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Abstract: Patients with advanced hepatocellular carcinoma (HCC) have several systemic treatment
options. There are many known risk factors for HCC, and although some, such as hepatitis C, are
now treatable, others are not. For example, metabolic dysfunction-related chronic liver disease is
increasing in incidence and has no specific treatment. Underlying liver disease, drug resistance,
and an increasing number of treatment options without specific biomarkers are all challenges in
selecting the best treatment for each patient. Conventional chemotherapy is almost never used for
advanced-stage disease, which instead is treated with immunotherapy, tyrosine kinase inhibitors,
and VEGF inhibitors. Immune checkpoint inhibitors targeting various receptors have been or are
currently undergoing clinical evaluation. Ongoing trials with three-drug regimens may be the future
of advanced-stage HCC treatment. Other immune-modulatory approaches of chimeric antigen
receptor-modified T cells, bispecific antibodies, cytokine-induced killer cells, natural killer cells, and
vaccines are in early-stage clinical trials. Targeted therapies remain limited for HCC but represent
an area of potential growth. As we shift away from first-line sorafenib for advanced HCC, clinical
trial control arms should comprise a standard treatment other than sorafenib, one that is a better
comparator for advancing therapies.

Keywords: hepatocellular carcinoma; immunotherapy; VEGF; tyrosine kinase inhibitors; systemic
treatment; advanced HCC; CAR T-cells

1. Introduction

Hepatocellular carcinoma (HCC) is not a conventional solid tumor malignancy. Tra-
ditional systemic chemotherapy drugs are not very effective, possibly due to higher ex-
pression of drug resistance genes and due to baseline liver dysfunction [1]. Unlike most
malignancies, HCC can be diagnosed without a tissue biopsy and just with imaging. A
four-phase CT scan of the abdomen with IV contrast or a liver MRI with contrast can
diagnose HCC in patients with cirrhosis or chronic hepatitis B [2]. A four-phase CT scan
can have a sensitivity as high as 90% for HCC greater than 2 cm in diameter [3]. While
this can initially benefit the patient by avoiding an invasive diagnostic procedure, modern
cancer work-up often involves sending tissue samples for next-generation sequencing to
look for targetable mutations or markers of responsiveness to treatment. Limited tissue
sampling may have hampered some advancements in HCC therapy.

Treatment, as always in cancer, begins with staging, although in this respect HCC is
once again unique. The Barcelona Clinic Liver Cancer (BCLC) staging system is the most
used approach. It incorporates Eastern Cooperative Oncology Group (ECOG) performance
status; Child–Pugh class, which is an estimate of mortality in cirrhosis patients; size and
number of tumors; vascular involvement; and extrahepatic spreading of the tumor [4].
Barcelona stage B (intermediate stage) or stage C (advanced stage) patients may be eligi-
ble for systemic treatment, which is the focus of this review. Due to the ineffectiveness
of chemotherapy, most of the current approved systemic treatments for HCC are tyro-
sine kinase inhibitors (TKI), vascular endothelial growth factor (VEGF) inhibitors, and
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immunotherapy agents [5]. Resection, liver transplant, ablation, transarterial chemoem-
bolization (TACE), transarterial radioembolization (TARE), and hepatic artery infusion
(HAI) are all localized HCC treatment options that will not be discussed in this review.

The main risk factors for HCC are chronic liver disease via hepatitis B infection,
hepatitis C infection, metabolic dysfunction-associated steatotic liver disease (MASLD),
and chronic alcoholism. All these factors play a role in inflammation-related carcinogenesis,
which can contribute to >90% of HCC cases. Chronic inflammation leads to hepatic cell
death and concurrent regeneration with the pro-inflammatory microenvironment leading
to dysplastic hepatocyte proliferation and eventually malignancy [6]. The significance of
any one of these factors varies considerably across the globe. Worldwide, hepatitis B is the
most common cause of HCC-related death, but alcohol- and hepatitis C-related HCC are
more common in the United States [7]. With about 900,000 new cases of HCC recorded
globally in 2020—a number that is expected to keep on growing—it is crucial to continue
improving systemic therapies for HCC [8]. There is no recommended routine screening
method for HCC in the general population. Patients with cirrhosis and high-risk hepatitis
B are advised to undergo surveillance ultrasound every 6 months [9].

