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Abstract

In recent years multi-parameter flow cytometry has enabled identification of cells at major stages 

in myeloid development; from pluripotent hematopoietic stem cells, through populations with 

increasingly limited developmental potential (common myeloid progenitors and granulocyte-

macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are 

heterogeneous, and the surface markers that define transition states from progenitors to mature 

cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination 

with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a 

CD11b+ Siglec-F+ IL5Rα− myeloid population in the bone marrow of C57BL/6 mice. The 

CD11b+ Siglec-F+ IL5Rα− cells are retained in eosinophil deficient PHIL mice, and are not 

expanded upon overexpression of IL-5, indicating that they are upstream or independent of the 

eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in 

vivo, and to be transcriptionally distinct from the classically described GMP population. The 

CD11b+ Siglec-F+ IL5Rα− population expands in the bone marrow of Myb mutant mice, which 
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is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that 

the role of Siglec-F may be, at least in part, to regulate GMP viability.
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1 | INTRODUCTION

Myeloid differentiation begins from multipotential long-term and short-term hematopoeitic 

stem cells, progresses in a step-wise fashion to yield progenitor cells with increasingly 

limited developmental potential, and ends with the generation of terminally differentiated 

cells with specialized function. The use of multicolor flow cytometry has led to the 

description of many distinct progenitors that have multi-, oligo-, and unipotent outputs. For 

example, granulocyte-macrophage progenitors (GMPs) are capable of eventually giving rise 

to mature neutrophilic and eosinophilic granulocytes and monocyte/macrophages, but have 

lost the potential to make lymphoid, megakaryocytic, and erythroid cells.1 More restricted 

progenitors include the common monocyte progenitor (cMoP),2 the eosinophil-lineage 

committed progenitor (EoP),3 and the basophil/mast cell progenitor (B/MCP).4,5 The 

isolation of each of these progenitors has begun to establish the developmental steps taken in 

the generation of myeloid cells, and revealed some of the key transcription factors that 

control these processes, nevertheless transitional intermediates and the surface markers that 

identify them during myelopoiesis are largely undefined.

The transcription factor c-Myb is a critical regulator of hematopoiesis. Indeed, Myb 
knockout mice die at E15.5 due to severe hematopoietic defects,6 and mice harboring 

hypomorphic Myb alleles (MybPlt4/Plt4 mice) have numerous hematopoietic alterations, 

including supraphysiological platelet production and defects in lymphoid specification.7,8 

Myb regulates many key genes in myeloid cells (neutrophil elastase, Spi1 (Pu.1), Cebpb, and 

Runx1)9–12 and MybPlt4/Plt4 mice have increased granulocyte/macrophage colony forming 

capacity,7 thus Myb regulates myeloid development.

Siglecs (sialic acid binding, immunoglobulin-like lectins) are a family of cell-surface 

glycoproteins expressed primarily by innate immune cells.13,14 Siglec-F and its human 

functional paralog Siglec-8, are key surface markers used for the identification of 

eosinophils.15,16 Both Siglec-F and Siglec-8 can be engaged with sialylated glycans (natural 

and synthetic) or antibodies to induce eosinophil death,17–20 although the extent to which 

Siglec-F-induced apoptosis controls tissue eosinophilia is dependent upon the experimental 

model used.21 The natural tissue ligands for Siglec-F include glycan derivatives from 

Muc5b, a mucin that is constitutively expressed on tracheal epithelial cells.18 Both SiglecF 
and Muc5b knockout mice have enhanced allergic eosinophilic inflammation following 

allergen challenge,18,22 suggesting that Muc5b glycans and Siglec-F constitute a negative 

feedback pathway that helps resolve eosinophilic inflammation. Siglec-F is also expressed 

on alveolar and peritoneal macrophages,23,24 mast cells and dendritic cells in the intestine,
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25,26 and intestinal epithelial (tuft and M) cells,27,28 although the function of Siglec-F in 

these contexts is unclear.

