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With the rapid development of high-speed sequencing technologies and the

implementation of many whole genome sequencing project, research in the genomics

is advancing from genome sequencing to genome synthesis. Synthetic biology

technologies such as DNA-based molecular assemblies, genome editing technology,

directional evolution technology and DNA storage technology, and other cutting-edge

technologies emerge in succession. Especially the rapid growth and development

of DNA assembly technology may greatly push forward the success of artificial life.

Meanwhile, DNA assembly technology needs a large number of target sequences of

known information as data support. Non-coding DNA (ncDNA) sequences occupy most

of the organism genomes, thus accurate recognizing of them is necessary. Although

experimental methods have been proposed to detect ncDNA sequences, they are

expensive for performing genome wide detections. Thus, it is necessary to develop

machine-learning methods for predicting non-coding DNA sequences. In this study, we

collected the ncDNA benchmark dataset of Saccharomyces cerevisiae and reported a

support vector machine-based predictor, called Sc-ncDNAPred, for predicting ncDNA

sequences. The optimal feature extraction strategy was selected from a group included

mononucleotide, dimer, trimer, tetramer, pentamer, and hexamer, using support vector

machine learning method. Sc-ncDNAPred achieved an overall accuracy of 0.98. For the

convenience of users, an online web-server has been built at: http://server.malab.cn/Sc_

ncDNAPred/index.jsp.

Keywords: non-coding DNA, DNA sequence, feature representation, genome synthesis, support vector machine

INTRODUCTION

After the implementation of many whole genome sequencing projects, more and more researches
showed that non-coding DNA (ncDNA) is amajor component of the biological genome. Numerous
studies (Vogel, 1964; Thomas, 1971; Eddy, 2012; Puente et al., 2015; Liu et al., 2017a; Yao et al.,
2018) have shown that the complexity of organisms is related to the length of non-coding regions,
which are specially transcribed in physiological and disease states. Although the function of most
ncDNAs is still unknown(Khurana et al., 2016), some studies (Horn et al., 2013; Huang et al., 2013;
Vinagre et al., 2013; Puente et al., 2015; Hu et al., 2017, 2018; Rheinbay et al., 2017; Liao et al.,
2018; Zhang W. et al., 2018) have shown that most cancer-related gene mutations are located in
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ncDNA regions. How ncDNAs specifically affect tumor
formation is also an urgent problem to be solved. In addition,
ncDNAs in the genome play an important role in gene
expressing, regulatory, and inheritance (Khurana et al., 2016).

Especially, with the rapid growth and development of
synthetic biology, research in the genomics is advancing from
genome sequencing to genome synthesis (Erlich and Zielinski,
2017; Jain et al., 2018; Liu B. et al., 2018). In recent years,
various DNA assembly technologies (Ni et al., 2017; Wu et al.,
2017; Xie et al., 2017; Zhang et al., 2017b) have been developed
according to the principles of atypical enzyme cut connection
(Engler et al., 2009; Sleight et al., 2010), single strand annealing
and splicing (Gibson et al., 2009; Li and Elledge, 2012) and
PCR (Warrens et al., 1997), which provide more rapid technical
support for synthetic biology. In the following years, people
are committed to improving the efficiency of large scale DNA
assembly technologies. With the rapid development of the
computer network and the popularity of the Internet, the number
of digital information, such as network data, audio data, and
video data, is increasing rapidly. It is urgent to establish a
new system which has more efficiency than the existing storage
system. DNA storage technology (Baum, 1995; Davis, 1996; Carr
and Church, 2009) can meet the requirements above. In a new
study (Shipman et al., 2017), the researchers introduced amethod
that encode images and video images into the genome of the
Escherichia coli and read the corresponding images and videos
from the genome of living bacterial cells. All the above studies
require a large amount of DNA data.

As a complex type of genetic information, DNA sequences
have specific characteristics not only in the coding sequence
(cDNA) but also in the ncDNA sequences. Currently, the
identification of cDNAs and ncDNAs relies mainly on
experimental methods. However, traditional experimental
methods are time-consuming and laborious, and the amount
of genomic data is large and the sequence types are complex.
In this context, there is an urgent need to establish accurate
and efficient prediction methods to mine the information and
knowledge of ncDNAs and cDNAs. Computational methods,
which achieve a complementary effect, indeed effectively
improved the recognition accuracy (Zhou et al., 2016).