Catching HCC in its early stages would be optimal, but having good treatment options
for later-stage disease is just as important. How to best select treatment options for each
specific advanced HCC patient with a lack of biomarker data and an increasing amount of
treatment options remains one of the biggest challenges. One aspect is many patients often
have underlying liver dysfunction, which can be a significant issue depending on how a
drug is metabolized. Another aspect is the presence of multidrug resistance protein family
transporters on HCC cells, which is among the contributing factors to drug resistance [10].
Lastly, the number of treatment options has increased dramatically over the past 5 years
(Figure 1). While this is generally a good thing, the lack of clinical trial data comparing
agents aside from sorafenib makes treatment selection more difficult. This article will
discuss currently approved therapies and novel treatment approaches that are presently
under clinical study, and which have the potential to reshape the HCC treatment landscape.
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2. Evolution of First-Line Treatment

In 2007, the TKI sorafenib was the first systemic therapy to show benefits for advanced
HCC with a median overall survival (OS) of 10.7 months compared to 7.9 months for
placebo [11]. In 2018, the TKI lenvatinib was shown to be non-inferior to sorafenib in the
REFLECT trial, which was an open-label phase III trial of 954 patients. The median OS of
patients treated with lenvatinib was 13.6 months vs. 12.3 months for sorafenib [12].

The landmark IMbrave150 trial published in 2020 switched the initial systemic treat-
ment approach for advanced HCC away from TKIs towards immunotherapy. Atezolizumab
plus bevacizumab provided a significantly better median OS than sorafenib (19.2 months
vs. 13.4 months) and significantly improved progression-free survival (PFS: 6.9 months vs.
4.3 months). Treatment-related grade 3 or 4 adverse events were similar between groups.
No patients had grade 3 or 4 pneumonitis or myocarditis, which are among the more
significant immune-related adverse events in patients receiving immunotherapy [13,14].
These results established atezolizumab plus bevacizumab as one of the preferred first-line
regimens at this time. The other preferred first-line regimen is the immunotherapy doublet
tremelimumab plus durvalumab, which came out of the HIMALAYA trial published in
2022. Of note, patients in the tremelimumab plus durvalumab group only received one
total dose of tremelimumab each. Tremelimumab plus durvalumab had a median OS of
16.4 months compared to 13.8 months for sorafenib (p = 0.0035) [15]. It is interesting to
see the median OS of sorafenib increasing in more recent trials, pointing to a generalized
improvement in cancer care (Figure 2).
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Durvalumab monotherapy is another option for HCC which was found to be non-
inferior to sorafenib (median OS 16.6 months, survival HR 0.86, and 95% CI 0.73–1.03)
in the HIMALAYA trial. The HIMALAYA trial was designed to test multiple hypotheses
with a durvalumab plus tremelimumab group, durvalumab group, and a sorafenib group.
The median PFS was not significantly different between all 3 groups. OS at 36 months
was 30.7%, 24.7%, and 20.2% for tremelimumab plus durvalumab, durvalumab, and
sorafenib, respectively. Durvalumab did have lower grade 3 or 4 treatment-emergent
adverse effects at 37.1% compared to 50.5% for tremelimumab plus durvalumab and
52.4% for sorafenib. As commonly seen with immunotherapy doublets, tremelimumab plus
durvalumab had more grade 3 or 4 immune-mediated adverse events at 12.6% compared
to 6.2% for durvalumab alone [15].
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First-line pembrolizumab had promising results in the phase II KEYNOTE-224 trial
cohort 2 with a median OS of 17 months, objective response rate (ORR) of 16%, and
median duration of response of 16 months [16]. However, the LEAP-002 trial compared
pembrolizumab plus lenvatinib to lenvatinib alone in the first-line setting and did not show
significant OS or PFS benefits from the addition of pembrolizumab. Despite a prolonged
median OS of 21.2 months for pembrolizumab plus lenvatinib, lenvatinib monotherapy
had a median OS of 19 months, which was much longer than the OS of 13.6 months in the
REFLECT trial, resulting in the LEAP-002 study not meeting its primary OS endpoint with
an HR 0.84. Median PFS was similar at 8.2 months for the combination and 8.1 months
for lenvatinib alone [17]. Nivolumab, given as a single agent, showed a durable response
in a subset of patients in early-phase clinical trials. When nivolumab was tested in the
randomized phase III study CheckMate 459, it did not provide a superior survival benefit
in comparison to sorafenib [18]. Nivolumab did show a disease control rate of 55% in a
phase I/II trial in Child–Pugh class B patients, with a favorable safety profile indicating its
benefit in patients with liver dysfunction [19].

