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Abstract 

Background: Exercise cardiovascular magnetic resonance (Ex‑CMR) is a promising stress imaging test for coronary 
artery disease (CAD). However, Ex‑CMR requires accelerated imaging techniques that result in significant aliasing 
artifacts. Our goal was to develop and evaluate a free‑breathing and electrocardiogram (ECG)‑free real‑time cine with 
deep learning (DL)‑based radial acceleration for Ex‑CMR.

Methods: A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial 
cine images. The network was trained using synthetic real‑time radial cine images simulated using breath‑hold, 
ECG‑gated segmented Cartesian k‑space data acquired at 3 T from 503 patients at rest. A prototype real‑time radial 
sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was 
evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 
patients with suspected CAD) were prospectively recruited for an Ex‑CMR to evaluate image quality. At rest (n = 22), 
standard breath‑hold ECG‑gated Cartesian segmented cine and free‑breathing ECG‑free real‑time radial cine images 
were acquired. During post‑exercise stress (n = 14), only real‑time radial cine images were acquired. Three readers 
evaluated residual artifact level in all collected images on a 4‑point Likert scale (1‑non‑diagnostic, 2‑severe, 3‑moder‑
ate, 4‑minimal).

Results: The DL model substantially suppressed artifacts in real‑time radial cine images acquired at rest and dur‑
ing post‑exercise stress. In real‑time images at rest, 89.4% of scores were moderate to minimal. The mean score was 
3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real‑time images dur‑
ing post‑exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. 
Comparison of left‑ventricular (LV) measures derived from standard and real‑time cine at rest showed differences in 
LV end‑diastolic volume (3.0 mL [− 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences 
in measures of LV end‑systolic volume (7.0 mL [− 1.3, 15.3], P < 0.001) and LV ejection fraction (− 5.0% [− 11.1, 1.0], 
P < 0.001) were significant. Total inline reconstruction time of real‑time radial images was 16.6 ms per frame.
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Background
Stress cardiac imaging is the first-line provocative test 
for the diagnosis and prognosis of coronary artery dis-
ease (CAD). During the past decade, stress cardiovas-
cular magnetic resonance (CMR) imaging has become 
widely used clinically, and is increasingly recognized as 
an important testing tool in CAD [1–5]. CMR has many 
well established benefits over other imaging modalities 
such as fewer limitations from body habitus and no ion-
izing radiation. CMR cine imaging is also the non-inva-
sive gold standard for assessment of left-ventricular (LV) 
anatomy and function and may be utilized for detection 
of stress-induced LV regional wall motion abnormalities 
[6, 7]. Nevertheless, current clinical CMR requires phar-
macological stimulation to induce stress, which does not 
elicit the same cardiovascular response as physical stress 
[8–10] and lacks important prognostic data [11, 12].

Coalescing technical innovations in CMR over the 
past 25  years are enabling CMR imaging during exer-
cise (Ex-CMR) as an alternative to pharmacologic 
stress, including the advent of highly accelerated real-
time cine sequences [13]. Ex-CMR was initially demon-
strated by Weiss et al. using isometric handgrip exercise 
[14]. Later studies using a CMR-compatible bicycle 
ergometer required breath-holding to evaluate car-
diac function during exercise stress [15, 16], which was 
problematic as breath-holds during exercise are difficult 
to perform. Lurz et al. later proposed a radial k-t SENSE 
sequence to assess biventricular volume and function 
during free-breathing continuous exercise [17]. How-
ever, an electrocardiogram (ECG) signal was needed 
to retrospectively reconstruct images, and ECG gating 
issues during maximal exercise intensity compromised 
image quality [18, 19]. Thus, a number of clinical stud-
ies since then have relied on the ungated real-time 
sequence proposed by La Gerche et al. using Cartesian 
k-space undersampling [20]. More recently, Haji-val-
izadeh et  al. reported a free-breathing ECG-free real-
time radial cine sequence with higher spatiotemporal 
resolution [21] using the golden-angle radial sparse 
parallel (GRASP) reconstruction framework [22]. Nev-
ertheless, without specialized techniques such as paral-
lel imaging and compressed sensing, highly accelerated 
cine images suffer from significant aliasing artifacts 
that can degrade LV assessment or render images non-
diagnostic. From a clinical perspective, a practical yet 
crucial limitation of these specialized strategies is that 

reconstruction times can be long and not truly real-
time. Alternatively, faster image reconstruction and 
de-aliasing of Cartesian [23–25] and radial [26–28] 
data is feasible with deep learning (DL). However, most 
methods have been evaluated on retrospectively under-
sampled or breath-hold images. Further, DL is yet to be 
evaluated for Ex-CMR, which is potentially more diffi-
cult since real-time images acquired during stress may 
have increased artifacts compared to rest.