Here, we describe a myeloid progenitor population that expresses Siglec-F, but unlike EoPs, 

is IL-5-receptor alpha (IL5Rα) negative. We show these progenitors to have GMP-like 

developmental potential in vitro and in vivo, but to be transcriptionally distinct from 

canonical GMPs. Furthermore, we demonstrate a potential role for Siglec-F in the regulation 

of GMP viability.

2 | MATERIALS AND METHODS (BRIEF)

Full details are provided as supplementary methods. Summaries are provided below:

2.1 | Mouse strains

All procedures involving mice were approved by the WEHI Animal Ethics Committee or the 

Institutional Animal Care and Use Committee of Northwestern University. UBC-GFP 

mice29 were obtained from the Jackson Laboratory. MybPlt4 mice are described in Ref. 7. 

PHIL mice (C57BL/6) were provided by Drs. James and Nancy Lee.30 IL-5 transgenic 

(IL-5Tg) mice31 were backcrossed on to a C57BL/6 background.

2.2 | Flow cytometry

Bone marrow (BM), spleens, blood, and peritoneal cavity lavage cells were collected from 

8–12 week old mice. Red blood cells were removed by lysis with an ammonium chloride-

based buffer. Cells were stained with cocktails of antibodies recognizing CD11b, IL5Rα, 

Siglec-F, B220, CD3, Ly6C, Ly6G, ST2, Lin, cKit, Scal, FcγRII/III, CD34, and CD45. Cells 

were resuspended in PBS/2% FCS, 2 mM EDTA, 1 μg/ml propidium iodide (Sigma) to 

enable identification and exclusion of dead cells. Cells were analyzed on a BD LSR Fortessa 

X-20 flow cytometer (BD Biosciences).

Cell populations were defined using the following surface markers: Eosinophils (CD11b+ 

Siglec-F+ IL5RαIntSSCHi), CMP (Lin-cKit + Sca1-CD34 + FcγRII/IIILo), GMP (Lin-cKit + 

Sca1-CD34 + FcγRII/III+), and EoP (Lin-cKit + Sca1-CD34 + FcγRII/III + IL5Rα+).

Flow cytometric analyses were performed with FlowJo V10 software (FlowJo). Statistical 

tests and graphs were generated with Prism (GraphPad Software).

2.3 | Cytocentrifuge preparations

Sorted cells were cytocentrifuged onto glass slides, air dried, fixed with 100% methanol, and 

stained with May Grünwald’s stain (Merck) and 5% Giemsa in pH 6.8 buffered water 

(Merck) according to manufacturer’s instructions.

2.4 | Colony forming assays

Cells were sorted from the BM of C57BL/6 mice. Colony assays were performed as 

described in Ref. 32 and scored by viewing on a Nikon Optiphot-2 light microscope.
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2.5 | In vivo developmental potential assays

BM was flushed from 13 week old UBC-GFP mice in PBS/2% FCS, overlaid onto 60% 

Percoll, and centrifuged at 400 × g for 25 min. Cells at the interface were collected and 

stained for IL5Rα, Siglec-F, CD11b, and CD34 expression. CD11b+ Siglec-F+ IL5Rα− 

cells were sorted, washed with ice-cold PBS and resuspended in ice-cold PBS.

Recipient Ly5.1 mice were irradiated (550 rad) 24 h prior to transplantation. Sorted cells (25 

μL) were injected under the capsule of the sinus of the spleen. A mock recipient mouse was 

injected with 25 μl PBS. Spleens were collected from recipient mice 1 and 3 d after surgery 

and prepared for flow cytometry.

2.6 | In vivo Siglec-F ligation

Mice (8–12 week old) were injected with 20 μg anti-Siglec-F 9C7 antibody (a gift from Dr. 

James Paulson, The Scripps Research Institute) or rat IgG2b isotype control antibody 

(LTF-2, Tonbo Biosciences), i.p, every second day, on 4 occasions. BM was collected 24 h 

after the last injection and prepared for flow cytometry.