3. Second-Line and Beyond

There are an increasing number of approved first-line treatment options, while all
second-line treatment options were tested in patients who received first-line sorafenib
treatment. There is no guideline on how to prioritize and sequence all the treatment options.
In practice, many of the first-line options are used in the later-line setting, assuming the
patient has not received those agents yet. This pushes the approved second-line treatment
into later lines of therapy if patients are still in good shape to receive these treatments.
The approved second-line and beyond options are included in Table 1. Regorafenib and
cabozantinib are both mixed TKIs, and their common side effects are hypertension, hand-
foot syndrome, fatigue, and diarrhea [20,21]. Ramucirumab, a monoclonal antibody to
VEGFR2, was explicitly approved for patients with alpha-fetoprotein (AFP) greater than
400 ng/mL [22]. KEYNOTE-240 and KEYNOTE-394 both looked at pembrolizumab in
the second-line setting. However, KEYNOTE-394 involved only patients in Asia, while
KEYNOTE-240 studied a more diverse population [23,24]. The multi-arm phase I/II study
CheckMate 040 compared different dosing regimens of nivolumab and ipilimumab without
a control arm. The 22.8-month median OS was from the group who received nivolumab
1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks for 4 cycles. This regimen was followed
by nivolumab 240 mg every 2 weeks. That group also had an ORR of 32% [25]. It should be
noted that all the trials mentioned in Table 1 are based on patients having progression on
sorafenib, which is currently not the first-line standard of care.

Table 1. Trial results leading to approval of later-line options for advanced HCC [20–25].

Drug (Trial) Control Total Number of
Patients

Drug Median OS
(Months)

Control Median
OS (Months) HR (95% CI)

Regorafenib
(RESORCE) placebo 573 10.6 7.8 0.63 (0.5–0.79)

Ramucirumab
(REACH-2) placebo 292 8.5 7.3 0.71 (0.53–0.95)

Cabozantinib
(CELESTIAL) placebo 707 10.2 8 0.76 (0.63–0.92)

Pembrolizumab
(KEYNOTE-240) placebo 413 13.9 10.6 0.78 (0.61–0.998)

Pembrolizumab
(KETNOTE-394) placebo 453 14.6 13 0.79 (0.63–0.99)

Nivolumab + Ipilimumab
(CheckMate 040) n/a 148 22.8 n/a n/a
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4. Completed Phase III Trials

With immunotherapy and TKIs independently showing success in HCC, the combina-
tion of the 2 have been evaluated in many phase III HCC clinical trials. VEGF, in addition
to its potent role in angiogenesis, is also an immunosuppressive factor, so blocking this
factor with a TKI could potentiate the effect of immunotherapy [26]. Camrelizumab is an
PD-1 antibody, while rivoceranib (also known as apatinib) is a VEGFR-2 targeting TKI.
That combination was compared to sorafenib in the first-line setting in a trial involving
543 patients. Median PFS was 5.6 months for the 2 drugs vs. 3.7 months for sorafenib (HR
0.52, 95% CI 0.41–0.65) and median OS was 22.1 months for the 2 agents vs. 15.2 months
for sorafenib (HR 0.62 and 95% CI 0.49–0.8). The side effect profile was as expected for the
camrelizumab plus rivoceranib group, with the most common grade 3 or 4 adverse effects
being hypertension (38%), increase in aspartate aminotransferase (17%), increase in alanine
aminotransferase (13%), and hand-foot syndrome (12%). The trial population was about
83% Asian, about 75% HCC due to hepatitis B, and only Child–Pugh class A, which limits
its generalizability somewhat [27]. Nonetheless, camrelizumab plus rivoceranib may soon
be another first-line HCC treatment option.

