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Howdoes the dynamics of neurons in a network respond to changes in synaptic weights?

Answer to this question would be important for a full understanding of synaptic plasticity.

In this article, we report our numerical study of the effects of changes in inhibitory

synaptic weights on the spontaneous activity of networks of spiking neurons with

conductance-based synapses. Networks with biologically realistic features, which were

reconstructed from multi-electrode array recordings taken in a cortical neuronal culture,

and their modifications were used in the simulations. The magnitudes of the synaptic

weights of all the inhibitory connections are decreased by a uniform amount subjecting

to the condition that inhibitory connections would not be turned into excitatory ones.

Our simulation results reveal that the responses of the neurons are heterogeneous: while

the firing rate of some neurons increases as expected, the firing rate of other neurons

decreases or remains unchanged. The same results show that heterogeneous responses

also occur for an enhancement of inhibition. This heterogeneity in the responses

of neurons to changes in inhibitory synaptic strength suggests that activity-induced

modification of synaptic strength does not necessarily generate a positive feedback

loop on the dynamics of neurons connected in a network. Our results could be used

to understand the effects of bicuculline on spiking and bursting activities of neuronal

cultures. Using reconstructed networks with biologically realistic features enables us to

identify a long-tailed distribution of average synaptic weights for outgoing links as a crucial

feature in giving rise to bursting in neuronal networks and in determining the overall

response of the whole network to changes in synaptic strength. For networks whose

average synaptic weights for outgoing links have a long-tailed distribution, bursting is

observed and the average firing rate of the whole network increases upon inhibition

suppression or decreases upon inhibition enhancement. For networks whose average

synaptic weights for outgoing links are approximately normally distributed, bursting is not

found and the average firing rate of the whole network remains approximately constant

upon changes in inhibitory synaptic strength.
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1. INTRODUCTION

Synaptic plasticity, the modification of the strength of synaptic
connections in response to activity, has long been proposed
to play an important and fundamental role in learning and
memory (Hebb, 1949). Extensive studies have demonstrated the
various forms and mechanisms of synaptic plasticity in both
short-term as well as long-term manners (Brown et al., 1990;
Bear and Malenka, 1994; Malenka and Nicoll, 1999; Bi and Poo,
2001; Bi, 2002; Zucker and Regehr, 2002; Citri and Malenka,
2008; Bailey et al., 2015). When synapses are strengthened by
activity, the stronger synapses are expected to lead to higher
activity and, therefore, it is commonly believed that activity-
dependent synaptic plasticity is a positive feedback process that
would lead to instability (Abbott andNelson, 2000) and a number
of stabilization mechanisms have been suggested (Chen et al.,
2013; Bannon et al., 2020). Using experiments and simulations on
a neuron of the lobster and on a model neuron, it was found that
the effect of changes in synaptic strength saturates and additional
changes beyond the saturation point produce no further changes
in the dynamics of the neuron (Prinz et al., 2003). This result
thus suggests that changes in the strength of the synapses onto a
neuron do not necessarily lead to changes in the spiking activity
of that neuron. Moreover, the effect of changes in the strength
of synapses on the dynamics of a neuron can be significantly
influenced by the connections of this neuron to other neurons in
a network. Thus direct studies answering the question of how the
dynamics of neurons in a network would be altered by changes of
synaptic strength would be important for a full understanding of
synaptic plasticity.

Many computational models of networks of excitatory
and inhibitory neurons have been used to study different
aspects of the brain systems (Einevoll et al., 2019). Different
levels of abstraction have been used to model neurons,
from Hodgkin-Huxley type models with detailed ionic
mechanisms (e.g., Destexhe et al., 1996; Andreev et al.,
2019) to simple leaky-and-fire model and phenomenological
models with in-between complexity (e.g., Tomov et al., 2014;
Zerlaut et al., 2018; Izhikevich and Edelman, 2020; Górski et al.,
2021). At the network level, networks with generic properties
allow us to gain qualitative insights of the possible wide range
of dynamics (Brunel, 2000) while detailed large-scale networks
that mimic real brain regions have been constructed (e.g., Traub
et al., 2005; Potjans and Diesmann, 2014; Markram et al., 2015;
Arkhipov et al., 2018; Schmidt et al., 2018; Izhikevich and
Edelman, 2020) to aim for a full understanding of the brain.

