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Abstract

Ecological and conservation genetic studies often use noninvasive sampling, especially

with elusive or endangered species. Because microsatellites are generally short in length,

they can be amplified from low quality samples such as feces. Microsatellites are highly

polymorphic so few markers are enough for reliable individual identification, kinship determi-

nation, or population characterization. However, the genotyping process from feces is

expensive and time consuming. Given next-generation sequencing (NGS) and recent soft-

ware developments, automated microsatellite genotyping from NGS data may now be pos-

sible. These software packages infer the genotypes directly from sequence reads,

increasing throughput. Here we evaluate the performance of four software packages to

genotype microsatellite loci from Iberian wolf (Canis lupus) feces using NGS. We initially

combined 46 markers in a single multiplex reaction for the first time, of which 19 were

included in the final analyses. Megasat was the software that provided genotypes with fewer

errors. Coverage over 100X provided little additional information, but a relatively high num-

ber of PCR replicates were necessary to obtain a high quality genotype from highly unopti-

mized, multiplexed reactions (10 replicates for 18 of the 19 loci analyzed here). This could

be reduced through optimization. The use of new bioinformatic tools and next-generation

sequencing data to genotype these highly informative markers may increase throughput at

a reasonable cost and with a smaller amount of laboratory work. Thus, high throughput

sequencing approaches could facilitate the use of microsatellites with fecal DNA to address

ecological and conservation questions.

Introduction

Microsatellites are neutral, codominant, highly polymorphic, and abundant genetic markers in

eukaryotic genomes [1–3]. Microsatellites are motifs of one to six base pairs repeated in tan-

dem. High polymorphism in these loci yields high information content from only a few mark-

ers [4]. These properties have made microsatellites a widely used tool in very different research

areas, such as cancer diagnosis [5], human forensics [6], and conservation biology [7]. During

the last twenty years, they have also been a powerful and commonly applied tool in molecular

ecology for a variety of applications, including individual identification, kinship
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determination, and population genetics [1–3, 8, 9]. Furthermore, because microsatellite loci

are usually short in length, these PCR-based markers can be amplified from low quality DNA

samples (e.g. feces or hair) in noninvasive genetic studies [10] as well as for studies involving

ancient DNA or museum specimens [11–13].

Microsatellites are generally genotyped through electrophoresis, in which each targeted

marker is amplified by polymerase chain reaction (PCR) and then fragment length is deter-

mined by capillary or gel electrophoresis [3]. This method is easy to implement, but the num-

ber of samples and loci that can be tested in a single run is limited [4]. In addition, this

technology is becoming less common in labs, and more difficult to maintain where it remains.

An additional problem is that genotypes are difficult to compare across laboratories, or even

projects in the same laboratory, which impedes wider data utilization [4].

Next-generation DNA sequencing (NGS) has the potential to overcome some of these

drawbacks. The massive parallel sequencing ability considerably enhances throughput, as hun-

dreds to thousands of reads can be generated for many markers and samples simultaneously

[14]. NGS may also increase the accuracy of genotyping, because it enables direct access to the

nucleotide sequence of amplified microsatellites. Thus, alleles may be identified using the

nucleotide sequence and the length of the microsatellite [14]. The potential of NGS to make

microsatellite data more comparable across studies and laboratories would greatly enhance

their utility. Genotyping microsatellites with NGS would take advantage of their useful traits

such as high polymorphism, reduced ascertainment bias when markers are chosen because of

the polymorphism at a given population, and high information content [4], while minimizing

some of the problems associated with traditional electrophoresis typing such as lack of compa-

rability of results across studies and low throughput.

Manual genotyping of the great number of sequences generated in a single NGS run is seri-

ously time consuming. However, automatic genotyping may now be possible through bioin-

formatics pipelines. Several software packages have been specifically designed for genotyping

amplicons using NGS data: AmpliSAS [15], Megasat [16], MicNeSs [17], and CHIIMP [18].

These packages examine sequences and apply user-definable decision rules to extract potential

alleles while discarding amplification or sequencing artifacts (Table 1, for further details on

algorithms or software workflow, see original references). Most of the packages have been

tested in tissue samples only, although CHIIMP has been evaluated in fecal samples [18]. Non-

invasive genetic samples might be a challenge for automatic genotyping software packages as

their low DNA quantity and quality increases dropout and produces non-target amplification,

increasing genotyping error rates.