2.7 | RNA-sequencing

Populations were sorted from the BM of 6–10 week old C57BL/6 and 6 week old 

MybPlt4/Plt4 mice. Total RNA was isolated using the RNAeasy Micro Kit (Qiagen). Overall, 

130–200 ng total RNA per sample was submitted to the Australian Genome Research 

Facility for high throughput mRNA-sequencing. Libraries (mRNA) were synthesized using 

Illumina’s TruSeq Stranded mRNA protocol, and 100 bp reads generated with an Illumina 

HiSeq 2500 (Illumina). Two to five independent RNA samples per cell type were sequenced. 

Bioinformatic analyses are detailed in supplementary methods.

3 | RESULTS AND DISCUSSION

3.1 | A Siglec-F+ IL5Rα− population is present in the BM of wildtype mice

Siglec-F is a signature surface protein found on eosinophils that is used in many laboratories 

to identify these cells. We have identified a population of cells that is Siglec-F+ but is 

IL5Rα− and CD11b+ (Fig. 1A). These cells make up 0.56 ± 0.09% (mean ± SEM) of viable 

cells in the BM, with very few cells falling in this gate in the peripheral blood (BI), spleen 

(Spl), or peritoneal cavity (PerC) (0.02 ± 0.001%, 0.02 ± 0.007%, and 0.04 ± 0.001%, 

respectively) (Fig. 1A and B). As eosinophils are typically IL5Rα+ and are known to 

expand in response to IL-5, we sought to characterize this Siglec-F+ IL5Rα− population 

further. The Siglec-F+ IL5Rα− population has distinct FSC properties, being larger than 

lymphocytes, eosinophils, or neutrophils (Supplementary Fig. 1A and B), and side scatter 

(SSC) properties that are similar to neutrophils, that is having lower SSC than eosinophils 

and higher SSC than lymphocytes (Supplementary Fig. 1A and C). Overall, 78.5 ± 1.6% of 

the cells express CD34, and the cells are cKitInt, ST2−, FcγRII/III+ (Fig. 1C). 

Morphologically, these cells have nuclei that in cytocentrifuge preparations appear ellipsoid 

or monocytoid, with occasional cells exhibiting nuclear segmentation, indicating they are in 

the myeloid lineage, which is consistent with the CD11b staining (Fig. 1D). Upon May 
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Grünwald Giemsa staining, they have a moderate amount of basophilic (purple/blue) 

cytoplasm and morphologically resemble GMPs.

3.2 | The Siglec-F+ IL5Rα− population is present in PHIL mice and is not expanded in 
IL-5Tg mice

Siglec-F+ IL5Rα− cells do not have scatter or morphological characteristics of eosinophils, 

however, they do express the eosinophil marker Siglec-F. We therefore formally tested 

whether Siglec-F+ IL5Rα− cells fall within the eosinophil lineage. PHIL mice are devoid of 

eosinophils and their precursors (EoPs) due to transgenic expression of Diphtheria Toxin A 

from the Eosinophil Peroxidase promoter, which becomes transcriptionally active in EoPs.30 

PHIL mice retained the Siglec-F+ IL5Rα− cells, and, similar to wildtype mice, there were 

approximately 10-fold more Siglec-F+ IL5Rα− cells in the BM than in any of the peripheral 

organs examined (Fig. 2A and B). Siglec-F+ IL5Rα− cells are therefore not EoPs, nor are 

they derived from an Epx-expressing progenitor.

IL-5 is a potent stimulator of eosinophil development, and IL-5Tg mice have marked 

eosinophilia and expansion of EoPs31 (Fig. 2C and D). Consistent with their lack of IL5Rα 
expression, Siglec-F+ IL5Rα− cells were not significantly expanded in IL-5Tg mice (Fig. 

2C and D). Together these data suggest that it is unlikely that Siglec-F+ IL5Rα− cells lie 

downstream of an IL-5-responsive precursor; rather they are likely to lie upstream of an EoP 

or are of a lineage unrelated to eosinophils.

3.3 | The Siglec-F+ IL5Rα− population has predominantly neutrophilic developmental 
potential in vitro and in vivo

Given the morphological similarity of the Siglec-F+ IL5Rα− cells to GMPs, and their 

surface expression of cKit, we assessed whether sorted CD11b+ Siglec-F+ IL5Rα− cells had 

proliferative potential.