In this article, we report our numerical study of how the
dynamics of neurons in a network is altered upon a suppression
of the inhibition. We performed simulations of a model of
stochastic spiking neurons connected by conductance-based
synapses and studied how the spontaneous activity of the
neurons would change when the magnitudes of all the inhibitory
synaptic weights are decreased. We used networks of biologically
realistic features, which were reconstructed from multi-electrode
array recordings taken in a cortical neuronal culture, and their
modifications in the simulations. Our simulations reveal the
surprising result that the responses of neurons are heterogenous

and the firing rate does not increase for all the neurons.
While some neurons exhibit an expected increase in the firing
rate, other neurons exhibit a decrease or no change in the
firing rate. In comparison with networks with an applied
suppression of inhibition, the original networks can be viewed
as networks with an applied enhancement of suppression.
Hence, our results imply that heterogeneous responses also
occur for an enhancement of inhibition. In addition, we have
studied the effects of network architecture and our results
demonstrate that the distribution of average synaptic weights
of the outgoing links of the network plays a crucial role in
determining the dynamics as well as the overall response of the
whole network to changes in synaptic strength. For networks
whose average synaptic weights for outgoing links have a long-
tailed distribution, bursting is observed and the average firing
rate of the whole network increases upon inhibition suppression
or decreases upon inhibition enhancement. For networks whose
average synaptic weights for outgoing links are approximately
normally distributed, bursting is not found and the average firing
rate of the whole network remains approximately constant upon
changes in inhibitory synaptic strength.

2. MATERIALS AND METHODS

We performed numerical simulations of networks of neurons
connected by conductance-based synapses (Tomov et al., 2014,
2016; Pena et al., 2016) using networks reconstructed frommulti-
electrode array recordings taken in a cortical neuronal culture1

and their modifications.
Neuron Model. Each model consists of N neurons. To model

the dynamics of a neuron, we used the spiking neuron model
proposed by Izhikevich (2003) with the addition of a stochastic
noise to mimic external influences. Each neuron, labeled by
an index i, i = 1, 2, . . . ,N, is described by two variables:
the membrane potential vi in mV and the membrane recovery
variable ui. where ui accounts for the activation and inactivation
of potassium and sodium ions and provides negative feedback
to vi. The dynamics of the two variables are governed by two
coupled non-linear differential equations

dvi

dt
= 0.04v2i + 5vi + 140− ui + Ii + αξ (1)

dui

dt
= a(bvi − ui) (2)

where t is time in ms, Ii(t) is the synaptic current from all pre-
synaptic neurons of neuron i, ξ is a Gaussian white noise with
zero mean and unit variance: 〈ξ (t)〉 = 0 and 〈ξ (t1)ξ (t2)〉 =

δ(t1−t2) and α is the intensity of the noise term. Every time when
vi ≥ 30, neuron i fires and sends out a spike, then both variables
are reset

{

vi → c

ui → ui + d
(3)

1Sun, C., Lin, K. C., Yeung, C. Y., Huang, Y.-T., Lai, P.-Y., Chan, C., et al.

(2021). Revealing directed effective connectivity of cortical neuronal networks

from measurements, under review. Phys. Rev. E.
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With appropriate values of the four parameters a, b, c, and
d, the spiking neuron model without the noise term has
been shown (Izhikevich, 2007) to be capable to mimic the
rich firing patterns exhibited by real neurons from different
electrophysiological classes (Nowak et al., 2003; Contreras, 2004).
In this study, we focussed on two types of neurons: excitatory
regular spiking neurons (a = 0.02 and d = 8) and inhibitory
fast spiking neurons (a = 0.1 and d = 2), and both types have
b = 0.2 and c = −65 mV (Izhikevich, 2003).

Synapses. Neurons in the network are connected by
conductance-based synapses such that the current Ii(t) is
given by

Ii(t) = Gexc
i (t)(VE − vi(t))+Ginh

i (t)(VI − vi(t)) (4)

where Gexc
i and Ginh

i are the excitatory and inhibitory
conductances, respectively, and VE = 0 and VI = −80, both
in mV, are the reversal potentials of the excitatory and inhibitory
synapses, respectively (Cavallari et al., 2014; Tomov et al., 2014,
2016; Pena et al., 2016). Whenever a pre-synaptic excitatory or
inhibitory neuron j fires, Gexc

i or Ginh
i increases by an amount

corresponding to the synaptic weight, otherwise it decays with
a time constant τexc or τinh (Tomov et al., 2014, 2016; Pena et al.,
2016):

dGexc
i

dt
= −

Gexc
i

τexc
+

∑

j,wij>0

wij

∑

k

δ(t − tj,k) (5)

dGinh
i

dt
= −

Ginh
i

τinh
+

∑

j,wij<0

|wij|
∑

k

δ(t − tj,k) (6)

where τexc = 5 and τinh = 6 in ms, wij is the synaptic weight of
the link from neuron j to neuron i, with wij > 0 for excitatory
synapses and wij < 0 for inhibitory synapses, and tj,k is the time
of the kth spike of pre-synaptic neuron j. Solving Equations (5)
and (6), we obtain