Here we evaluate the ability of several available software packages to genotype microsatellite

loci from NGS sequences generated from feces. We compared the performance and ease of use

of four software packages for automatic microsatellite genotyping for multiplex-amplified

microsatellite loci amplified from fecal DNA of wild Iberian gray wolves (Canis lupus). First,

we summarize the characteristics of the programs. Second, we evaluated the genotyping suc-

cess of these packages in terms of genotyping error rates. Third, we assessed the effect depth of

coverage has on the genotyping success and estimated the number of reads and replicates

needed to reach high confidence in the estimated genotypes.

Materials and methods

Materials and lab methods

We collected five apparently fresh Iberian gray wolf (Canis lupus) feces in the Cantabrian

Mountains of Asturias, northern Spain. The feces samples were collected without any interac-

tion with any animal. We put a small piece of each scat in a 50 ml falcon tube with 70%
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Table 1. Summary of program properties. Description of programs compared in this study, including an outline of the workflow, default parameters, important features,

and brief observations on the ease of use.

Software AmpliSAS Megasat MicNeSs CHIIMP

Operating system �Web server �Windows � Linux �Windows

�Mac OS� �Mac OS�� Linux

� Linux� Linux

GUI† Yes Yes No No

Programming

language

Perl Perl & R Python 2.7 R

Workflow 1. Demultiplexing reads into

amplicons based on primers

sequences.

1. Demultiplexing reads into locus-

specific files, based on primer and

flanking sequences.

1. Extraction of the microsatellite

with the largest repeat number

from all reads of all individuals.

1. Sample processing

classification of sequences

assigning attributes and querying

for potential PCR artifacts.

2. Clustering potential alleles and

artifacts are grouped together.

2. Scoring using sequence depth to

obtain genotypes.

2. Building observed distribution

of the repeat number for each

individual.

2. Genotype calling filtering and

genotyping only sequences that

match locus attributes.

3. Filtering separation of artifacts

from alleles.

3. Plotting histograms of sequence

length-frequency distributions for

manual verification.

3. Fitting by least squares an

equal mixture of two discretized

asymmetric Gaussians used for all

individuals.

3. Summary and reporting

summary of genotypes and

quality control tables and graphs.

Genotype calling

(algorithm)

All identical reads added to the

coverage of the unique variant

(‘dominant’ sequence) and variant

freq. calculated (if two highly

sequenced variants and similar in

sequence, ‘subdominant’ seq.

considered). In clustering,

variants are aligned to each other

to find seq. errors, erroneous

variants (artefacts) are identified

and removed (filtering) and

coverages added to the true ones,

and a consensus sequence is

created (allele asignment). Cluster

only exact length/in frame can be

user-defined.

Based on depth ratios of as many as

four of the most common length

variants among amplification

products relative to the most

common length variant (A1).

Decision process considers the

relative size (> or < A1) and

difference in size of putative alleles

relative to A1. If the sum of the two

most common sequence length

variants exceeds the min. read

depth (default = 50), Megasat will

score the genotypes. Decision

variables are user-definable.

Recommended to review genotype

calls (depth vs size histogram plots).

Assigning a pair of asymmetric

Gaussians from repeat number

(that represent alleles, each

characterized by four parameters:

a mode, substitutions(s), a right

and left variance) to each

individual. Homozygotes have

two identical distributions, while

for heterozygotes distributions

differ, even unequal number of

substitutions are considered as

different alleles.

Sequences that passes filters

(locus’ primer, repeat motif and

length range) and exceed min.

read depth will be genotyped.

Only sequences accounting for at

least a min. of the filtered reads

are considered (5%). Potential

stutters, artifacts or ambiguous

sequences are excluded. After

filters, if only one sequence

remains, then sample labelled as

homozygous; if two or more,

heterozygous. Several quality

control tables and graphs are

generated for manually review.

Default

parameters‡

� Substitution error rate (%)

(clustering) = 1 (Illumina)

� No. mismatches (error tolerance

to forward and reverse primers and

flanking regions) = 2

� No. substitutions = 1 �Min. read depth = 500

�Motif size = [2,5]

� Indel error rate (%) (clustering)

= 0.001 (Illumina)
�Min. no. repeats = 4

� No. threads (multiprocessing) = 1 �Min. no. repeats = 3

�Min. frequency respect to the

dominant seq. (%) (subdominant

seq.) (clustering) = 10–25

(Illumina)

�Min. read depth = 16

�Max. width of the distribution

(upper limit for standard

deviations) = 5

�Min. amplicon depth (no. reads

per amplicon) (filtering) = 100

�Min. read depth = 50 �Min. fraction retained of the

total no. filtered reads (%) = 5
�Max. asymmetry of the

distribution (ratio between right

and left standard deviation) = 2.5�Min. per-amplicon frequency

(%) (filtering) = 3

�Min. chimera length (filtering) =

10

�Max. no. alleles (filtering) = 10

(2, our study)