The COSMIC-312 trial looked at a combination of 2 approved agents, atezolizumab
and cabozantinib. The trial was conducted in the first-line setting with patients who were
Child–Pugh class A. The 3 groups consisted of cabozantinib plus atezolizumab, sorafenib,
and cabozantinib. The study showed a median PFS of 6.8 months for the combination
group compared to 4.2 months for sorafenib (HR 0.63 and 99% CI 0.44–0.91). The initial
reported median OS was not different at 15.4 months for the combination compared to
15.5 months for sorafenib. It was noted that the patients in the sorafenib arm received more
subsequent lines of treatment versus the combined group, which likely played a role in
the median OS result of the control arm. Final longer-term OS data is pending for this trial.
Hypertension, increased AST/ALT, and hand-foot syndrome were again the most common
serious adverse events [28].

Sintilimab, a PD-1 inhibitor, with IBI305, a bevacizumab biosimilar, was approved in
China as a first-line HCC treatment after favorable results from the ORIENT-32 trial. In this
trial, a combination of sintilimab plus IBI305 was compared to sorafenib in a trial population
of 595 patients. The 2-drug regimen significantly improved the median PFS (4.6 months vs.
2.8 months) and OS (median not reached vs. 10.4 months). This trial took place in 50 clinical
sites in China, and 94% of the patients had HCC due to hepatitis B [29]. Fundamentally,
this regimen is more or less the same as atezolizumab plus bevacizumab, with the only
difference being the target on the PD-1-PD-L1 axis. Atezolizumab targets PD-L1.

Tislelizumab, an anti-PD-1 monoclonal antibody, was compared to sorafenib in the
phase III RATIONALE-301 trial in the first-line setting [30]. Tislelizumab was designed
to minimize binding to Fc gamma receptors on macrophages to prevent macrophage-
mediated destruction of T cells [31]. Tislelizumab was found to have non-inferior median
OS compared to sorafenib (15.9 months vs. 14.1 months, HR 0.85, and 95% CI 0.71–1.02).
Tislelizumab had a higher ORR of 14.3% compared to 5.4%. Tislelizumab had lower rates
of grade 3 and 4 adverse events as well as a lower rate of adverse events leading to drug
discontinuation. Hepatitis and hypothyroidism were the most common immune-mediated
side effects, both at 5.3% [30].

ADI-PEG 20 was a different HCC treatment approach in the second-line setting. ADI-
PEG 20 is a cloned arginine-degrading enzyme. HCC typically lacks argininosuccinate
synthetase, which is required to metabolize citrulline to arginine. With HCC cells being
unable to produce arginine and with external arginine being broken down by ADI-PEG 20,
the tumor cells would not have access to arginine. In a study of 635 patients, ADI-PEG 20
was compared to placebo; there was no significant difference in median OS (7.8 months vs.
7.4 months) or PFS (2.6 months vs. 2.6 months) [32]. Although ADI-PEG 20 did not show
any survival benefit over placebo, its tolerable safety profile warranted further investigation
in HCC patients with high arginine levels [33].
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5. Future Directions

Immune checkpoint inhibition is far more complicated than just PD-1 and CTLA-4
(Figure 3). Many more co-stimulatory and co-inhibitor receptors can be targeted [34]. The
liver is a very immunologically tolerant organ to limit hypersensitivity to the many antigens
it is exposed to in the portal venous system, but this immunosuppressive microenviron-
ment can prevent identification and destruction of HCC, which is why immunotherapy
treatments are used [35]. Other aspects of the immune system, such as natural killer (NK)
cells, can also be harnessed in the fight against tumor cells. In addition, finding new ways
to help the immune system target cancer cells offers another viable solution. The focus is
then on defining the right combination of these therapies to yield the most benefit with the
least toxicity. The currently approved HCC treatments are either single drugs or two-drug
combinations. Other solid tumor malignancies are sometimes treated with three to four
agents, which could be a viable strategy in the treatment of HCC as well. Of course, when
adding further chemotherapy or immunotherapy, the risk of increased side effects must be
weighed against response.
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5.1. Three-Drug Regimens