Gexc
i =

∑

j,wij>0

wij

∑

k

e−(t−tj,k)/τexcθ(t − tj,k) (7)

Ginh
i =

∑

j,wij<0

|wij|
∑

k

e−(t−tj,k)/τinhθ(t − tj,k) (8)

where the Heaviside step function θ(t− t0) is equal to 1 when t >

t0 and zero otherwise. The stochastic differential Equations (1)
and (2) together with Equations (4), (7), and (8) were integrated
using Euler-Maruyama method (Higham, 2001) with a time step
of dt = 0.125 ms for a total time of 7, 500 ms. We set the initial
values of vi to be c = −65 mV and there is no firing activity when
the noise term in Equation (1) is turned off by setting α = 0.
The average firing rate of the neurons increases when the noise
intensity α increases and we set α = 3 so that the average firing
rate is comparable to that measured directly from the multi-
electrode array measurements of neuronal culture (see below).
We studied the spontaneous activity triggered by the noise.
Simulations with smaller dt = 0.005 ms and longer total time
have been done to check the validity of our simulation results.

Networks. We studied six different networks, labeled by I to
VI, each of which has N = 4095 neurons. Networks I, II, and III
were adopted from an earlier study (see text footnote 1) in which
the directed effective connectivity of a cortical neuronal culture of
rat embryos at different days in vitro (DIV) were estimated from
voltage measurements recorded by a high density multi-electrode
array (HD-MEA). The HDMEA probe (HD-MEAArena, 3Brain
AG) has 4096 electrodes, which are arranged in a 64 by 64
square grid. Spontaneous neuronal activities were recorded for
5 min with the recording device (BioCAM, 3Brain AG) and
the associate software (BrainWave 2.0, 3Brain AG) at 7.06 kHz.
One electrode was used for calibration purpose so there were
4095 electrodes that recorded 4095 time series of voltage signals.
The voltage measurements from the 4095 working electrodes,
after noise reduction, were taken as the activities xi(t), i =

1, 2, . . . , 4095, of the nodes of a network. Then the connectivity
matrix was reconstructed using quantities calculated from xi(t)’s
using a method developed for reconstructing networks from
dynamics (Ching and Tam, 2017) (seeAppendix for details). The
connectivity matrix elements wij of networks I to III are twice
of the reconstructed neuronal networks using MEA recordings
taken at 25, 45 and 66 DIV (denoted by DIV25, DIV45 and
DIV66) respectively. The factor of 2 is used to allow us to get
sufficient amount of spiking activity in the relatively short time
span of 7,500 ms.

The connection probability of networks I, II, and III is 1.4,
1.1, and 1.5%, respectively. Neurons are either excitatory or
inhibitory except for some which have no outgoing links as none
was detected in the reconstruction. The fraction of inhibitory
neurons is 0.14, 0.21, and 0.28, respectively, for networks I to
III and these values are comparable to measured values of 0.15–
0.30 in various cortical regions in monkey (Hendry et al., 1987).
For each neuron, we define three averages of synaptic weights,
the average synaptic weight of excitatory incoming links s+in, the
average synaptic weight of inhibitory incoming links s−in and the
average synaptic weight of the outgoing links sout, by

s+in(i) =

∑

j,wij>0 wij

k+in(i)
(9)

s−in(i) =

∑

j,wij<0 wij

k−in(i)
(10)

sout(i) =

∑

j wji

kout(i)
, (11)

where the excitatory and inhibitory incoming degrees, k+in and
k−in, of a neuron are, respectively, the number of its incoming
links of excitatory or positive synaptic weights and inhibitory
or negative synaptic weights, and the outgoing degree kout of a
neuron is the number of its outgoing links. The distributions
of the average synaptic weights s+in, |s

−
in|, and |sout| of networks

I, II, and III (Figure 1) are skewed and long-tailed, which are
generally in accord with the literature (Buzsaki and Mizuseki,
2014). These results show that networks I to III have biologically
realistic features.

Networks IV, V, and VI are modifications of network III to
allow us to study the possible effects of network topology and the
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FIGURE 1 | Distributions of average synaptic weights s+in (upper panel), |s−in |

(middle panel), and |sout| (bottom panel) for the six networks studied. In the

bottom panel, the distribution of |sout| of network VI is identical to that of

network III and is thus denoted by symbols.

TABLE 1 | A summary of the features of the average synaptic weights

distributions of networks I–VI.