We tested the colony-forming potential of Siglec-F+ IL5Rα− cells in semi-solid agar 

cultures with a cocktail of EPO, stem cell factor, and IL-3, which facilitates the development 

of erythroid, granulocyte, eosinophil, macrophage, megakaryocyte, and blast colonies. 

Siglec-F+ IL5Rα− and GMPs both made granulocytic, macrophage, and granulocyte/

macrophage colonies (Fig. 3A), with the GMPs having a higher colony output than the 

Siglec-F+ IL5Rα− population. GMPs also generated a small number of blast and eosinophil 

colonies when plated at this density. The Siglec-F+ IL5Rα− population also had the 

potential to make eosinophil colonies when plated at a higher cell density (data not shown). 

Sorted EoPs (95% purity) made almost exclusively eosinophil colonies.

To examine their in vivo developmental potential, we sorted CD11b+ Siglec-F+ IL5Rα− 

cells from the BM of GFP+ mice and transplanted them into the spleens of irradiated Ly5.1 

(GFP negative) recipients. The immunophenotype and morphology of GFP+ cells in the 

spleen were analyzed by flow cytometry 1 and 3 days post-surgery (Fig. 3B). No GFP+ cells 

were detected in mice that were injected with PBS alone (mock). GFP+ cells recovered from 

the spleens of transplanted mice had upregulated surface IL5Rα by day 1, and by day 3 80% 

resembled neutrophils (IL5Rα+Ly6G+Ly6CIntSSCIntFSCInt, Fig. 3C). Together, these data 

demonstrate that CD11b+ Siglec-F+ IL5Rα− cells have GMP-like developmental potential 
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in vitro, and favor the production of granulocytes/neutrophils in vivo. The loss of surface 

Siglec-F on transplanted cells suggests that Siglec-F expression in GMPs is transient and 

subsequently suppressed upon differentiation.

3.4 | The Siglec-F+ IL5Rα− population is prominent in Myb mutant mice

Myb knockout mice die during early embryonic development due to severe hematopoietic 

defects.6 Hypomorphic Myb mutant mice (MybPlt4/Plt4) generated in our laboratory have 

increased granulocyte/macrophage colony forming capacity.7 As shown in Fig. 4A and B, 

MybPlt4/Plt4 mice also exhibited a striking increase in the percentage and numbers of CD11b 

+ Siglec-F+ IL5Rα− cells in the BM. Published ChIP analyses have shown the promoter of 

Siglec5 (encoding Siglec-F) to be occupied by Myb.12 We examined the surface expression 

of Siglec-F on GMPs from C57BL/6 and MybPlt4/Plt4 mice (Fig. 4C and D). GMPs have 

broad Siglec-F expression, which is elevated in Myb mutant cells. These data suggest that 

Myb negatively regulates Siglec-F expression, and provides a possible mechanism for the 

prominence of Siglec-F+ GMPs in MybPlt4/Plt4 mice.

3.5 | Siglec-F ligation regulates Siglec-F+ GMP viability and Siglec-F internalization

As engagement of Siglec-F with antibodies can induce modest degrees of eosinophil death 

in vitro, and a decrease in the number of eosinophils in vivo,33 we explored whether CD11b

+ Siglec-F+ IL5Rα− cells are affected by Siglec-F ligation. In vivo administration of the 

anti-Siglec-F antibody 9C7 caused loss of surface Siglec-F expression from CD11b+ cells in 

the BM, as measured by flow cytometry (Fig. 5A and B). The eosinophil population was 

restored by Siglec-F intracellular staining (demonstrating Siglec-F internalization), however, 

CD11b+ Siglec-F+ IL5Rα− cells were only partially recovered with this technique (Fig. 5A 

and B). The additional loss of CD11b+ Siglec-F+ IL5Rα− cells following anti-Siglec-F 

treatment could be explained by three mechanisms: (i) death of Siglec-F+ cells, (ii) shedding 

or downregulation of Siglec-F, and (iii) interference between 9C7 and the E50-2440 clone 

used for detection. Thus, while anti-Siglec-F treatment did not lead to a statistically 

significant decrease in eosinophils (as determined by intracellular staining with anti-Siglec-

F), it caused a reduction in CD11b+ Siglec-F+ IL5Rα− cells (p = 0.007).