In this study, a SVM-based computational method was first
established to recognize the ncDNA sequences in Saccharomyces
cerevisiae (S. cerevisiae). Totally several types of features,
such as mononucleotide composition (MNC), dimer nucleotide
composition (DNC), trimer nucleotide composition (TNC),
tetramer nucleotide composition (TrNC), pentamer nucleotide
composition (PNC), and hexamer nucleotide composition
(HNC) were extracted. The optimal feature extraction strategy
was selected using SVMmachine learningmethod. The workflow
of constructing the Sc-ncDNAPred model is shown in Figure 1.

METHODS

Benchmark Dataset
In this study, the benchmark dataset was derived from the
Ensembl genome database project (Hubbard et al., 2002), which
is one of several well-known genome browsers for the retrieval of

genomic information. Experimentally validated cDNA sequences
of S. cerevisiaewere extracted from their database, which contains
6713 samples. Intercepting the ncDNAs of the S. cerevisiae based
on the initial marker information of the coding region provided
by the original genomic data. By doing so, we obtained 6410
ncDNA samples. To get rid of redundancy, the CD-HIT (Li
and Godzik, 2006) was adopted to remove those sequences that
had ≥ 75% sequence identity. Finally, we obtained 6030 and
6251 samples in ncDNAs and cDNAs, respectively. Thus, the
benchmark dataset can be formulated as

S = S+ ∪ S− (1)

where S+ contained 6030 ncDNA samples, S−contained 6251
cDNA samples and the symbol ∪ means the ‘union’ in the set
theory.

The length distribution of ncDNA samples was shown in
Figure 2. According to the graph, the length distribution of
ncDNA is mainly between 100 and 800.

Feature Vector Construction
A sample can be simplified by a convenience form as:

P = R1R2R3R4 . . . RL−1RL (2)

where Ri (i= 1,2,3 . . . L) represents the nucleotide at i-th position
in one sequence.

K-mer Composition
K-mer nucleotide composition has been applied in many fields
of bioinformatics (Liu et al., 2015b,c; Kim et al., 2017; Matias
Rodrigues et al., 2017; Orenstein et al., 2017; Liu, 2018; Liu X.
et al., 2018; Rangavittal et al., 2018). MNC equate to k = 1, DNC
equate to k= 2, TNC equate to k= 3, TrNC equate to k= 4, PNC
equate to k= 5, HNC equate to k= 6. The occurrence frequency
of k−mer(i)can be represented as:

f ki = f (k−mer(i)) =
nki

L− k+ 1

(i = 1, 2, ..., 4k; k = 1, 2, 3, 4, 5, 6) (3)

where nki denote the number of the i-th k-mer, L is the length
of the sample sequence. Thus, each DNA sample can be defined
feature vectors in different dimension of size 4k. The generalized
form of whole feature vectors X can be given by:

X = [f k1 , f
k
2 , · · · , f

k
i , · · · f

k
4k
]T (4)

Feature Ranking
Each sample sequence was represented by a large set of features,
which leads to the redundant information (Wei and Billings,
2007; Senawi et al., 2017). In order to distinguish the contribution
of different features to the prediction model. To analyze these
feature vectors, F-scoremethod (ChenW. et al., 2016; Jia and He,
2016; Tang et al., 2016, 2018; He and Jia, 2017) was adopted to
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FIGURE 1 | The workflow of Sc-ncDNAPred.

FIGURE 2 | The length distribution of ncDNA samples.

rank the feature, in this study. The F-score value of the i-th feature
is defined as:

F−score(i) =
(x̄

(+)
i − x̄i)

2
+ x̄

(−)
i − x̄i

2

1
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k=1

(x
(+)
k,i

− x̄
(+)
i )

2
+

1
n−−1

n−
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(x
(−)
k,i

− x̄
(−)
i )

