 min intervals.

The model was simulated for

8640 min (6 days) duration to

observe the rate of parameter

convergence. The noiseless case

a resulted in parameter

convergence closer to nominal

values. The noisy b and sparsely

sampled c cases resulted in

fluctuation of the parameters

about their nominal values, for

which parameters were

extracted by calculating the

median of these fluctuating

values. The noisy data were

filtered by wavelet denoising.

We densified the sparsely

sampled data using the pchip
function in MATLAB with

output sampled at 5 min

intervals
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least squares for all cases of noise and data density, it was

observed that the algorithm was not able to discriminate

between parameters a and b, which may be due to con-

vergence to local minima.

Parameter estimation required about six cortisol cycles

to converge. It may be challenging to obtain samples for

six cycles since this would require observing a subject for

six consecutive days with regular sampling, although this is

likely achievable via microdialysis.

We achieved similar results by replicating a single cycle

six times and storing it in an array as input for parameter

estimation via adaptive chaos synchronization. This is an

approach that may be applied to all periodic systems. If a

system is not periodic or the data are not sufficiently dense,

we can achieve comparable results by recursive feedback

i.e. feeding the output after a cycle as an input to the next

cycle until the method converges with adequate accuracy.

It is also possible to densify the data using the pchip

(Piecewise Continuous Hermite Interpolating Polynomial)

function in MATLAB. This function requires three inputs,

two of them are the predicted concentration and the cor-

responding time point and we can generate observations at

the required time points by providing the required time

points as the third input.

The proposed method was highly accurate for data

sampled at intervals of up to 45 min. The percent error

obtained for this case is less than 10% for each parameter

(see Table 6). If the sampling interval exceeds about

45 min, the percent error is substantially increased. A

plausible explanation is that there is a loss of geometric

information as the shape of the cycle changes dramatically

when the sampling interval is greatly increased. The

parameters a and b affect the shape, thus affecting the

estimates of k1 and k2.

Grid search requires prior information regarding the

range/order of actual parameter value to optimize compu-

tation. Iteratively grid search can be slow depending on the

size of the grid. To speed up the process one can parallelize

the nested for loops and pass a different set of parameter

combinations to each core.

Nonlinear least squares regression may be able to track

the chaotic system if the starting values are close to the true

parameter values. When the starting value of k1 was

changed to 0.03 and that of k2 was changed to 0.045, we

observed that the least squares signal could track the model

(see supplementary) with some offset and, this resulted in a

decrease in the value of the RMSE although this value was

still much greater than that obtained by the adaptive chaos

synchronization method. For this set of starting values, the

adaptive chaos synchronization method produced approx-

imately the same result as when the starting values of k1
and k2 were set to 0.01 (see supplementary).

Jafari et al. [31] pointed out that for chaotic systems in

general, the least squares metric is sensitive to initial

conditions and may have bifurcations and intermittent

windows typically associated with chaos. He shows the

example of a logistic map for which the least squares

metric has the global minimum in the wrong place.

Fig. 10 System tracking

performance of the Extended

Least Squares regression

method: a noiseless data

sampled at 1 min intervals,

b data with 20% proportional

error, c data with 50%

proportional error, d noiseless

data sparsely sampled at 45 min

intervals. The data were filtered

by wavelet denoising. ELS

denotes predictions based on the

ELS regression method. For

clarity, we exhibit data

corresponding to 1 cycle
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Considering this possibility, we evaluated the effect of

0.1% change in the initial concentration value (see sup-

plementary). We observed that when the initial concen-

tration was changed to 1.7017 lg/100 ml there was a 52%

increase in RMSE when the data was fitted for k1 and k2
alone using nonlinear least squares regression,

approximately 5.7% increase in RMSE value when the data

were fitted with chaos synchronization and 0% change in

RMSE when the data were fitted with extended least

squares. It is possible that the issue pointed by Jafari et al.

[31] could be relevant to the poor performance of the

nonlinear least squares regression method.

Fig. 11 Sensitivity analysis for

parameter (a) n, (b) tr, (c) k1,
(d) k2, (e) a and (f) b.
Increments of 0.01/min in either

input or output cortisol rate

constant significantly impacted

the predicted concentrations. An

increment of 100 min in phase

had a relatively small effect on

the predicted concentrations.