In addition, we examined the effect of 9C7 on classically gated GMPs. 9C7 treatment 

reduced surface Siglec-F expression and increased internalization of Siglec-F in GMPs (Fig. 

5C). We found a small but statistically significant increase in dead Siglec-F+ GMPs 

following 9C7 treatment (Fig. 5D). Consistent with this finding, Siglec-F+ GMPs have 

higher levels of Annexin-V binding (in the absence of ligation), an event typically associated 

with early apoptosis (Fig. 5E). Together, these data suggest that Siglec-F ligation can at least 

partially regulate the viability of Siglec-F+ GMPs.

3.6 | The Siglec-F+ IL5Rα− population is transcriptionally distinct from both classical 
GMPs and EoPs

Our data suggest that Siglec-F+ IL5Rα− cells are a distinct subpopulation with myeloid 

potential. Using RNA-sequencing, we profiled gene expression in sorted populations of 

myeloid progenitors (CMP, GMP, EoP), Eos, and Siglec-F+ IL5Rα− cells. When we 

compared the transcriptional profile of each of these subsets using a multidimensional 
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scaling (MDS) plot, the Siglec-F+ IL5Rα− cells were distinct from each of the classical 

populations and exhibited a profile intermediate between GMPs and EoPs (Fig. 6A). 

Consistent with these analyses, clustering of the 100 most variable genes (across all samples 

shown in the MDS plot) also positioned the Siglec-F+ IL5Rα− population most closely to 

GMPs (Fig. 6B) with the detectable expression of a subset of early EoP/eosinophil genes, 

including Prg2 and Prg3, but lacking expression of Epx and eosinophil associated RNases.

As the Siglec-F+ IL5Rα− cells had GMP-like developmental potential, we examined the 

gene expression differences between this population and canonical GMPs. We found 120 

genes to be significantly upregulated in the Siglec-F+ IL5Rα− population (FDR < 0.05); 

with 230 genes that were downregulated in the Siglec-F+ IL5Rα− population, relative to 

GMPs (350 genes in total, Supplementary Table 1). This contrasted with the comparison 

between the Siglec-F+ IL5Rα− population and EoPs, where > 14-fold more genes were 

differentially expressed (DE); 3005 genes upregulated and 2143 downregulated 

(Supplementary Table 2). Therefore, transcriptionally, the Siglec-F+ IL5Rα− cells more 

closely resemble GMPs than EoPs.

Given the similarities in morphology, and transcriptional profiling between GMPs and the 

Siglec-F+ IL5Rα− population, we conducted gene ontology (GO) analyses on the 350 DE 

genes to better understand differences between the two populations.34,35 The most 

statistically significant GO terms associated with DE genes included 

‘immune_system_process’ (FDR q-value (q) = 1.21 × 10−54, 101 genes are marked in 

Supplementary Table 1) and ‘immune_response’ (q = 4.32 × 10−36). Highly significant was 

the term ‘regulation_of_cytokine_production’ (q = 4.3 × 10−23), with Csf1R, IL6R, C3 and 

Tlr5, and Tlr8 among the 38 DE genes captured by this category.

Having demonstrated Siglec-F+ IL5Rα− cells are expanded in the MybPlt4/Plt4 mice, we 

performed RNAseq on this population from MybPlt4/Plt4 mice and controls and identified 

813 DE genes between Siglec-F+ IL5Rα− populations from MybPlt4/Plt4 and C57BL/6 WT 

mice (Supplementary Table 3). Of the 416 genes more highly expressed in MybPlt4/Plt4 cells, 

90 were involved with ‘immune_system_process’ (q = 2.22 × 10−37) and 54 with 

‘biological_adhesion’ (q = 2.42 × 10−24). Twelve genes associated with integrin signaling, 

including seven integrins, were upregulated in MybPlt4/Plt4 cells, suggesting potentially 

altered binding, adhesion or migratory capabilities. We examined the DE lists for known 

Myb target genes (based on Myb ChIP data produced in the Snyder lab at Stanford: 

ENCODE data available online as ENCSR000ETR, and data published by the Gonda lab 

with a truncated Myb12) finding that 43% of genes upregulated in MybPlt4/Plt4 cells were 

known Myb ChIP targets, compared to 49% of downregulated genes, although the 

mechanisms underlying regulation of the population by Myb requires further study.