2

(5)

wherex̄i, x̄
(+)
i and x̄

(−)
i are the average values of the i-th feature

in whole, ncDNA and cDNA datasets, respectively. n+represents
the number of ncDNA training samples, n−represents the

number of cDNA training samples, x
(+)
k,i

represents the i-th feature

of the k-th ncDNA sample andx
(−)
k,i

represents the i-th feature of
the k-th cDNA sample. Obviously, the feature with a greater score
value indicates that it has a better discrimination ability.
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Support Vector Machine
Support vector machine (SVM) (Hearst et al., 1998) is a
widely used two-class classification algorithm based on statistical
learning theory. It has been proven to be powerful in many
fields of pattern recognition and data classification (Byun and
Lee, 2002; Nasrabadi, 2007; Zhang N. et al., 2018;). More and
more applications also proved that SVM also has strong data
processing capabilities in the fields of bioinformatics (Xiong
et al., 2011; Jia et al., 2013, 2017; Cao et al., 2014; Liu et al.,
2014, 2017b; Wei et al., 2015; Chen X. X. et al., 2016; Jia and
He, 2016; Yang et al., 2016; Zou et al., 2016; Xiao et al., 2017;
Qiao et al., 2018; Su et al., 2018). A set of ncDNA samples
and cDNA samples were represented by the feature vectors. The
SVM classifies the data by mapping the input feature vectors
to a high-dimensional feature space using a kernel function. In
this study, the public LIBSVM package (Chang and Lin, 2011)
was implemented to train models for discriminating between
ncDNA sequences and cDNA sequences. Here, the radial basis

function (RBF) K(Si, Sj) = exp(−γ

∥

∥Si − Sj
∥

∥

2
)was set as the

TABLE 1 | The 10-fold cross-validation results by different feature methods on the

benchmark dataset.

Methods Sn (%) Sp (%) ACC (%) MCC

MNC 80.56 87.02 83.85 0.678

DNC 92.64 92.62 92.64 0.853

TNC 96.62 97.22 96.93 0.939

TrNC 98.01 98.51 98.26 0.965

PNC 95.25 95.84 95.56 0.911

HNC 90.71 92.25 91.49 0.830

All Features 95.99 96.08 96.03 0.921

The experiments have been executed 5 times and the results were the mean values.

FIGURE 3 | The ROC curves to assess the predictive performance based on

different feature extraction methods.

kernel function. The penalty parameter C and kernel parameter
were preliminarily optimized through a grid search strategy.

Performance Evaluation
K-fold cross-validation (Chou and Zhang, 1995; Kohavi, 1995;
Zhang et al., 2012a,b, 2015; Liu et al., 2015a; Chen X. et al.,
2016; Li et al., 2016; Luo et al., 2016; Chen et al., 2017b, 2018a,b;
Pan et al., 2017a; Xu et al., 2017; He et al., 2018) is one of the
widely used approach to examine the ability of prediction model,
and other approaches: independent dataset test and jackknife test
(Chou and Shen, 2008) are also used in many applications. To
reduce the computational cost, 10-fold cross validation was used
to examine each model for its effectiveness in identifying ncDNA
sequences. The training dataset were randomly divided into 10
subsets of approximately the same size. In each iteration, one
subset was chosen as the test set and the remaining 9 subsets were
used to train the model. For a complete cycle of a 10-fold cross-
validation, the process was repeated 10 times until each subset
was chosen as a test set. This 10-fold cross-validation procedure
was repeated five times, then the results were averaged.

To evaluate the prediction performance of the models, five
classic metrics were computed (Chou, 2001; Qiu et al., 2015,
2016; Liu et al., 2017; Pan et al., 2017b; Zhang et al., 2017a; Tang
et al., 2018; Yang et al., 2018), including sensitivity (Sn), specificity
(Sp), accuracy (Acc), Matthew correlation coefficient (MCC), and
the receiver operating characteristic (ROC). Thesemeasurements
were defined as:

Sn = 1−
N+
−

N+

Sp = 1−
N−
+

N−

Acc = 1−
N+
− + N−

+

N+ + N−

MCC =
1− (

N+
−

N+ +
N−
+

N− )
√

(1+
N−
+−N+

−

N+ )(1+
N+
−−N−

+

N− )

(6)

FIGURE 4 | Heap map to illustrate the F_score values of 256 different

tetramers to identify ncDNA and cDNA.
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TABLE 2 | Rules of composition of heat map.