I II III IV V VI

long-tailed distribution of s+in yes yes yes no no yes

long-tailed distribution of |s−in | yes yes yes no no yes

long-tailed distribution of |sout| yes yes yes no yes no

average synaptic weights distributions. Network IV is a random
network of the same connection probability as that of network
III with its synaptic weights taken from a Gaussian distribution
of the same mean and standard deviation as those of network
III. Then there is an additional sign adjustment to set the sign
of the synaptic weights of all the outgoing links of each neuron
to be the same and as in network III. The distributions of the
average synaptic weights s+in, |s

−
in|, and |sout| of network IV are

all approximately Gaussian (Figure 1). Network V is designed
to have the same distribution of |sout| as network III but with
different distributions of s+in and s−in. It is obtained from network
III with the elements of the connectivity matrix in each column
replaced by a random permutation of these elements. The same-
sign adjustment is also enforced. Such a permutation randomly
assigns the outgoing connections of each neuron among all the
neurons thus keeping the outgoing degree and |sout| of each
neuron intact. As a result, the distribution of |sout| of network V
is identical to that of network III (see bottom panel of Figure 1).
The shuffling randomizes both the number and the synaptic
weights of the incoming links of the neurons rendering the
distributions of s+in and |s−in| to be approximately Gaussian (see
upper and middle panels of Figure 1). Network VI is designed

to have similar distributions of s+in and s−in as network III but
with different distribution of |sout|. It is obtained from network
III in a similar fashion, with the elements of the connectivity
matrix in each row replaced by a random permutation and
with the same-sign adjustment of the synaptic weights. Similarly,
the distribution of |sout| becomes approximately Gaussian but
in this case, the sign adjustment modifies s+in and |s−in| such
that their distributions are close to but not the same as those
of network III (Figure 1). Table 1 summarizes the features
of the three average synaptic weights distributions of the six
networks studied.

Suppression of inhibition. For each network, we calculated the
standard deviation of all the inhibitory synaptic weights with
wij < 0 and denoted the result as σ . We applied three levels
of uniform suppression of inhibition by replacing every negative
wij by wij + kσ for (i) k = 0.25, (ii) k = 0.5, and (iii) k =

1. When the magnitudes of the inhibitory synaptic weights are
decreased, an inhibitory neuron would not be turned into an
excitatory neuron thus we enforced an additional condition: if
wij+kσ > 0, then that negativewij is replaced by zero.We carried
out simulations for each of the networks as well as the three levels
of inhibition suppression and recorded the number of spikes and
the times at which the spikes occur for all the 4095 neurons in
every simulation.

Calculation of firing rates from MEA recordings. By applying
the Precise Timing Spike Detection algorithm (Maccione et al.,
2009) in the BrainWave software associated with the recording
device of the MEA probe, we detected spikes in the MEA
recordings DIV25, DIV45, and DIV66 and calculated the firing
rates of the measurements of each of the 4095 electrodes. The
noise intensity α in Equation (1) is set to be 3 for the simulations
so that the average firing rates of the whole network for networks
I–III are comparable to the array-wide average firing rates
calculated from the MEA recordings.

Three additional sets of MEA recordings were taken,
respectively, after 5 µM, 15 µM, and 30 µM of bicuculline were
added to the neuronal culture at 66 DIV. We calculated the
firing rates of these three sets of MEA recordings. Our simulation
results will be useful for understanding the effects of bicuculline
on firing rates of neuronal networks.

3. RESULTS

The activity of a neuron is often measured by its firing rate,
which is defined as the total number of spikes recorded in
a certain time interval T divided by T. We used the whole
computational time interval T = 7, 500 ms to calculate the
firing rates. The distribution of firing rates of neurons in local
cortical networks has been reported to be skewed with long
tails (Shafia et al., 2007; O’Connor et al., 2010; Peyrache et al.,
2012; Buzsaki and Mizuseki, 2014). We first study whether
networks I, II, and III, adopted from networks reconstructed
from the MEA recordings of a neuronal culture, can reproduce
these features in the spiking neuron model. Figure 2A shows
the distributions of firing rate for networks I–III. They are
highly skewed, long tailed, and clearly deviate from Gaussian

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 785207

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Li et al. Responses to Changes in Inhibition

0 20 40
0

0.05

0.1

P
ro

b
ab

il
it

y
 d

en
si

ty

Network I

0.1 1 10 10010
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
ab

il
it

y
 d

en
si

ty

network I
network II
network III
network IV

0 1 2

Firing rate (Hz)

0

0.5

1

Network IV

0.1 1 10

Firing rate (Hz)