We analyzed the transcription factors36 that were differentially expressed between the 

Siglec-F+ IL5Rα− population and GMPs. Eight transcription factors were upregulated in the 

Siglec-F+ IL5Rα− population (Cebpe, Mxd1, Id2, Dach1, Pml, Bcl11a, E2f2, and Ets1) and 

16 downregulated in the Siglec-F+ IL5Rα− population compared to GMPs (including Irf5, 
Irf8, Nrg1, Klf4, and Ifi204). Expression of these factors, together with a suite of 
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transcriptional regulators known to be important for GMP specification are shown in Fig. 

6C.

We particularly noted the differential expression of the transcription factor Irf8 (higher in 

GMPs than the Siglec-F+ IL5Rα− population) (Fig. 6C). Olsson et al. recently described a 

large-scale single cell RNA-sequencing study performed on sorted GMPs and described Irf8 

and Gfi1 as negatively correlated, concluding that Irf8hi cells were monocytic precursors, 

and Irf8- (Gfi1hi) were specified granulocyte and bipotential precursors.37 Although this 

level of specification was not observed in our experiments, we did observe that there was a 

bias towards the formation of granulocytes by CD11b+ Siglec-F+ IL5Rα− cells in our in 

vitro colony assays compared to GMPs. The downregulation of Irf8 in the Siglec-F+ IL5Rα
− population was concomitant with downregulation of Klf4, Irf5, and Csf1r as would be 

predicted by the Olsson et al. study (Klf4 and Irf5 shown in Fig. 6C). Drissen et al.23 also 

recently performed single cell RNA-sequencing experiments reporting heterogeneity within 

myeloid progenitors. Specifically, Drissen et al. described a Gata1-positive GMP that was 

biased towards eosinophil and mast cell specification, and a Gata1-negative GMP biased 

towards neutrophil and monocyte specification. Our Siglec-F+ IL5Rα− population has a 

higher mean expression of Gata1 than GMPs but the expression difference is not statistically 

significant and the cells are not specified towards eosinophil generation (Fig. 6C).

In sum, we have described a GMP-like population that expresses Siglec-F, is 

transcriptionally distinct from GMPs and has predominantly neutrophilic granulocyte 

potential in cell production assays. Given the increase in Annexin-V staining within the 

Siglec-F+ GMP gate we propose that Siglec-F may function, at least in part, to regulate 

viability of this GMP subset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We acknowledge Keti Stoev, Merle Dayton, Kim Birchall, and Jessica Martin for sharing their technical expertise. 
We thank Dr. James Paulson at The Scripps Research Institute (La Jolla, CA, USA) for provision of the 9C7 anti-
Siglec-F mAb. This work was made possible through Victorian State Government Operational Infrastructure 
Support and Australian Government NHMRC IRIISS. This work was supported by Early Career Fellowships from 
the National Health and Medical Research Council of Australia (NHMRC) to J.E.B. (GNT0637403) and C.A.d.G. 
(GNT1035229), NHMRC project grant to D.J.H. (1048087), NHMRC program grant (1113577) and fellowship 
(1058344) to W.S.A., Commonwealth Serum Laboratories (CSL) funding to D.J.H., P01HL107151 from the 
National Heart, Lung, and Blood Institute to B.S.B. and AI072265 from the National Institute of Allergy and 
Infectious Diseases to B.S.B.