AAAA AAAC AACA AACC ACAA ACAC ACCA ACCC CAAA CAAC CACA CACC CCAA CCAC CCCA CCCC

AAAG AAAT AACG AACT ACAG ACAT ACCG ACCT CAAG CAAT CACG CACT CCAG CCA CCCG CCCT

AAGA AAGC AATA AATC ACGA ACGC ACTA ACTC CAGA CAGC CATA CATC CCGA CCGC CCTA CCTC

AAGG AAGT AATG AATT ACGG ACGT ACTG ACTT CAGG CAG CATG CATT CCGG CCG CCTG CCTT

AGAA AGAC AGCA AGCC ATAA ATAC ATCA ATCC CGAA CGAC CGCA CGCC CTAA CTAC CTCA CTCC

AGAG AGAT AGCG AGCT ATAG ATAT ATCG ATCT CGAG CGAT CGCG CGCT CTAG CTAT CTCG CTCT

AGGA AGGC AGTA AGTC ATGA ATGC ATTA ATTC CGGA CGGC CGTA CGTC CTGA CTGC CTTA CTTC

AGGG AGGT AGTG AGTT ATGG ATGT ATTG ATTT CGGG CGGT CGTG CGTT CTGG CTGT CTTG CTTT

GAAA GAAC GACA GACC GCAA GCAC GCCA GCCC TAAA TAAC TACA TACC TCAA TCAC TCCA TCCC

GAAG GAAT GACG GACT GCAG GCAT GCCG GCCT TAAG TAAT TACG TACT TCAG TCAT TCCG TCCT

GAGA GAGC GATA GATC GCGA GCGC GCTA GCTC TAGA TAGC TATA TATC TCGA TCGC TCTA TCTC

GAGG GAGT GATG GATT GCGG GCGT GCTG GCTT TAGG TAGT TATG TATT TCGG TCGT TCTG TCTT

GGAA GGAC GGCA GGCC GTAA GTAC GTCA GTCC TGAA TGAC TGCA TGCC TTAA TTAC TTCA TTCC

GGAG GGAT GGCG GGCT GTAG GTAT GTCG GTCT TGAG TGAT TGCG TGCT TTAG TTAT TTCG TTCT

GGGA GGGC GGTA GGTC GTGA GTGC GTTA GTTC TGGA TGGC TGTA TGTC TTGA TTGC TTTA TTTC

GGGG GGGT GGTG GGTT GTGG GTGT GTTG GTTT TGGG TGGT TGTG TGTT TTGG TTGT TTTG TTTT

In these expressions, N+ and N− are the total number of
ncDNA and cDNA samples, respectively, while N+

− and N−
+ are

respectively the number of ncDNA samples incorrectly predicted
as cDNA samples, and the number of cDNA samples incorrectly
predicted as ncDNA samples.

RESULTS AND DISCUSSION

Prediction Results of Models
We used six types of effective feature extraction methods, such
as MNC, DNA, TNC, TrNC, PNC, and HNC, as input of SVM
to establish six models. The ability of each feature extraction
method to discriminate between ncDNA and cDNA samples was
compared by the 10-fold cross-validation (Table 1). As we can
see from Table 1, the model for a combination SVM and TrNC
yielded the best prediction performance, with the accuracy of
98.26%, the sensitivity of 98.01%, the specificity of 98.51%, and
the MCC of 0.965, respectively. Then, the following second best
prediction performance was yielded by TNC with the accuracy
of 96.93%, the sensitivity of 96.62%, the specificity of 97.22%,
and the MCC of 0.939, respectively. Besides, in the case of PNC,
the corresponding model still obtained a good prediction results,
which are 95.56% of accuracy, 95.25% of sensitivity, 95.84% of
specificity and 0.911 of MCC, respectively.

To further investigate the overall prediction performance of
each model, we showed the ROC curves and AUC values of
different models for the 10-fold cross-validation in Figure 3.
With the increase of k-mer value, the performance first increased
and then decreased. Comparison demonstrated that the TrNC
could produce the best results. Thus, the feature TrNC was
adopted as the final model for Sc-ncDNAPred.

To further optimize the model, we performedmultiple rounds
of experiments on TrNC to select the appropriate subset of all
256 features (see Additional file 1: Table S1 for full details);
however, the results showed no significant improvement in
the corresponding performance. The possible reason is that

FIGURE 5 | Key features of each k-mer composition selected by F-score

method. Red color denotes F-score value of each feature.

the selected feature cannot burden enough information for the
discrimination.