Previous

preprocessing

steps§

� Demultiplexing by sample � Demultiplexing by sample � Demultiplexing by sample and

locus

� Demultiplexing by sample

� AmpliMERGE � Format file conversion (fastq ->

fasta)� AmpliCLEAN � Adapter trimming (cutadapt)

(Continued)
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ethanol. We extracted DNA in an isolated, dedicated laboratory for low quality samples using

the QIAmp DNA stool kit (Qiagen) with a negative control. Each extraction and negative was

subject to six multiplex PCR reactions (i.e. technical replicates–each reaction was done six

times from the same biological sample) including primers to amplify 46 autosomal microsatel-

lites loci previously described in Canids [19–26] (S1 Table in S1 File). This was the first test of

these markers as a single multiplex reaction. Reactions contained 1x Phusion Multiplex mix

(Thermo Scientific), 0.8 mg/mL bovine serum albumin BSA, 0.05 μM of each primer, and 2 μL

of extract in 20 μL and were amplified in a touchdown reaction starting with 98˚C for 1 min,

then 10 touchdown cycles with 98˚C for 10 sec, 67˚C to 56˚C for 30 sec and 72˚C for 30 sec fol-

lowed by 20 more cycles with the annealing temperature constant at 56˚C, ending with a 10

min extension at 72˚C and 3 min at 95˚C to reduce the formation of primer chains. We

checked all products against size standards on agarose gels, and all reactions that yielded prod-

uct were bead cleaned and dual indexed in a second 12 μL PCR with 1x Kapa HiFi mix

Table 1. (Continued)

Software AmpliSAS Megasat MicNeSs CHIIMP

Input files

(format)§

� Primer file (TXT, CSV) � Sequence files (FASTA/FASTQ) � Sequence files (FASTA) � Sequence files (FASTA/FASTQ)

� Sample attributes (CSV)� Sequences files (FASTA/FASTQ

(R1 & R2 merged))

� Primer file & locus attributes

(CSV) � Locus attributes (CSV)

� known individuals (optional)

(CSV)

� Named alleles (optional)(CSV)

Output files

(format)

� Clustered & filtered sequences

(FASTA)�

� Summary of genotypes (TXT) � Summary of genotypes (CSV)¶ � Summary of genotypes (CSV)�

Processed files & samples (CSV)

� Histograms (PNG)

�Histograms (PDF) � Allele sequences (FASTA)Summary of genotypes (XLS)

� Alignments (FASTA)

� Alignments (PNG)

� Report (HTML)

URL http://evobiolab.biol.amu.edu.pl/

amplisat/

https://github.com/beiko-lab/

MEGASAT

https://bioinfo.mnhn.fr/abi/

public/micness/

https://github.com/

ShawHahnLab/chiimp

Reference 15 16 17 18

Available support

for questions/bug

reports/

suggestions

Yes, corresponding authors and

Google forum available

Yes, corresponding authors Not possible to contact with

corresponding authors

Yes, corresponding authors

Observations � Not intuitive output format. � GUI† does not work properly in

Windows 10�

� It does not work with Python 3 � No need to know R language to

run the program, an executable is

available after installing required

R packages.�

� AmpliCHECK did not work � Genotype is not given in the

standardize format (length)�� Only possible to change

minimum amplicon depth

through the command line, not in

the web server.

Last program version 0.3.1

(31-Jan-2020). Last

documentation version (10-Jul-

2019)

Last program version 1.0 (19-Apr-

2017). Last documentation version

(Dec-2015)

Last program version 1.1

(07-Aug-2015). Last

documentation version (11-Aug-

2015)� Last program version 1.0

(19-Nov-2018). Last

documentation version (24-Jun-

2018)

†GUI: Graphical user interface;

‡ Most important parameters recommended by authors, most of them are user-definable;

§Pre-processing steps and input files used in this study, following the guidelines of authors;

¶ Alleles reported as (mode, substitutions);

�Operating system not tested in this study.

https://doi.org/10.1371/journal.pone.0258906.t001
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(Sigma-Aldrich) and 0.42 μM of each primer (with tail including index and sequencing

primer) for 30 sec at 98˚C, 12 cycles of 98˚C for 10 sec, 60˚C for 20 sec and 72˚C for 45 sec,

and a final 3 min step at 95˚C. We checked and quantified products on agarose gels using Ima-

geLab v5.2.1 (BioRad), and pooled equimolar dilutions of all successful PCR reactions for

sequencing on a MiSeq (Illumina) with 300 cycles of paired end sequencing at the Johns Hop-

kins Genetic Resources Core Facility.