Abbreviations:

BI peripheral blood
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ChIP chromatin immunoprecipitation
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CMP common myeloid progenitor

cpm counts per million

DE differentially expressed

Eo eosinophil

EoP eosinophil-lineage committed progenitor

EPO erythropoietin

FDR false discovery rate

FSC forward scatter

GMP granulocyte-macrophage progenitor

GSEA gene set enrichment analysis

hi High

IL5Rα IL-5 receptor alpha (CD125)

IL-5Tg IL-5 transgenic

Int intermediate

lin lineage

lo low

MDS multidimensional scaling plot

PerC peritoneal cavity lavage fluid

PHIL eosinophil-deficient strain

Spl spleen

SSC side scatter
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FIGURE 1. Identification and characterization of Siglec-F+ IL5Rα− cells.
(A) Flow cytometry dot plots showing Siglec-F and IL5Rα expression in CD11b+ viable 

cells in C57BL/6 bone marrow (BM), blood (Bl), spleen, and peritoneal cavity lavage fluid 

(PerC). Eosinophils (Siglec-F+ IL5RαInt) and Siglec-F+ IL5Rα− populations are gated. The 

percentage of cells falling within each gate are shown. (B) Quantification of Siglec-F+ 

IL5RαInt (eosinophil) and CD11b+ Siglec-F+ IL5Rα− cells (as a percentage of viable cells) 

in the 4 tissues shown in (A). Note, contaminating eosinophils in the CD11b+ Siglec-F+ 

IL5Rα− gate have been excluded from quantification on the basis of high side scatter. Data 
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is presented as mean + SEM (n = 4 mice), with individual mouse data points shown. p-values 

determined by one way ANOVA (C). Light scatter and surface marker expression in the 

CD11b+ Siglec-F+ IL5Rα− population, GMPs and EoPs. Cells in the surface marker 

histograms for the Siglec-F+ IL5Rα− population have been pregated to exclude any 

contaminating eosinophils on the basis of high side scatter. Light colored histogram 

represents the fluorescence of unstained BM cells. Numbers indicate the average geometric 

mean fluorescence for each surface marker from 4 independent mice (D) Representative 

images of sorted and cytocentrifuged populations following May Grunwald Giemsa staining. 

Ten micrometer scale bar shown
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FIGURE 2. The Siglec-F+ IL5Rα− population is present in PHIL mice and is not expanded in 
IL-5Tg mice.
(A) Flow cytometry dot plots showing Siglec-F and IL5Rα expression in CD11b+ cells in 

bone marrow (BM), blood (BI), spleen and peritoneal cavity lavage fluid (PerC) from 

eosinophil-deficient PHIL mice. The Siglec-F+ IL5Rα− cell population is gated, and 

percentage of gated (CD11b+) cells shown. (B) Quantification of CD11b+ Siglec-F+ IL5Rα
− cells (as a percentage of viable white blood cells) in the tissues shown in (A). p = 0.001 as 

determined by one-way ANOVA. (C) Representative flow cytometry dot plots of Siglec-F 

and IL5Rα expression in CD11b+ cells isolated from the BM of C57BL/6 and IL-5Tg mice. 

The percentage of cells falling into the Siglec-F+ IL5RαInt (Eosinophil) and Siglec-F+ 

IL5Rα− gates (as a percentage of CD11b+ cells) are shown. (D) Quantification of the 

number of GMP, Siglec-F+ IL5Rα− cells, and eosinophils in BM of C57BL/6 and IL-5Tg 

mice. Data are presented as mean + SEM (N = 3 or 4). Individual mouse data points are 

shown. p-values were determined by an unpaired two-tailed Student’s t-test with Welch’s 

correction and have been corrected for multiple comparisons using the method of 

Bonferroni. N.S, not significant
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FIGURE 3. CD11b+ Siglec-F+ IL5Rα− cells predominantly develop into non-eosinophil 
granulocytes in vitro and in vivo.
(A) In vitro colony forming assay showing the percentage of each colony type formed when 

CD11b+ Siglec-F+ IL5Rα−, EoP and GMP populations are plated in soft agar with stem 

cell factor + IL3 + EPO. The total numbers of colonies formed by each cell type are 

indicated. G/M indicates mixed granulocyte/macrophage colonies. (B) Schematic 

representation of in vivo developmental potential assay (C) In vivo developmental potential 

assay. Top right panels show typical staining characteristics of CD11b+ cells in bone 

marrow. The positions of eosinophils (E), neutrophils (N) and the injected CD11b + Siglec-F
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+ IL5Rα− (S) population are shown on the Siglec-F/IL5Rα dot plot. Ly6C/Ly6G and 