Variation of parameters a, b and

n has a moderate impact on

predicted concentrations

Table 6 Percent error for

parameter estimation using

chaos synchronization and grid

search

Dataset Percent error in k1 Percent error in k2

Dense samplea-no noise 3.6 3.3

Dense samplea-20% proportional noiseb 5.56 2.1

Sparse samplec-no noise 7.66 9.01

The remaining free parameters were estimated via grid search and they converged to the nominal values

listed in Table 1
aData sampled at 1 min intervals
bData sampled at 1 min interval with 20% proportional error
cNoiseless data sampled at 45 min intervals
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Applications of this approach are not restricted to

chaotic pharmacologic systems but also apply to non-

chaotic pharmacologic systems, reaction networks, secure

message transmission using parameter modulation, aero-

space, turbulence, meteorological and financial modeling

among others [33, 34].

This approach may, in principle, be extended to the

determination of models using machine learning methods

that combine adaptive chaos synchronization with deriva-

tive-free optimization methods including genetic algo-

rithms that encompass both the composite fitness function

and a true multi-objective approach that describes out-

comes, with applications such as oncology, psychiatry and

cardiovascular disease.

Conclusion

Our analysis shows that adaptive chaos synchronization

avoids the tendency of a least squares gradient-based

optimization method to converge to a local minimum. In

combination with grid search, this method can effectively

track trajectories and estimate parameters of the cortisol

cyclic chaotic system. This method is robust against the

effects of noise and changes in data sampling rate and

hence may be of value for modeling non-linear physio-

logical systems.

Funding R. Bies received Grant UL1TR000006 (NCTS) which sup-

ported Thang Ho as well as part of his salary to do this Project.

Compliance with ethical standards

Conflict of interest R. Bies received funding from NCTS, NIMH,

DOD, Takeda, Janssen and Eli Lilly through a grant to the Indiana

CTSI. Immanuel Freedman received consulting fees from Projections

Research Incorporated. Immanuel Freedman is an independent con-

sultant and sole proprietor of Freedman Patent. Sorell Schwartz

declares no conflict of interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Van Rossum JM, de Bie JE (1991) Chaos and illusion. Trends

Pharmacol Sci 12(10):379–383

2. Sheiner LB (1997) Learning versus confirming in clinical drug

development. Clin Pharmacol Ther 61(3):275–291. https://doi.

org/10.1016/s0009-9236(97)90160-0

3. Bies RR, Gastonguay MR, Schwartz SL (2008) Mathematics for

understanding disease. Clin Pharmacol Ther 83(6):904–908.

https://doi.org/10.1038/clpt.2008.53

4. Danhof M (2016) Systems pharmacology—towards the modeling

of network interactions. Eur J Pharm Sci: Off J Eur Fed Pharm

Sci 94:4–14. https://doi.org/10.1016/j.ejps.2016.04.027

5. Bakshi S, de Lange EC, van der Graaf PH, Danhof M, Peletier

LA (2016) Understanding the behavior of systems pharmacology

models using mathematical analysis of differential equations:

prolactin modeling as a case study. CPT: Pharmacomet Syst

Pharmacol 5(7):339–351. https://doi.org/10.1002/psp4.12098

6. Dokoumetzidis A, Iliadis A, Macheras P (2001) Nonlinear

dynamics and chaos theory: concepts and applications relevant to

pharmacodynamics. Pharm Res 18(4):415–426. https://doi.org/

10.1023/a:1011083723190

7. Gontar V (1997) Theoretical foundation for the discrete dynamics

of physicochemical systems: chaos, self-organization, time and

space in complex systems. Discret Dyn Nat Soc. https://doi.org/

10.1155/s1026022697000058

8. Tallarida RJ (1990) On stability and control of ligand-receptor

interactions according to the mass action law: a theoretical model

of chaos. Drug Dev Res 19(3):257–274. https://doi.org/10.1002/

ddr.430190305

9. Freeman KA, Tallarida RJ (1994) A quantitative study of dopa-

mine control in the rat striatum. J Pharmacol Exp Ther

268(2):629–638

10. Hellman L, Nakada F, Curti J, Weitzman ED, Kream J, Roffwarg

H, Ellman S, Fukushima DK, Gallagher TF (1970) Cortisol is

secreted episodically by normal man. J Clin Endocrinol Metab

30(4):411–422. https://doi.org/10.1210/jcem-30-4-411

11. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994)