Bioinformatics tools

We independently genotyped microsatellites from the same underlying NGS data with four

software packages: AmpliSAS (v1.0) [15], Megasat (v1.0) [16], MicNeSs (v1.0) [17], and

CHIIMP (v0.2.2) [18]. CHIIMP was installed and run in Windows 10; MicNeSs, Megasat and

AmpliSAS were run in Linux (Ubuntu 18.04.1); and AmpliSAS was also run on the web server

(Table 1).

Some pre-processing steps were necessary before performing automatic genotyping

(Table 1). Following the AmpliSAT guidelines, we used AmpliMERGE and AmpliCLEAN

before AmpliSAS itself to merge paired-end reads and remove reads that did not contain any

primer sequences. For MicNeSs, demultiplexing by locus was performed using primer

sequences in the “separate by barcode” function in Geneious Prime v2019.1.3 (Biomatters,

Auckland, NZ). FASTQ to FASTA format file conversion was also needed for MicNeSs. For

CHIIMP, adapters were trimmed using cutadapt [27].

Before the genotyping process, we selected the best microsatellite loci (19 loci), mostly dinu-

cleotides, with alleles ranging in size from 56–172 bp, among all of those initially included for

sequencing (46 loci). We discarded microsatellite loci which failed in PCR amplification (i.e.

those that did not amplify or only amplified a non-target sequence) in most samples (more

than two thirds), loci with very low read depth of the target sequence (less than 16 reads per

PCR replicate) in most samples, and compound microsatellites. Compound microsatellites

were discarded because not all assessed programs could handle that kind of data—MicNeSs

considers only pure repeats (not compound or interrupted).

We used default settings as much as possible to perform genotyping (Table 1). The critical

parameter to standardize when comparing programs was the minimum read depth (number

of reads) required to call a genotype. Analyses were performed twice for each software: first

with the default minimum depth (AmpliSAS = 100 reads; Megasat = 50 reads; MicNeSs = 16

reads; CHIIMP = 500 reads), then with a minimum depth of 16 reads, the lowest default of any

of the programs, established by MicNeSs. We used this same, minimum number of reads (16)

to make results comparable among software packages. MicNeSs’ genotyping algorithm calcu-

lates a Gaussian distribution of the number of repeats that represents each allele, reporting the

allele as (mode, s); being mode the mode of the distribution (i.e. largest repeat number) and s
the number of substitutions in the repeat array [17] (Table 1). To allow comparison with other

software packages, we converted genotype results from MicNeSs to allele length (which is the

output of the other programs) by considering the number of repeats, the repeat motif and the

length of the flanking regions.

Genotyping error rates

Genotyping of microsatellite loci from fecal DNA is particularly prone to errors [10, 28, 29].

We considered as genotyping error any allelic difference between the genotype obtained from

the noninvasive sample using the genotyping software and a reference genotype [30]. Refer-

ence genotypes were obtained through consensus of replicates of loci individually scored by

the same person (IS) using the lengths graphs function in Geneious Prime (v2019.1.3) on the
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same NGS data. A second step in the genotyping process was to obtain a reference genotype

for all samples and loci. Reference genotypes from manual allele calling of all data were esti-

mated following the criteria: (1) allele must be present at least in 2 PCRs for heterozygotes and

3 PCRs for homozygotes, and (2) homozygotes must not have same second allele in more than

20% of PCRs (Supplementary material, S1 Appendix in S1 File). In just two cases the reference

consensus genotype was ambiguous and so were not considered for downstream analyses. We

considered allelic dropout (ADO) as the failure to amplify one allele in heterozygous individu-

als [31, 32] and false allele (FA) as an allele-like artifact that is generated by PCR [33]. Equa-

tions (2) and (4) from [31] were used to calculate proportions of ADO and FA, respectively.

We defined the following variables for each locus and each software. Proportion genotyped
was the number of genotypes estimated by a software pipeline (Ngenotypes) divided by the

total number of available samples and PCR replicates for the considered locus (excluding the

ambiguous genotypes in the reference, see above). Genotyping success was the number of geno-

types that coincided with the reference (Nsuccessful) divided by the total number of genotypes

inferred by the software per locus across all replicates and samples. Proportion ADO was the

number of heterozygote genotypes for which only one of the two alleles could be genotyped

(NADO) divided by the number of heterozygote genotypes in the reference. Proportion FA was

the number of genotypes including a false allele (NFA) divided by the total number of reference

genotypes.