Nivolumab plus cabozantinib with or without ipilimumab was one triplet examined
in a phase I/II trial. Patients could be untreated or could have received sorafenib in the
past. In a group of 71 patients, the ORR was 17% for the doublet and 29% for the triplet.
The median PFS and OS of 5.1 months and 20.2 months, respectively, for the doublet
compared to 4.3 months and 22.1 months, respectively, for the triplet. There were more side
effects in the three-drug group, with 74% of patients having grade three or four adverse
effects compared to 50% for the two-drug group [36]. However, the side effects were
generally manageable, making the three-drug regimen a potential option for later-stage
studies. There is an ongoing phase II trial of nivolumab, cabozantinib, and ipilimumab
followed by TACE in HCC patients who are not candidates for curative intent treatment [37].
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A similar approach using co-formulated pembrolizumab/quavonlimab with lenvatinib,
where quavonlimab is a CTLA-4 inhibitor, is in a phase II trial [38].

Adding another drug to the proven atezolizumab plus bevacizumab treatment is
also a reasonable option. The MORPHEUS-liver study was a multi-cohort phase Ib. The
investigators tried multiple doublet and triplet combinations using an atezolizumab plus
bevacizumab framework, including one cohort with atezolizumab, bevacizumab, and
tiragolumab [39]. TIGIT is an inhibitory receptor that can be upregulated by tumor cells
and other cells in the tumor microenvironment [40]. Tiragolumab is a TIGIT inhibitor.
The concept is like combining PD-1 inhibition with CTLA-4 inhibition. The triplet had
an ORR of 42.5% compared to 11.1% in atezolizumab plus bevacizumab. Median PFS
was also improved with the triplet at 11.1 months vs. 4.2 months. All results were in-
dependent of PD-L1 status, with similar safety profiles in both groups [39]. Building on
these results, a phase III trial for atezolizumab plus bevacizumab plus tiragolumab in
the first-line setting is currently underway [41]. A phase II trial similar in concept using
atezolizumab plus bevacizumab with SRF388, which is a fully human IgG1 blocking im-
munosuppressive cytokine interleukin 27 (IL-27), is also underway [42]. In addition, the
triplet of atezolizumab, bevacizumab, and ipilimumab is being evaluated in the first-line
setting in a phase II/III trial [43].

Dual immune checkpoint blockade with the addition of bevacizumab can be ap-
proached in multiple ways. Relatlimab is a LAG-3 blocking antibody. Blocking LAG-3
helps upregulate T-cell function [44]. The three-drug regimen of nivolumab, relatlimab, and
bevacizumab is being evaluated in a phase I/II trial [45]. Another combination undergoing
phase I study is IBI310 (a CTLA-4 inhibitor), sintilimab, and bevacizumab [46]. A phase
II trial of the TIGIT inhibitor, ociperlimab, the bevacizumab biosimilar, BAT1706, and
tislelizumab is also ongoing [47].

Despite the lack of efficacy of chemotherapy for HCC, there was one trial that evaluated
camrelizumab with 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) for treatment-
naïve advanced HCC patients. It was a phase Ib/II with a total of 34 patients. Grade three
or higher adverse events occurred in 85.3% of the patients, with decreased neutrophil count
being the most common. The ORR was 29.4%, the disease control rate was 79.4%, the
median PFS was 7.4 months, and the median OS was 11.7 months. These results point to
some degree of antitumor activity [48]. They also pose the question of whether conventional
chemotherapy can work for HCC if it is augmented by immunotherapy. This construct
of chemotherapy plus immunotherapy is quite common in the treatment of many other
cancer types. A phase III trial using camrelizumab plus FOLFOX is being conducted [49].

5.2. Two-Drug Regimens

Various two-agent combinations selected from the immunotherapy, TKI, and VEGF
inhibitor pool are being tried in first- and second-line settings (Table 2). Nofazinlimab
is a monoclonal antibody targeting PD-1 [50]. AK105, also known as penpulimab, is an
antibody targeting PD-1 and anlotinib is a TKI [51].

Table 2. Two-drug regimens in clinical trials [50–57].

Trial ID Medications Comparison Line of Therapy Phase

NCT04194775 Nofazinlimab with Lenvatinib Lenvatinib 1st III

NCT04344158 AK105 with Anlotinib Sorafenib 1st III

NCT04401800 Tislelizumab with Lenvatinib n/a 1st II

NCT04720716 IBI310 with Sintilimab Sorafenib 1st III

NCT04770896 Atezolizumab with Lenvatinib or Sorafenib Lenvatinib or
Sorafenib 2nd III

NCT03439891 Sorafenib with Nivolumab n/a 1st II
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Table 2. Cont.