10
-4

10
-3

10
-2

10
-1

10
0

DIV25
DIV45
DIV66

0 5 10
0

0.5

1

Network II

0 5 10
0

0.5

1

Network III

A B

FIGURE 2 | Distributions of firing rates. (A) Distributions calculated from the simulation data for networks I–IV. The red curve is a Gaussian distribution with the same

median and standard deviation while the blue curve is a Gaussian distribution with the same mean and standard deviation. (B) Comparison of the distributions of firing

rates for networks I–IV (upper panel) with those calculated using the spikes detected in the measured MEA recordings DIV25, DIV45, and DIV66 (bottom panel) from

which networks I–III were reconstructed. The data points for zero firing rate are removed. A good resemblance of the long tails in the distributions for networks I–III can

be seen.

distributions with the same mean or median and same standard
deviation. These features indicate that the spiking activities of the
whole network are dominated by a small fraction of neurons. The
distribution of firing rate depends crucially on the distribution
of synaptic weights of the network (Roxin et al., 2011). For the
random network IV whose average synaptic weights obey an
approximately Gaussian distribution, Figure 2A shows that its
distribution of firing rates is neither skewed nor long-tailed but
is well approximated by a Gaussian distribution with the same
mean and standard deviation.We show the distributions of firing
rates for networks I–IV in a log-log plot in Figure 2B. The good
resemblance of the long tails in the distributions for networks
I–III with those calculated directly from the MEA recordings
(Figure 2B) further supports that these three networks have
biologically realistic features.

When themagnitudes of all the inhibitory synaptic weights are
decreased, the magnitudes of the presynaptic inhibitory synapses
of every neuron are decreased. Thus one would naturally expect
the firing rate of every neuron to be enhanced and that the
average firing rate of the whole network to increase with the level
of inhibition suppression. Figure 3 shows the dependence of the
average firing rate of the network on the ratio of suppression in
inhibitory weights for all the networks. The ratio of suppression
in inhibitory weights is equal to the ratio of the decrease in the
average magnitude of all the inhibitory weights to the average
magnitude of all the inhibitory synapses when there is no
suppression. The average firing rate increases for most of the
networks as expected but surprisingly, it remains approximately

FIGURE 3 | Dependence of the ratio of the increase of the average firing rate

of the whole network on the ratio of suppression in inhibitory synaptic weights

for the six networks.

unchanged for networks IV and VI. Inspection of the change in
firing rates of the individual neurons within a network reveals
that the responses of neurons are heterogeneous: while the firing
rates of some neurons are enhanced as expected, the firing rates of
the other neurons decrease or do not change. Such heterogeneous
responses are found in all the six networks. Figure 4 shows the
distributions of change in firing rate at the three applied levels of
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FIGURE 4 | Distributions of the change in firing rate for the three different levels of suppression of inhibition for networks I–VI.

suppression. It can be seen that there exists a non-zero fraction
of neurons whose firing rate decreases for all the networks at the
lowest applied level of suppression (k = 0.25). For network V,
the firing rates of all neurons increase or do not change at the two
highest applied levels of suppression (k = 0.5 and k = 1). For the
average firing rate of the whole network to have a net increase, the
distribution of the change in firing rate has to be asymmetric and
skewed toward positive changes in firing rate. This is indeed the
case for all except networks IV and VI. For networks IV and VI,
the distribution of the change in firing rate is symmetric about
zero and there is thus no net change in the average firing rate
or the overall spiking activity in these two networks. Moreover,
the distributions of the change in firing rate have a very weak
dependence on k and the fraction of neurons having an increase
in firing rate is approximately constant as k increases (Figure 5).
For networks I–III and network V, most of the neurons exhibit an
increase in their firing rates and the fraction of neurons having
an increase in firing rate increases with the ratio of suppression
in inhibitory synaptic weights (Figure 5).

What determines the different responses of the individual
neurons within a network? A first guess might be the group
of neurons with an increase in firing rates and the group of
neurons with a decrease in firing rates differ in their network
features such as degree and average synaptic weights. However,
this possibility has to be ruled out since heterogeneous responses
are found in all the networks including network V, which is
a random network, and the nodes in a random network have

FIGURE 5 | Dependence of the fraction of neurons having an increase in firing

rate on the ratio of suppression in inhibitory synaptic weights for the

six networks.

similar in- and out-degrees and average synaptic weights. We
calculated the distributions of the incoming and outgoing degrees
and the average synaptic weights of incoming and outgoing
links separately for the two groups of neurons, one with an
increase in firing rate and the other with a decrease, in networks
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FIGURE 6 | Distribution of interspike intervals (ISI) and bursting. (A) Distribution P(ln ISI) for the six networks. (B) Raster plots of 500 randomly chosen neurons in

networks III–VI. When distribution of ISI is bimodal, bursting is observed.