Statistical analyses

A multidimensional scaling analysis (MDS) was carried out to visualize the similarity between

the genotypes generated by the different programs and the reference genotype. A symmetric

dissimilarity matrix was obtained from the comparison of consensus genotypes per locus and

sample generated by each software when using a minimum read depth of 16 for all programs.

We assigned a distance value of 0.5 to ADO and FA (one of the two alleles erroneous), while a

distance value of 0 to successful genotypes. Distance matrix included the mean distances values

across samples and locus per software (S2 Table in S1 File). Then we performed a two-dimen-

sional ratio MDS, which does not transform input dissimilarities, using the mds function from

the package smacof [34] in R version 3.5.2.

We assessed the effect of software and coverage on Proportion genotyped and Genotyping
success when using a minimum read depth of 16 with a generalized linear mixed model

(GLMM) with a binomial distribution and using the function glmer from the lme4 R package

[35]. Two models were established a priori with Proportion genotyped and Genotyping success
as dependent variables. Software, Locus and Mean read depth were included as fixed effects

while Sample was considered as a random factor. For this analysis, Proportion genotyped and

Genotyping success were calculated for each software, locus and sample, excluding the ambigu-

ous genotypes in the reference (see above). Weights argument were included in each model as

the number of trials used to generate each proportion. Software and Locus were factor variables

referring to the genotyping programs and the microsatellite loci. Mean read depth was calcu-

lated as the mean number of reads of the six PCR replicates per sample and locus (S3 Table in

S1 File). Mean read depth was centered at the mean and scaled by the standard deviation. The

significance of each variable was tested using a Chi-squared test with drop1 function in lme4,

which compares the likelihood of the full model including and excluding the variables of inter-

est. When significant differences were found, we also performed pairwise comparisons with

Tukey’s post hoc test among programs using emmeans package [36].

We wrote Python, Bash and R scripts (Supplementary material, S2 Appendix in S1 File) to

calculate the proportion of correct genotypes for the best performing software when varying
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the coverage for each PCR product and locus. We used a coverage of 6, 10, 20, 40, 80, 100, 150

and 200 reads. Simulations were run on a dataset with the best quality fecal sample using

eleven heterozygous loci with> 200 reads. First, we performed a random subsampling without

replacement of reads for each locus and PCR product. Second, those datasets were analyzed

using the best performing software. Finally, we evaluated the genotyping success in relation to

the number of reads. Simulations were performed with 100 simulation replicates for each

locus and PCR product.

We also calculated the number of PCR replicates needed to reach high confidence in a mul-

tilocus genotype for the best performing software taking into account the proportion of failed

amplifications. As commonly done in noninvasive studies, we considered that a successful

genotype must be replicated at least twice if heterozygote and at least three times if homozy-

gote [37]. We first calculated the average proportion of amplifications that resulted in success-

ful genotypes for homozygous and heterozygous loci when using the software with fewer

genotyping errors. We then used these proportions to calculate the probability of genotyping

success for a single locus after a varying number of replicates using the cumulative probability

function of a binomial distribution (probability of obtaining at least 2/3 correct genotypes for

a heterozygous/homozygous locus). Finally, we used this value to estimate the probability of

correctly genotyping at least 16, 17, 18 and 19 of 19 loci.

Results

Sequencing results

A total of 807,084 reads were obtained from the six amplification replicates of the five fecal

samples analyzed (mean ± se: 26903 ± 42567 reads per PCR replicate). There was high variance

in coverage per locus (from mean ± se: 1 ± 0 (locus 403) to 4154 ± 2165 reads (locus u213), S1a

Fig in S1 File). The best 19 autosomal microsatellite loci were selected for downstream analyses

(S1 Table and S1b Fig in S1 File).

Comparison of software performance: Genotyping error rates

Software pipelines differed in the proportion of genotypes obtained as output (Proportion gen-
otyped) and in the proportion of correct genotypes among them (Genotyping success) (Tables 2

and 3). Proportion genotyped increased when the minimum read depth was decreased to 16

reads in all programs (except for MicNeSs, for which 16 reads is the default minimum read

threshold). However, Genotyping success declined with this lower depth threshold. With a stan-

dardization of 16 reads, Proportion genotyped was generally high for all programs, while Geno-
typing success varied widely (Table 3). Megasat was the software with the highest proportion of

correct genotypes, although MicNeSs obtained a greater number of genotypes as output.