FSC/SSC profiles of total CD11b+ cells are shown. The position of neutrophils (N) in terms 

of Ly6G and Ly6C expression is indicated. The Ly6C/Ly6G and FSC/SSC characteristics of 

gated CD11b+ Siglec-F+ IL5Rα− cells are also shown. Top left panel shows lack of GFP+ 

cells in a mock (PBS)-injected spleen, 3 days after surgery. Third row, the identification of 

GFP+ cells from the spleen 1 day post injection, and the surface marker expression and 

scatter characteristics of GFP+ cells. Bottom row, the identification of GFP+ cells from the 

spleen 3 days post injection, and the surface marker expression and scatter characteristics of 

GFP+ cells. The predicted positions of the starting population (S), eosinophils (E), and 

neutrophils (N), based on side-by-side staining of WT BM (top row), are shown

Bolden et al. Page 16

J Leukoc Biol. Author manuscript; available in PMC 2019 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. CD11b+ Siglec-F+ IL5Rα− cells increase in the bone marrow of Myb mutant mice.
(A) Siglec-F and IL5Rα expression in CD11b+ cells from the bone marrow of C57BL/6 and 

MybPlt4/Plt4 mutant mice, as determined by flow cytometry. (B) Quantification of the 

percentage (of viable cells) and numbers of CD11b+ Siglec-F+ IL5Rα− cells in C57BL/6 

and MybPlt4/Plt4 BM. (C) Siglec-F expression in GMPs from representative C57BL/6 and 

MybPlt4/Plt4 mice (D) Quantification of geometric mean fluorescence intensity (GMFI) of 

Siglec-F expression in GMPs from C57BL/6 and MybPlt4/Plt4 mice. p-values were 

determined by an unpaired, two-tailed Student’s t-test with Welch’s correction
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FIGURE 5. In vivo Siglec-F ligation with antibody affects Siglec-F+ GMP viability.
C57BL/6 mice were injected i.p. with anti-siglec-F (9C7) or isotype (control) antibodies. (A) 

Representative Siglec-F and IL5Rα expression in 9C7 and control antibody treated mice 

(pre-gated CD11b+), following intracellular isotype staining (i.e., surface Siglec-F 

expression, left panels) and intracellular Siglec-F staining (right panels). (B) Quantification 

of bone marrow CD11b+ Siglec-F+ IL5Rα− cells following 9C7 or isotype treatment and 

intracellular Siglec-F staining. (C) Siglec-F fluorescence intensity in GMPs from 9C7 and 

control treated mice following surface (Iso) and intracellular Siglec-F staining. (D) Induction 

of Siglec-F+ GMP cell death following 9C7 treatment. (E) Quantification of Annexin-V 

binding in untreated Siglec-F+ and Siglec-F− GMPs. p-values in (B), (D), and (E) were 

determined by an unpaired, two-tailed Student’s t-test with Welch’s correction, and further 

correction for multiple testing. p-values in (C) were determined by a one-way ANOVA with 

multiple testing correction using Sidak’s method
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FIGURE 6. Siglec-F+ IL5Rα− cells are transcriptionally distinct from classical GMPs.
(A) Multidimensional scaling plot of the RNA-seq profiles from common myeloid 

progenitor (CMP), granulocyte-macrophage progenitor (GMP), eosinophil-lineage restricted 

progenitor (EoP), eosinophil (Eo), and Siglec-F+ IL5Rα− populations based on the 500 

most variable genes between each pair of samples. (B) Heatmap and clustering of the top 

100 most variable genes across the cell types shown in (A). The heatmap is colored 

according to row scaled gene expression (log2 cpm). (C) Heatmap of transcription factor 

expression in Siglec-F+ IL5Rα− cells and GMPs. Factors are grouped according to 
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significance (FDR < 0.05, and not-significant n.s FDR > 0.05). The heatmap is color-coded 

by the average log2 counts per million
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