Nonlinear dynamics of immunogenic tumors: parameter estima-

tion and global bifurcation analysis. Bull Math Biol

56(2):295–321. https://doi.org/10.1007/bf02460644

12. Konnur R (2003) Synchronization-based approach for estimating

all model parameters of chaotic systems. Phys Rev E

67(2):027204

13. Pillai N, Craig M, Dokoumetzidis A, Schwartz SL, Bies R,

Freedman I (2018) Chaos synchronization and Nelder–Mead

search for parameter estimation in nonlinear pharmacological

systems: estimating tumor antigenicity in a model of

immunotherapy. Prog Biophys Mol Biol 139:23–30. https://doi.

org/10.1016/j.pbiomolbio.2018.06.006

14. Mackey MC, Glass L (1977) Oscillation and chaos in physio-

logical control systems. Science 197(4300):287–289

15. Murray JD (1993) Mathematical biology I. An introduction.

Springer, Berlin

16. Goodwin BC (1965) Oscillatory behavior in enzymatic control

processes. Adv Enzym Regul 3:425–438

17. Leloup J-C, Goldbeter A (1998) A model for circadian rhythms in

drosophila incorporating the formation of a complex between the

PER and TIM proteins. J Biol Rhythm 13(1):70–87. https://doi.

org/10.1177/074873098128999934

18. Dokoumetzidis A, Iliadis A, Macheras P (2002) Nonlinear

dynamics in clinical pharmacology: the paradigm of cortisol

secretion and suppression. Br J Clin Pharmacol 54(1):21–29.

https://doi.org/10.1046/j.1365-2125.2002.01600.x

19. Xiao Y, Xu W, Li X, Tang S (2009) The effect of noise on the

complete synchronization of two bidirectionally coupled piece-

wise linear chaotic systems. Chaos 19(1):013131. https://doi.org/

10.1063/1.3080194

20. Zhou C, Lai CH (2000) Analysis of spurious synchronization

with positive conditional Lyapunov exponents in computer

Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:193–210 209

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/s0009-9236(97)90160-0
https://doi.org/10.1016/s0009-9236(97)90160-0
https://doi.org/10.1038/clpt.2008.53
https://doi.org/10.1016/j.ejps.2016.04.027
https://doi.org/10.1002/psp4.12098
https://doi.org/10.1023/a:1011083723190
https://doi.org/10.1023/a:1011083723190
https://doi.org/10.1155/s1026022697000058
https://doi.org/10.1155/s1026022697000058
https://doi.org/10.1002/ddr.430190305
https://doi.org/10.1002/ddr.430190305
https://doi.org/10.1210/jcem-30-4-411
https://doi.org/10.1007/bf02460644
https://doi.org/10.1016/j.pbiomolbio.2018.06.006
https://doi.org/10.1016/j.pbiomolbio.2018.06.006
https://doi.org/10.1177/074873098128999934
https://doi.org/10.1177/074873098128999934
https://doi.org/10.1046/j.1365-2125.2002.01600.x
https://doi.org/10.1063/1.3080194
https://doi.org/10.1063/1.3080194


simulations. Phys D 135(1–2):1–23. https://doi.org/10.1016/

S0167-2789(99)00127-X

21. Shuai JW, Wong KW, Cheng LM (1997) Synchronization of

spatiotemporal chaos with positive conditional Lyapunov expo-

nents. Phys Rev E 56(2):2272–2275

22. Hastie T, Tibshirani R, Friedman J (2003) The elements of sta-

tistical learning: data mining, inference, and prediction. Springer,

Berlin. https://doi.org/10.1007/b94608

23. Peck CC, Beal SL, Sheiner LB, Nichols AI (1984) Extended least

squares nonlinear regression: a possible solution to the ‘‘choice of

weights’’ problem in analysis of individual pharmacokinetic data.