Table 2. Genotyping error rates among software packages with default settings. Default minimum read depth; AmpliSAS, 100 reads; Megasat, 50 reads; CHIIMP, 500

reads; MicNeSs, 16 reads. Proportion genotyped, the number of genotypes estimated by each software (Ngenotypes) divided by the total number of reference genotypes per

locus across all replicates and samples. Genotyping success, the number of genotypes that coincide with the consensus (Nsuccessful) divided by the total number of genotypes

estimated by the software per locus across all replicates and samples (Ngenotypes). Proportion ADO, the number of heterozygote genotypes for which only one of the two

alleles could be genotyped (NADO) divided by the number of heterozygote genotypes in the reference. Proportion FA, the number of genotypes including a false allele (NFA)

divided by the total number of reference genotypes. Values are shown as mean ± standard error per locus.

Software Ngenotypes Nsuccessful NADO NFA Proportion genotyped Genotyping success Proportion ADO Proportion FA

AmpliSAS 12 ± 1 6 ± 1 0 6 ± 1 0.40 ± 0.04 0.47 ± 0.09 0 0.53 ± 0.09

CHIIMP 5 ± 1 4 ± 1 0 2 ± 1 0.16 ± 0.02 0.69 ± 0.10 0.01 ± 0.01 0.28 ± 0.11

Megasat 15 ± 2 12 ± 2 2 ± 1 2 ± 1 0.50 ± 0.05 0.74 ± 0.08 0.11 ± 0.04 0.15 ± 0.07

MicNeSs 27 ±1 16 ± 2 3 ± 1 8 ± 2 0.91 ± 0.02 0.59 ± 0.06 0.19 ± 0.04 0.31 ± 0.07

https://doi.org/10.1371/journal.pone.0258906.t002
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Megasat had a slightly higher proportion of ADO compared to the other programs. AmpliSAS

and CHIIMP showed a very high proportion of FA, with these being present in half or more of

the genotypes (Table 3). The comparison of consensus genotypes of each software showed

Megasat results were closest to the reference (Fig 1), and that the errors in the genotypes gener-

ated from different software occurred from distinct source of bias, as each of them is distant

from the others in the plot.

A GLMM analysis revealed that Proportion genotyped was influenced by Software
(LRT = 72.36, p< 0.001, N = 371), Locus (LRT = 139.83, p< 0.001, N = 371) and Mean read
depth (LRT = 18.82; p< 0.001, N = 371). Genotyping success was also influenced by the Soft-
ware (LRT = 172.66, p< 0.001, N = 367) and Locus (LRT = 299.08, p< 0.001, N = 367), but

not by Mean read depth (LRT = 0.58, p = 0.448, N = 367). Post-hoc tests revealed significant

pairwise differences among all software packages for Genotyping success and for Proportion
genotyped, except between AmpliSAS and CHIIMP for Proportion genotyped (S4 Table in S1

File). Post-hoc tests also showed that, when using the minimum read depth of 16 reads, Mic-

NeSs was the software with the highest Proportion genotyped, but Megasat was the software

with the highest Genotyping success (S4 Table in S1 File). These results suggested that Megasat

offered the most consistent results with regard to the reference genotypes generated manually

and this program was chosen for subsequent analyses.

Effect of coverage and number of replicates on genotyping success

For Megasat, the most reliable software in our analyses, subsampling reads from the genotypes

with the largest amounts of data showed that more than about 100 reads per PCR led only to

small increases in Genotyping success (Fig 2). With 150 reads Genotyping success was greater

than 0.9 (Fig 2).

Average rates of genotyping success per PCR in Megasat were 0.46 and 0.66 for heterozy-

gotes and homozygotes, respectively, due to the high ADO rate (Table 3), which can only be

detected in heterozygotes. In order to obtain the three positive replicates required to confirm a

homozygous genotype or two for heterozygotes, at least seven PCR replicates were needed to

assess a homozygote, and eight for a heterozygote, with a probability of 0.95 (Fig 3A). There-

fore, it is more difficult to assess a correct heterozygous genotype than a homozygous one.

Taking locus dropout into account, we estimated that to obtain a correct genotype with a

probability of 0.95 in 18 of 19 homozygous loci in multiplex, we would need at least eight PCR

replicates (Fig 3B). For heterozygotes, we would need at least ten replicates (Fig 3C). This

number of replicates is panel-specific, and could be decreased if protocols and marker selec-

tion were optimized to reduce locus dropout.