Compositional Analysis
To understand the 256 different tetramers bias in ncDNAs and
cDNAs, a heap map was provided in Figure 4. Each square in the
heat map corresponds to the F-score value of one tetramer (see
Table 2 for full details). Deep red in the heap map corresponds to
a strong recognition ability.

Heap map analysis revealed that tetramers include TATA,
TTTT, CAAG, CCAA, ATAT, TAAA, TGGA, TTTA, ATGG,
ATAA, AATA, and CTGG are with the F-score values ranking
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FIGURE 6 | A semi-screenshot of the top page of the Sc-ncDNAPred web-server at: http://server.malab.cn/Sc_ncDNAPred/index.jsp.

top twelve in all tetramers. In addition, we also analyzed
the other k-mer components based on the F-score method,
respectively. Among them, the two key nucleotides G and T
from MNC, the top five key dimer nucleotide composition
(TA, CG, GA, TT, and CA) from DNC, (TGG, ATA, CCA,
TAT, and TTT) from TNC, (TTTTT, ATATA, TAAAA, TATAT,
and TTTTA) from PNC, and (TTTTTT, ATTTTT, TTTTTA,
TTTTTC and CTTTTT) from HNC. These key features are
presented in a radar diagram (Figure 5). The study of these
key features can deepen the understanding of the overall
structure of the genome, which not only promotes the annotation
of the genome, but also promotes the study of biological
evolution.

Comparison With Other Classifiers
To the best of our knowledge, this is the first time that machine
learningmethod has been used to identify ncDNA in S. cerevisiae.
In order to further testify the superiority of proposed model
Sc-ncDNAPred, the predictive results of it were compared with
that of other powerful and widely used classifiers, i.e., k-Nearest
Neighbor (KNN), Naïve Bayes, Random Forest, and J48 Tree as
implemented in WEKA (Frank et al., 2004).The 10-fold cross
validation results of these four classifier for identifying ncDNA
in the same benchmark dataset were shown in Additional file
1: Table S2. The results showed that the four metrics as defined
in Eq. 6 of the proposed model Sc-ncDNAPred are all higher
than those of k-Nearest Neighbor (KNN), Naïve Bayes, Random
Forest, and J48 Tree.

Web-Server
Based on the benchmark dataset defined in Eq.1, a predictor
called Sc-ncDNAPred was established, where “Sc” stands for

S. cerevisiae and “Pred” stands for “Prediction.” For conveniences
of users’ community, a step-by-step guide about how to use the
web-server is provided as follows:

Step 1. Open the web-server at: http://server.malab.cn/Sc_
ncDNAPred/index.jsp, you will see the home page of Sc-
ncDNAPred, as shown in Figure 6. Click the “About” button
to see a brief introduction of the server.
Step 2. Paste the query DNA sequences into the input box. The
input sequence should be in FASTA format. For the example of
DNA sequences in FASTA format, click the “example” button
top above the input box.
Step 3. Click on the “Submit” button to start the prediction.
If the prediction result of a sequence is positive, its output is
“ncDNA.” Otherwise, its output is “cDNA.”
Step 4. Click on the “DataSet” button to download the
benchmark dataset.
Step 5. Click on the “Contact” button to contact us.

CONCLUSIONS

DNA assembly technology needs a large number of target
sequences of known information as data support. Non-coding
DNA (ncDNA) sequences occupymost of the organism genomes,
thus accurate recognizing of them is necessary. In this study,
an efficient computational model was proposed to identify
ncDNAs in S. cerevisiae. The tetramer nucleotide composition
(TrNC) was adopted to extract features. The F-score method
was used to analyze these feature vectors and find the key
features. The high accuracy indicated that Sc-ncDNAPred was
a powerful tool for predicting ncDNA. Finally, a free web-
server was developed based on the proposed model. We hope
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that the predictor will provide convenience to most of scholars.
Currently, annotations for the genomic sequences of most species
are lacking or unavailable. To analyze the ncDNA data of these
organisms, we can obtain data and methodological support in a
cross-species manner from annotated species. For example, we
could try to use the model built from S. cerevisiae dataset to
analyze other species of bacteria that have not been explored
in depth. In addition, we will also apply this computational
model for the prediction of potential disease related non-coding
DNA. In the future, we will apply this computational model
for the prediction of potential disease related non-coding RNA
(Chen and Huang, 2017; Chen et al., 2017a, 2018c,d; You et al.,
2017).
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