I–III and indeed found no significant differences. Moreover,
heterogeneous responses are found among excitatory neurons
and among inhibitory neurons and no correlation is found
between the sign of the change in firing rate and the nature of
the neuron.

Besides firing rate, another measure of spiking activity is
the inter-spike interval (ISI). To study neuronal variability,
one common method is to study the distribution of ISI or
ln(ISI), the logarithm of ISI. In particular, multi-scale bursting
activities of a neuronal network can be revealed by a bimodal
ln(ISI) distribution with one peak at shorter ISI for spikes
within each burst and another peak at longer ISI for spikes
between consecutive bursts (Cocatre-Zilgien and Delcomyn,
1992; Selinger et al., 2007). Figure 6A shows the distributions
of ln(ISI) for all the six networks. For networks I, II, III, and V,
the distributions are bimodal with one peak at ISI of the order
of ms and another peak at larger ISI of order of 0.1 s, thus these
networks have bursting activities as can be seen directly in the
raster plots (Figure 6B). The ln(ISI) distributions of networks IV
and VI are unimodal (Figure 6A) and these two networks have
no bursts (Figure 6B). Hence, there is an interesting correlation
between the bursting dynamics of a network and its overall
response to changes in synaptic weights: the average firing rate of
the whole network has a net change for networks with bursting
but remains unchanged for networks without bursts when the
inhibitory synaptic weights are varied.

The network architecture and the synaptic weights
distribution are expected to affect the dynamics of the network

and its response to changes in synaptic weights but it is not
obvious which specific network feature plays a crucial role.
By comparing the features of the distribution of the average
synaptic weights of the networks as summarized in Table 1, we
can conclude that the distribution of average synaptic weights of
the outgoing links sout of a network is crucial in determining the
dynamics as well as the overall response of the whole network
to changes in synaptic strength. For networks whose sout’s have
a long-tailed distribution, bursting is observed and the average
firing rate of the whole network increases upon inhibition
suppression or decreases upon inhibition enhancement. For
networks whose sout’s are approximately normally distributed,
bursting is not found and the average firing rate of the whole
network remains approximately constant upon changes in
inhibitory synaptic strength.

Using the calculated firing rates from the MEA recordings
of the 4,095 electrodes taken at 66 DIV after three different
concentrations of bicuculline were added, we found that the
array-wide average firing rate increases with the addition of
bicuculline as previously reported (Eisenman et al., 2015).
Figure 7A shows that the array-wide average firing rate
increases as the bicuculline concentration increases. Bicuculline
is a competitive GABAA receptor antagonist that blocks the
inhibitory action of the neurotransmitter GABA (Johnston,
1996). The blocking action of bicuculline on the receptors of
GABA can be crudely modeled by a suppression of inhibitory
synaptic weights and our simulation results thus suggest that
the responses in firing rate would be heterogeneous. Bicuculline
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FIGURE 7 | Heterogeneous responses of spiking activity of neuronal culture at

66 DIV to the addition of bicuculline. (A) Dependence of the ratio of the

increase of the average firing rate of all 4,095 MEA channels for 66 DIV on the

concentration of bicuculline. (B) Distributions of the change in firing rate of all

the channels for the three different concentrations. (C) Distribution of logarithm

of ISI, P(ln ISI), calculated using the spikes detected from the MEA

recording DIV66.

has indeed been reported to exhibit a heterogeneous effect on
firing rate in rat hippocampal neuronal networks (Sokal et al.,
2000). We calculated the distributions of change in firing rates
of the recordings of individual electrodes. Figure 7B shows that
there are both positive and negative changes and confirms that
bicuculline exhibits a heterogeneous effect on firing rate. Since
there is a net change in the array-wide average firing rate on
the bicuculline concentration, based on our simulation results,
we would expect that the ln(ISI) distribution calculated from the
MEA recording DIV66 should be bimodal. Figure 7C confirms
this prediction.

4. DISCUSSION

One of the most fascinating properties of the brain is
neuroplasticity, its ability to change the synaptic strength of
connections and/or to form new connections in its neuronal
circuits in response to experience and stimuli. Specifically,
synaptic plasticity, the activity-dependent modification of the
synaptic strength of connections, has been proposed to play
a central role in learning and memory over the past century.
Changes in synaptic strength are also thought to be crucial during
early development of the brain. Many forms and mechanisms of
synaptic plasticity have been described in which synaptic strength
can be either enhanced or depressed and these changes can be
either short term or more long lasting (Brown et al., 1990; Bear
and Malenka, 1994; Malenka and Nicoll, 1999; Bi and Poo, 2001;
Bi, 2002; Zucker and Regehr, 2002; Citri and Malenka, 2008;
Bailey et al., 2015). It is natural to expect that an enhancement
of synaptic strength would lead to an enhancement in activity
and a depression of synaptic strength would lead to a depression