Trial ID Medications Comparison Line of Therapy Phase

NCT03211416 Sorafenib with Pembrolizumab n/a 1st or 2nd I/II

NCT04039607 Nivolumab with Ipilimumab Lenvatinib or
Sorafenib 1st III

Another two-drug regimen undergoing phase II trial is MTL-CEBPA with sorafenib,
tested against sorafenib alone in the second-line setting [58]. Transcription factor
CCAAT/enhancer-binding protein alpha (C/EBP-α) is a master regulator of liver home-
ostasis, myeloid function, and multiple oncogenic processes including cell cycle control,
proliferation, and angiogenesis. MTL-CEBPA is a small activating RNA that upregulates
C/EBP-α, resulting in inhibition of tumor growth. In a completed phase I study of MTL-
CEBPA in HCC, 9 out of 34 patients had grade three treated-related adverse events, and
one patient had a partial response lasting longer than 2 years [59].

Pexa Vec with sorafenib is a slightly different version of immunotherapy plus TKI.
Pexa Vec is a vaccinia virus-based oncolytic immunotherapy that is supposed to replicate
in and destroy tumor cells preferentially. In a phase II trial for HCC patients who failed
sorafenib, Pexa Vec did not improve overall survival compared to best supportive care but
generally had a tolerable safety profile with 8% of the patients having grade three fever and
8% having grade three hypotension [60]. A phase III trial in the first-line setting is currently
comparing Pexa Vec with sorafenib to sorafenib alone [61].

5.3. Chimeric Antigen Receptor-Modified T Cells (CAR T-Cells)

CAR T-cells are genetically modified T cells with fusion proteins that target a molecule
on the tumor cell surface. CAR T-cells were initially established as a treatment modality
for acute lymphoblastic leukemia (ALL) and have gone on to be incorporated into the
treatment of multiple hematologic malignancies [62]. The use of CAR T-cells in solid tumors
is very rare. Still, they represent an option if viable targets are established.

Glypican-3 (GPC3) is one such target as it is expressed in 75% of HCC but not in
normal tissue (Table 3). Success targeting GPC3 with CAR T-cells was seen in vitro, in
mouse models, and in patient-derived xenograft models [63,64]. A completed phase I trial
in 13 patients using GPC3-targeted CAR T-cells resulted in two patients having partial
responses and one having stable disease [65]. AFP also represents a potential target as
early-stage models have shown activity targeting it with CAR T-cells [66]. Other CAR T-cell
targets in HCC include melanoma antigen gene family (MAGE), New York esophageal
squamous cell carcinoma 1 (NY-ESO-1), epithelial cell adhesion molecule (EPCAM), human
telomerase reverse transcriptase (hTERT), viral surface antigens in HCC associated with
hepatitis B or C, and NK group 2 member D ligand (NKG2DL) [67–71].

Table 3. Ongoing CAR T-cell trials [72–83].

Trial ID CAR T-Cell Target Phase

NCT05003895 GPC3 I

NCT04864054 GPC3 I/II

NCT05926726 GPC3 I

NCT05620706 GPC3 I

NCT05783570 GPC3 I

NCT05120271 GPC3 I/II

NCT03198546 GPC3 I

NCT04951141 GPC3 I
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Table 3. Cont.

Trial ID CAR T-Cell Target Phase

NCT05131763 NKG2DL I

NCT05028933 EPCAM I

NCT04502082 AFP 1/II

NCT03132792 AFP I

5.4. Bispecific Antibodies

Bispecific antibodies like CAR T-cells need a target on the cancer cell. The same
group of potential targets mentioned above can again be considered in this case. Bispecific
antibodies targeting GPC3 have shown activity in xenograft mice [84]. ERY974 is a bispecific
antibody that engages CD3 on T cells and GPC3 on tumor cells that underwent a phase I
trial in patients with any GPC3-positive solid tumor type. Of the 29 subjects enrolled, only
one patient with esophageal cancer demonstrated a partial response [85].