J Pharmacokinet Biopharm 12(5):545–558

24. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002)

The synchronization of chaotic systems. Phys Rep-Rev Sec Phys

Lett 366(1–2):1–101. https://doi.org/10.1016/s0370-

1573(02)00137-0

25. Huang D (2004) Synchronization-based estimation of all

parameters of chaotic systems from time series. Phys Rev E

69(6):067201

26. Lasalle JP (1960) The extent of asymptotic stability. Proc Natl

Acad Sci USA 46(3):363–365. https://doi.org/10.1073/pnas.46.3.

363

27. Lyapunov AM (1992) The general problem of the stability of

motion. Taylor & Francis, London

28. Pecora LM, Carroll TL (1990) Synchronization in chaotic sys-

tems. Phys Rev Lett 64(8):821–824. https://doi.org/10.1103/

PhysRevLett.64.821

29. Huang D (2004) Synchronization-based estimation of all

parameters of chaotic systems from time series. Phys Rev E: Stat,

Nonlinear, Soft Matter Phys 69(6 Pt 2):067201. https://doi.org/

10.1103/PhysRevE.69.067201

30. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli

D, Saisana M, Tarantola S (2008) Global sensitivity analysis.

Wiley, Hoboken

31. Jafari S, Sprott JC, Pham V-T, Golpayegani SMRH, Jafari AH

(2014) A new cost function for parameter estimation of chaotic

systems using return maps as fingerprints. Int J Bifurc Chaos

24(10):1450134. https://doi.org/10.1142/s021812741450134x

32. Kraan GP, Dullaart RP, Pratt JJ, Wolthers BG, Drayer NM, De

Bruin R (1998) The daily cortisol production reinvestigated in

healthy men. The serum and urinary cortisol production rates are

not significantly different. J Clin Endocrinol Metab

83(4):1247–1252. https://doi.org/10.1210/jcem.83.4.4694

33. Revelli JA, Rodriguez MA, Wio HS (2010) Interplay between

chaos and external noise in an extended system: improved fore-

casting due to intrinsic stochastic resonant phenomena. Int J

Bifurc Chaos 20(2):213–224. https://doi.org/10.1142/

s021812741002565x

34. Xie QX, Chen GR, Bollt EM (2002) Hybrid chaos synchroniza-

tion and its application in information processing. Math Comput

Model 35(1–2):145–163. https://doi.org/10.1016/s0895-

7177(01)00157-1

35. Theesar SJS et al (2012) Adaptive synchronization in noise per-

turbed chaotic systems. Phys Scr 85:065010. https://doi.org/10.

1088/0031-8949/85/06/065010

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

210 Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:193–210

123

https://doi.org/10.1016/S0167-2789(99)00127-X
https://doi.org/10.1016/S0167-2789(99)00127-X
https://doi.org/10.1007/b94608
https://doi.org/10.1016/s0370-1573(02)00137-0
https://doi.org/10.1016/s0370-1573(02)00137-0
https://doi.org/10.1073/pnas.46.3.363
https://doi.org/10.1073/pnas.46.3.363
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1103/PhysRevE.69.067201
https://doi.org/10.1103/PhysRevE.69.067201
https://doi.org/10.1142/s021812741450134x
https://doi.org/10.1210/jcem.83.4.4694
https://doi.org/10.1142/s021812741002565x
https://doi.org/10.1142/s021812741002565x
https://doi.org/10.1016/s0895-7177(01)00157-1
https://doi.org/10.1016/s0895-7177(01)00157-1
https://doi.org/10.1088/0031-8949/85/06/065010
https://doi.org/10.1088/0031-8949/85/06/065010

	Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search
	Abstract
	Introduction
	Methods
	Model used in current study
	Data generation and processing
	Non-linear least squares regression
	Extended least squares
	Chaos synchronization
	Huang’s adaptive coupling scheme

	Grid search
	How grid search works

	Sensitivity analysis
	Error metric

	Results
	Pre-processing experimental data
	Estimating linear parameters
	Estimating linear parameters using classical non-linear least squares regression
	Estimating linear parameters using extended least squares
	Estimating linear parameters using adaptive chaos synchronization
	Analyzing the effect of tuning parameters on convergence

	Estimating linear and non-linear parameters
	Estimating non-linear parameters by combining adaptive chaos synchronization/non-linear least squares regression/extended least squares with grid search
	Parameter estimation and signal tracking

	Sensitivity analysis

	Discussion
	Conclusion
	Open Access
	References