in activity and thus activity-dependent synaptic plasticity alone
would lead to instability (Abbott andNelson, 2000) and a number
of stabilization mechanisms have been suggested (Chen et al.,
2013; Bannon et al., 2020). There are, however, experimental
and numerical results suggesting that changes in the strength
of the synapses onto a neuron do not always lead to changes in
the spiking activity of the neuron (Prinz et al., 2003). Moreover,
the response of a neuron to changes in the synaptic strength is
likely to be influenced by its interactions with other neurons in a
network. For a full understanding of synaptic plasticity, it is thus
useful to study how the effects of changes in synaptic strength on
the dynamics of neurons in neuronal networks.

In this work, we carried out numerical simulations of
networks of thousands of spiking neurons with conductance-
based synapses and showed that a uniform suppression of
the inhibitory synaptic weights does not lead to an increase
in the firing rate of all the neurons within a network. In
comparison with networks with an applied suppression of
inhibition, the original networks could be viewed as networks
with an applied enhancement of inhibition. Thus our results
imply that heterogeneous responses do not only occur for
a suppression of inhibition but also for an enhancement of
inhibition. That is, neurons in a network respond differently to
changes in inhibitory synaptic weights. As a result, a suppression
or an enhancement of the magnitudes of the synaptic weights of
all presynaptic inhibitory synapses of a neuron in a network does
not always lead to an increase or decrease in the firing rate of
this neuron. Hence, activity-dependent modification of synaptic
strength does not necessarily generate a positive feedback on the
dynamics of neurons connected in a network and thus synaptic
plasticity does not necessarily lead to unstable runaway synaptic
dynamics in neuronal networks.

The effects of different drugs on the spiking and bursting
activities of neuronal networks have been commonly
studied (e.g., Sokal et al., 2000; Eisenman et al., 2015). It
has been found that bicuculline, a drug that blocks the receptors
of inhibitory neurotransmitter GABA, has a heterogeneous effect
on firing rate in a rat hippocampal neuronal network (Sokal
et al., 2000). Our simulations results showing a heterogeneity
in the responses to a suppression in inhibition thus suggests
a heterogeneity in the action of bicuculine when its blocking
action of the GABA receptors is crudely modeled as a decrease in
magnitudes of all inhibitory synaptic weights. Our study can be
further used to understand the effects of bicuculline on bursting.

Such heterogeneous responses are found in all networks
studied including a generic random network (network V)
in which all the nodes have similar degrees and average
synaptic weights described by an approximately Gaussian
distribution with small standard deviation (see Figure 1).
Moreover, heterogeneous responses are found among excitatory
neurons and also among inhibitory neurons. We have indeed
found that the two groups of neurons that have opposite changes
in the firing rate upon changes in inhibitory synaptic strength in
networks I–III have similar distributions of degrees and average
synaptic weights. These results thus indicate that whether the
firing rate of a neuron increases or decreases upon a changes in
inhibition is not a simple consequence of its network features or
whether it is excitatory or inhibitory.
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The firing rate of neuron i is controlled by the synaptic
current Ii(t), which depends on the excitatory and inhibitory
conductances. The inhibitory conductanceGinh

i depends not only
on the magnitude of the synaptic weights |wij| but also on the
firing history of the presynaptic inhibitory neurons of neuron
i. Thus Ginh

i could increase even when the magnitudes of all
the synaptic weights of the presynaptic inhibitory synapses are
decreased if some of the presynaptic inhibitory neurons fire
more frequently. Similarly, the excitatory conductanceGexc

i could
decrease even when the magnitudes of all the synaptic weights
of the presynaptic excitatory synapses are fixed if the firing
rate of some of the presynaptic excitatory neurons decreases.
This explains why Ii(t) can decrease and leads to a decrease
in the firing rate of neuron i even when all the synaptic
weights of its presynaptic inhibitory synapses are suppressed.
The response of an individual neuron to changes in synaptic
strength is affected by the firing activity of its presynaptic
neurons, which is in turn affected by the firing activity of
their own presynaptic neurons, and hence the heterogeneous
responses are the result of the interactions among neurons in
the network.

Detailed exploration of how the architecture of a neuronal
network, which describes the inter-actions among neurons,
gives rise to the heterogeneous responses should provide
new insights on synaptic plasticity. For such an exploration
to be fruitful, it is important to use neuronal networks
with biologically realistic connections rather than generic
networks like random networks that are often used in
computational studies. Our simulations show that unrealistic
dynamics are obtained for a random network (network
V) in that there is no bursting and no change in the
overall average firing rate upon variations of the inhibitory
synaptic strength.