5.5. Cytokine-Induced Killer (CIK) Cells and NK Cells

CIK cells are a mix of T-cells and NK cells which are created by incubation of a
patient’s peripheral blood mononuclear cells with IL-2 and an antibody against CD3. CIK
cells are more specific for tumor cells than normal cells, preferentially leading to tumor cell
death. In the adjuvant setting, a phase III trial of CIK cells versus no adjuvant treatment in
230 HCC patients who underwent curative intent treatment showed a median recurrence-
free survival of 44 months following CIK cell treatment compared to 30 months in the
control group (HR 0.63 and 95% CI 0.43–0.94). All-cause mortality also favored the CIK cell
group (HR = 0.21 and 95% CI 0.06–0.75). The CIK cell group had significantly more adverse
events at 62% versus 41% (p = 0.002) with pyrexia, fatigue, and upper respiratory tract
infections being some of the more common ones. Still, there was no significant difference
in serious adverse events [86].

NK cells are part of the innate immune response and are capable of directly killing
cancer cells. Cytokines from NK cells contribute to a level of inflammation in the tumor
microenvironment. Again, in the adjuvant setting, five patients received ex vivo-expanded
allogenic NK cells following hepatic resection for HCC. There were no adverse events. Four
patients were alive at 3 years, but two had recurrence at the one-year mark [87]. Due to
the small sample size, it is difficult to comment on the efficacy of NK cells from this study.
However, NK cells showed a promising safety profile. Some of the ongoing NK cell trials
are listed in Table 4, including a few with chimeric antigen receptor NK (CAR-NK) cells.

Table 4. Trials involving NK cells for HCC [88–93].

Trial ID Agent Phase

NCT05845502 CAR-NK I

NCT02839954 CAR-NK I/II

NCT04162158 NK cells I/II

NCT05171309 Camrelizumab, Apatinib, and NK cells II

NCT02562963 NK cells I/II

NCT05040438 NK cells and hepatic artery infusion pump II

5.6. Targeted Agents

When considering targeted therapy aimed at one driver mutation, HCC has much
further to go than, say, lung malignancy. As more tumor sequencing data are generated,
potential targets should continue to emerge. Fisogatinib, which is an oral FGFR4 inhibitor,
is one agent that has completed a phase I trial. FGFR4 is the receptor of FGF19, which may
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be a driver mutation in some HCCs. In 81 patients, there was a tolerable safety profile with
an ORR of 17% in patients positive for FGF19 expression via immunohistochemistry. ORR
was 0% in patients who were negative for FGF19 expression [94]. There are currently more
early-stage trials involving fisogatinib.

Namodenoson, an A3 adenosine receptor agonist, represents another targeted therapy
option. The A3 adenosine receptor is overexpressed in multiple types of solid tumors,
including HCC. This receptor has low levels of expression on normal tissue. Namodenoson
binds the cellular A3 adenosine receptor and eventually induces apoptosis. In a phase II trial
in the second-line setting, there was no significant OS benefit with namodenoson compared
to a placebo. However, in a subgroup analysis of patients with a Child–Pugh score of seven,
12-month OS favored namodenoson at 44% vs. 18% for the placebo (p = 0.028) [95]. This
study is being followed by a phase III trial looking at namodenoson, specifically in HCC
patients with a Child–Pugh score of seven [96].

5.7. Vaccines

Vaccines against tumor antigens are yet another approach to help the immune system
detect and kill cancer cells. Epitopes from AFP and GPC-3 have been used in vaccines with-
out any noteworthy clinical results [97,98]. Peptide-based vaccines and dendritic cell-based
vaccines have undergone trials [99,100]. Newer technology relating to mRNA vaccines is
also being evaluated in HCC [101,102]. Further work is still required to find the right im-
munogenic cancer antigens. However, immune escape mechanisms in malignancies make
it unlikely that single-agent vaccines will be a treatment option anytime soon. Vaccines are
now being evaluated with other agents, such as immune checkpoint inhibitors [103].