Table 3. Genotyping error rates among software packages using a minimum read depth of 16. Proportion genotyped, the number of genotypes estimated by each soft-

ware (Ngenotypes) divided by the total number of reference genotypes per locus across all replicates and samples. Genotyping success, the number of genotypes that coincide

with the reference (Nsuccessful) divided by the total number of genotypes estimated by the software per locus across all replicates and samples (Ngenotypes). Proportion ADO,

the number of heterozygote genotypes for which only one of the two alleles could be genotyped (NADO) divided by the number of heterozygote genotypes in the reference.

Proportion FA, the number of genotypes including a false allele (NFA) divided by the total number of reference genotypes. Values are shown as mean ± standard error per

locus.

Software Ngenotypes Nsuccessful NADO NFA Proportion genotyped Genotyping success Proportion ADO Proportion FA

AmpliSAS 25 ± 1 9 ± 2 0 16 ± 2 0.84 ± 0.04 0.36 ± 0.06 0 0.64 ± 0.06

CHIIMP 25 ± 1 11 ± 2 1 ± 0 12 ± 2 0.84 ± 0.03 0.46 ± 0.07 0.07 ± 0.02 0.49 ± 0.06

Megasat 22 ± 1 16 ± 2 3 ± 1 2 ± 1 0.74 ± 0.04 0.72 ± 0.06 0.22 ± 0.05 0.12 ± 0.04

MicNeSs 27 ± 1 16 ± 2 3 ± 1 8 ± 2 0.91 ± 0.02 0.59 ± 0.06 0.19 ± 0.04 0.31 ± 0.07

https://doi.org/10.1371/journal.pone.0258906.t003
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Discussion

In our evaluation of four different software packages to genotype microsatellites using NGS

sequence data, we found differences in performance in terms of proportion of genotypes

obtained (Proportion genotyped) as well as proportion of correct genotypes (Genotyping suc-
cess). These differences might be due to differences in software design, algorithms and/or fil-

ters. While Megasat, MicNeSs and CHIIMP were especially designed for detecting and

genotyping microsatellites, AmpliSAS was designed to genotype MHC markers. As MHC

markers are generally polygenic in vertebrates [38, 39], AmpliSAS might be biased to call a

higher number of heterozygotes, yielding a very low rate of dropout, but a very high rate of

false alleles. All packages called substantially higher rates of false alleles than have been

reported using traditional microsatellite genotyping of feces via gel electrophoresis [28, 32, 40].

Fig 1. Multidimensional Scaling (MDS) of genotyping programs. Axes show distance values of distance matrix. Distance matrix was obtained from the comparison of

consensus genotypes of each software and establishing minimum read depth of 16 (S2 Table in S1 File). The closer two programs are, the more similar their results are.

Model statistics: two-dimensions ratio MDS using majorization, stress-1 value (normalized): 0.061, number of iterations: 17. Reference indicates consensus genotypes used

as reference for comparison.

https://doi.org/10.1371/journal.pone.0258906.g001
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It is not clear if this is an artifact of the sequencing or of the downstream analyses, and should

be further explored in future studies.

We attempted to type a large number of markers, but less than half of them were included

in the final panel. Locus selection and sample quality play a key role in genotyping success (see

also [41]). In this case we employed loci that our group had previously used for other studies

on wolves using gel electrophoresis (e.g. [13, 42, 43]). Not surprisingly, many loci that had pre-

viously worked with traditional methods failed in this project. It could be because they were

not compatible with the multiplex (the multiplex used in this study was very much larger than

we ever used for gel electrophoresis due to the limits imposed by few available fluorescent dyes

as compared to sequences), or that some loci sequenced better than others. Most of the loci

considered here were di-nucleotide repeat microsatellites. It is possible that other, perhaps lon-

ger, motifs will sequence better because of reduced strand slippage during PCR [14]. When

Fig 2. Relation between genotyping success and read depth per locus in Megasat. Proportion of correct genotypes using Megasat when varying the sequencing

coverage. With 150 readsGenotyping success was greater than 0.9 (horizontal line). Simulations were performed with 100 random draws of a given number of reads for

each locus and PCR replicate. The average of 100 random draws is represented; error bars indicate standard errors.

https://doi.org/10.1371/journal.pone.0258906.g002
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Fig 3. Relation between genotyping success and number of replicates using Megasat. Single locus (a): although the

probability of genotyping success is higher for homozygotes (0.66; dashed line) than for heterozygotes (0.46; solid line),

seven independent replicates are required to determine a homozygous genotype in a noninvasive sample, while eight

were for a heterozygote. Multiple loci (b, c): Probability of obtaining the correct genotype for multiple homozygous (b,

dashed lines) and heterozygous (c, solid lines) loci with different number of replicates. Considering a total of 19 loci,

PLOS ONE Genotyping microsatellites from high throughput sequences
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selecting loci for NGS it is important not only that they amplify in the target organism, and in

multiplex if that strategy is used, but also that they are small enough for the largest alleles to be

sequenced through. We sequenced on the Illumina MiSeq platform, so our limit was 300 bp.