In addition to the heterogeneity in the responses of individual
neurons within a network, our results show that network
structure induces a variability in the overall response of the whole
network to changes in inhibitory synaptic strength. It is not
surprising that there is a relationship between network structure
and dynamics but it is challenging to pin down which specific
network feature plays a crucial role. Using biologically realistic
networks and their modifications enables us to address this
challenge. The reconstructed networks from MEA recordings of

neuronal culture (networks I–III) have biologically realistic long-
tailed distributions of average synaptic weights. By comparing
the dynamics of these networks with those of the modified
ones (networks IV–VI), we are able to conclude that a long-
tail distribution of average synaptic weights of the outgoing
links sout is the crucial feature that gives rise to bursting in
neuronal networks and determines the overall response of the
whole network to changes in synaptic strength. Understanding
how a long-tailed distribution of sout gives rise to bursting and
why networks lacking such a feature would experience little or
no change in the overall average firing rate upon changes in
synaptic strength are interesting problems to be explored in
future studies.
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5. APPENDIX

The recorded 4,095 time series of voltage signals are denoted as
yi(t), i = 1, 2, . . . , 4, 095. To reduce the effect of measurement
noise, a moving average filter was first applied to obtain xi(t) =
[yi(t) + yi(t + 1)]/2, where 1 = 0.142 ms is the sampling time
interval for i = 1, 2, . . . , 4, 095. Then xi(t) is treated as the activity
of node i of a network ofN = 4, 095 nodes with their connections
given by the connectivity matrix elements w̃ij. That is, w̃ij 6= 0 is
the weight of the connection from node j to node i and w̃ij = 0
when there is no connection from node j to node i. We assume
no self-connections such that w̃ii = 0.

Using xi(t)’s, we calculated two matrices, the time-lagged
covariance matrix K(τ ) whose elements are given by

Kij(τ ) = 〈[xi(t + τ )− 〈xi(t + τ )〉][xj(t)− 〈xj(t)〉]〉 (12)

using τ = 1 and the equal-time covariance matrix K(0), whose
elements are given by Equation (12) with τ = 0. Here, 〈. . .〉
denotes a time average. Then, we calculated

M =
1

τ
log(K(τ )K(0)−1) (13)

where log is the principal matrix logarithm.
For systems whose dynamics are described by a set of coupled

stochastic differential equations and approach a fixed point in the
noise-free limit, it has been derived that (Ching and Tam, 2017)

w̃ij ≈ Mij i 6= j (14)

Relation (Equation (14)) thus implies that for each node j, the off-
diagonal elementsMij, with i 6= j, would separate into two groups

corresponding to w̃ij = 0 (no links from node j to node j) and
w̃ij 6= 0 (links from node j to node i with weights w̃ij). Motivated
by this result, a method has been developed to estimate w̃ij by
performing clustering analysis of Mij into two groups for each
node j. This covariance-relation based method of recovering the
connectivity matrix has been validated by numerical simulations

not only for systems that have a fixed point in the noise free limit
but also for some systems that do not approach a fixed point in

the noise-free limit, including especially systems that obey the

FitzHugh-Nagumo dynamics that is commonly used to model

neurons (Ching and Tam, 2017; Tam, 2017).

This method was adopted (see text footnote 1) to estimate w̃ij

from MEA recordings taken at different Days in Vitro (DIV). In
each case, the distribution of Mij with i 6= j for each node j is
fitted by a sum of two Gaussian component distributions using
MATLAB “fitgmdist” and the Gaussian component of the larger
proportion or the Gaussian component with the average closer
to zero is taken as the unconnected component of w̃ij = 0.
The probability pi of each of the Mij values belonging to the
unconnected component is then obtained by using MATLAB
“cluster.” If pi > 0.5, then w̃ij = 0 and there is no link from node
j to node i. Otherwise if pi ≤ 0.5, then there is a link from node j
to node i with w̃ij = Mij − 〈Mkj|w̃kj = 0〉k where 〈Mkj|w̃kj = 0〉k
is the average over k of those Mkj values that are estimated to
correspond to w̃kj = 0. This procedure is repeated for all the
nodes j to estimate all the off-diagonal elements w̃ij with i 6= j. In
the event that, the two Gaussian component distributions are not
well separated, the distribution ofMij is fitted again by one single
Gaussian distribution with the outliers inferred as the connected
component with w̃ij 6= 0.

Thewij’s of networks I, II, and III are twice of w̃ij reconstructed
fromMEA recordings DIV25, DIV45, and DIV66, respectively.
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