6. Drug Resistance

Normal hepatocytes play a large role in drug metabolism giving HCC inherent drug
resistance mechanisms [104]. Mechanisms of drug resistance can be quite complex with
increased drug efflux, decreased drug uptake, increased drug metabolism, sequestration of
drugs, and non-coding RNA expression all playing a role. Permeability-glycoprotein is a
drug efflux protein which when overexpressed in HCC confers resistance to drugs such as
5-fluorouracil and epirubicin [105]. SLC46A3 can be downregulated in around 80% of HCC
cells resulting in decreased uptake of sorafenib [106]. MicroRNA-122, which is a small
non-coding RNA involved in regulation of gene expression, can be decreased in sorafenib
resistant HCC leading to downstream activation of pathways targeted by sorafenib [107].
Immunotherapy resistance mechanisms include cytokines creating an immunosuppressive
microenvironment, lack of tumor immunogenicity, or dysfunctional antigen presentation
by tumor cells [108]. Increased VEGF-D and angiopoietin-2 (ANG-2) have specifically
been implicated in resistance to atezolizumab plus bevacizumab [109]. Numerous other
targets causing resistance to advanced HCC treatments have been suggested. While trying
to generate a targeted treatment to overcome a specific resistance mechanism remains an
option, using multiple drugs with differing mechanisms of action together is an often a
simpler way to overcome a complex drug resistance problem.

7. Discussion

A significant change in evaluating first-line therapies for HCC will soon be required as
atezolizumab plus bevacizumab and tremelimumab plus durvalumab have been shown to
be significantly better than sorafenib, and one of these doublets should probably become the
new control arm. All the above first-line treatment phase III data mentioned in this article
were generated in comparison to sorafenib, which is slowly becoming a drug of the past for
upfront advanced HCC treatment and is inappropriate as a comparator moving forward.

A median OS of 19–22 months, an ORR of about 30%, and a well-manageable safety
profile can be expected from today’s standard first-line therapy [13,15,27]. The data from
not yet reported phase III trials will generate more knowledge on subtle differences in
efficacy and toxicities of different combinations. It seems unlikely that any two-drug



Int. J. Mol. Sci. 2024, 25, 1259 11 of 16

combination selected from the available immunotherapy, TKI, and VEGF inhibitor pool will
do significantly better than the current standard. Additional “me too” clinical trials should
be discouraged so resources can be used for innovative treatment or combinations. The
future of first-line advanced HCC treatment probably lies in finding the right synergy with
inhibition of the PD-1/PD-L1 axis. Bevacizumab plus atezolizumab and tremelimumab
plus durvalumab are excellent examples of the synergy between the anti-VEGF and anti
PD-/PD-L1 axis and the anti-CTLA-4 and anti PD-1/PD-L1 axis, respectively. Using a
three-drug combination targeting multiple immune checkpoints may take a leap from the
current efficacy benchmark. Safety of the treatment in a patient population that usually has
some degree of liver dysfunction is always as important as the efficacy of the treatment.
Furthermore, biomarkers for efficacy and safety are urgently needed in a disease with many
treatment options but still a dismal 5-year survival rate of 11% [110].

Other immune-modulating approaches of CAR T-cells, bispecific antibodies, CIK cells,
and NK cells are still some ways from having more concrete roles in the later-line setting
for advanced HCC. Given the history of these types of immune-modulating agents in
solid tumors, it is improbable that they will be a part of the first-line treatment arsenal
anytime soon. Despite all the focus on using AFP or GPC3 as targets, the lack of progress
in these arenas could mean that an entirely different targeting antigen holds the key to new
approvals. HCC vaccines have yet to have a significant breakthrough, but that could come
from combination treatment with other agents. Lastly, more targeted agent trials for HCC
are probably on the horizon as more is learned about the mutational landscape of HCC.
There may be opportunities to individualize treatment using associated risk factors such as
hepatitis B or C as well.

In conclusion, most of the approved treatments for advanced-stage HCC in any line of
therapy fall into the broad categories of immunotherapy, TKI, or anti-VEGF agent. Many
multiple-drug immune-modulating approaches are being evaluated in clinical trials to
find the best synergy between the different types of treatment. Median OS for patients
with first-line treatment has essentially doubled compared to the 10.7 months from the
first sorafenib trial. With increasing amounts of next-generation sequencing data from
HCC samples, discovery of reliable biomarkers for treatment response becomes more likely,
and this can provide much needed clarity as more and more agents become available.
The order of agents in the second-line setting and beyond also needs to be better defined.
The outcomes of ongoing triplet regimen trials have the potential to alter first-line HCC
treatment in a similar way to the IMbrave150 and the HIMALAYA trials.
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