Sample quality has an important impact on the rate of both allelic dropout and false alleles

[44]. In this study all samples were feces, which are generally low-quality samples. However, there

is still a lot of variation in quality across fecal samples. This variation could result from the age of

the feces when they were collected, weather, or environmental conditions [45–47]. The standard

method to overcome the higher rate of genotyping errors associated with the low quality of DNA

extracted from feces in the wild has been replications [28, 32]. In some genomic studies higher

coverage per locus is used to support the authenticity of a genotype. However, in studies such as

this, where it is PCR products and not genomic DNA that is being sequenced, increasing coverage

to very high levels should not be considered a replacement for PCR replications. Our results

showed that 100 reads per locus maximized information content from the PCR product (Fig 2).

Once a minimum coverage per locus is reached, our results emphasize the importance of

including multiple PCR replicates in the analyses, in a similar way to the traditional multi-tube

approach [32]. In our case, a minimum of 8 to 10 replicates would be required to ensure reli-

able genotyping of 18 out of 19 loci (Fig 3). If high reliability at all 19 loci was needed, 11 to 14

replicates could be needed (Fig 3). However, not all research questions have the same require-

ments, and the number of replicates for a given study could be planned taking into consider-

ation the goals of the study. While robust pedigree reconstructions will require accurate

multilocus genotypes, studies about population structure that depend on allele frequencies

may need many fewer replicates. The number of replicates required will also depend on the

specific panel of loci, target organism, sample type, and level of optimization. Panels can be

optimized to lower locus dropout, which would reduce the number of replicates necessary to

obtain a genotype. This was the first test of this multiplex reaction, so the large number of rep-

licates necessary for high confidence genotypes could likely be reduced with optimization.

In our analyses, Megasat was the software with the best performance. We tested both the

command line and Graphical User Interface (GUI) for Windows versions. We had substantial

trouble with the GUI, and chose to do all analyses using the command line. This could be an

obstacle to some users, but the command line version is simple, and no advanced program-

ming skills are required to run the program, although a basic knowledge of UNIX commands

is. Of the four programs, only AmpliSAS had an operational and online GUI (Table 1),

although occasionally the web server had issues refreshing the dataset or some user-defined

parameters. Until GUIs are fully implemented in next versions of these programs, we recom-

mend running them through the command line. For technical issues, besides the support pro-

vided by the authors, it would be very useful to include a troubleshooting section in the

documentations of the programs and a forum for discussion between authors and users in

order to promote new versions of the programs with updated documentations and an active

support community. AmpliSAS is the only program that has a forum while CHIIMP is the

only software which continues releasing new versions with updated documentation.

Conclusions

Since the advent of high throughput sequencing technologies, a debate has arisen among con-

servation geneticists about the use of single nucleotide polymorphisms (SNPs) instead of micro-

satellites. However, the high information content of microsatellites and their applicability in less

probabilities were calculated to obtain a correct genotype for at least 16 (squares), 17 (circles), 18 (triangles) and 19

(diamonds) of the 19 loci. Horizontal line marks probability of 0.95.

https://doi.org/10.1371/journal.pone.0258906.g003
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known systems (where polymorphic loci are not known in advance) make microsatellites useful

markers to address a wide range of ecological questions [4]. The primary threat to the long-

term utility of these loci is the clearly dated nature of the equipment on which they are generally

genotyped, and the lack of comparability between genotypes generated in different studies [48].

The sequencing of these loci on high throughput platforms appears to cure both of these ills. In

order to apply this new technology to these markers, protocols for each step of the process from

the field to the genotype need to be re-evaluated and made compatible. The number of

sequences that come out of NGS sequencers is far beyond what can be visually inspected, as tra-

ditional microsatellite genotypes were. In our tests of how to best genotype this data, we find

that a relatively low coverage of a reasonable number of replicates can yield automated, high

confidence genotypes from fecal DNA. Given the capacity of NGS machines, and automated

genotyping, the necessary level of replications should be feasible and should facilitate the higher

throughput analysis of feces from wildlife for ecological and conservation studies.
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