In this study, we sought to develop an inline (i.e., on-
scanner) DL-based approach for seamless, low-latency 
image acquisition and reconstruction of real-time 
ECG-free radial cine with  an acceleration rate of  12 for 
Ex-CMR. In contrast to previous methods that use mag-
nitude images for learning, our model was trained using 
complex-valued images simulated from raw k-space data 
acquired at rest. This approach preserves phase infor-
mation in the images. We hypothesized that a DL model 
trained for image de-aliasing with phase-preserved, at-rest 
images is robust to the significant respiratory and cardiac 
motion that occurs during exercise stress. We evaluated 
and compared our method to GRASP on healthy subjects 
and patients with suspected CAD referred to Ex-CMR.

Methods
A DL radial acceleration with parallel reconstruction 
(DRAPR) model based on a three-dimensional U-Net 
was implemented to suppress streaking artifacts in 
highly accelerated real-time radial cine images. The 
model was trained using real-time radial images syn-
thesized from conventional ECG-gated segmented Car-
tesian k-space data from 503 patients at rest. An inline 
pipeline was then implemented to enable fast, parallel 
reconstruction during a prospective Ex-CMR study.

Population
The study protocol was approved by the Beth Israel Dea-
coness Medical Center Institutional Review Board (IRB). 
Two cohorts were included in this study. For the training 
cohort, the IRB waived written informed consent to ret-
rospectively analyze CMR data. For the prospective vali-
dation cohort, written informed consent was obtained 
from each participant. For both cohorts, patient informa-
tion was handled in compliance with the Health Insur-
ance Portability and Accountability Act.

Conclusions: Our proof‑of‑concept study demonstrated the feasibility of inline real‑time cine with DL‑based radial 
acceleration for Ex‑CMR.
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Deep learning model
Network architecture
The inputs and outputs of the U-Net were single-chan-
nel images of size 2n×n×nt , which consisted of concat-
enated real and imaginary parts of a complex-valued 
image of size n×n with nt time frames.  CH was defined 
as a sequence of convolution, batch normalization, drop-
out, and rectified linear activation unit layers with H out-
put channels. All convolutions had 3 × 3 × 3 kernel size 
with 1 × 1 × 1 stride, 1 × 1 × 1 padding, and included 
bias and dropout level set to 0.15. An encoding layer 
 EH was defined as two sequential  CH layers followed by 
a maximum pooling layer with 2 × 2 × 2 kernel size and 

2 × 2 × 2 stride. An encoder was defined as  EH-E2H-E4H, 
where the last encoding layer  E4H was without maxpool. 
A decoding layer  DH contained a residual connection, 
i.e., a transposed convolution with H output channels 
that was channel-concatenated with the output of  EH 
prior to maxpool, which was followed by two sequential 
 CH layers. All transposed convolutions had 2 × 2 × 2 ker-
nel size with 2 × 2 × 2 stride, zero padding, and included 
bias. The decoder was defined as  D2H-DH., and a final 
convolution  Cf with 1 output channel, 1 × 1 × 1 kernel 
size, 1 × 1 × 1 stride, zero padding, and bias. The U-Net 
architecture was defined as  EH-E2H-E4H-D2H-DH-Cf and is 
summarized in Fig. 1a.

Fig. 1 Deep learning model and generation of training data. A The deep learning model consists of a three‑dimensional U‑Net trained to filter out 
streaking artifacts from complex‑valued real‑time radial cine n× n images with nt time frames. The inputs and outputs to the U‑Net are the real and 
imaginary components concatenated along the spatial dimension, and the loss during training was the mean square error (MSE) between inputs 
and outputs. During inference, the generated real and imaginary parts with suppressed artifacts are re‑combined. B Synthetic real‑time image 
training pairs were generated from electrocardiogram (ECG)‑gated segmented Cartesian k‑space data acquired at rest in 503 patients. First, the 
k‑space data were reconstructed using the generalized autocalibrating partial parallel acquisition (GRAPPA) technique. Spatiotemporal interpolation 
followed by coil combination was then applied to the reconstructed images to simulate reference (i.e., ground‑truth) real‑time images. In addition, 
prior to coil combination, the interpolated images were also used to simulate undersampled real‑time radial cine images by applying an inverse 
and forward non‑uniform fast Fourier transform (NUFFT) with 12 radial lines. The coil‑combined images with streaking artifacts were used as inputs 
during training
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Training data
Cine data from 503 patients at rest (286 males, 
55.4 ± 15.8  years) who underwent clinical scans from 
October 2018 to May 2020 were retrospectively col-
lected. The study cohort consisted of patients with typical 
clinical indications for CMR, including myocardial scar 
assessment, non-ischemic cardiomyopathy, and valvular 
disease. Imaging in these patients was previously per-
formed on a 3 T CMR scanner (MAGNETOM Vida, Sie-
mens Healthineers, Erlangen, Germany). Short axis cine 
images covering the LV were collected using an ECG-
gated segmented sequence with the following param-
eters: balanced steady-state free-precession (bSSFP) 
readout, field-of-view (FOV) = 355 × 370  mm2, in-plane 
resolution = 1.7 × 1.4  mm2, slice thickness = 8  mm, 
echo time (TE)/repetition time (TR) = 1.41/3.12 ms, flip 
angle = 42°, GeneRalized Autocalibrating Partial Paral-
lel Imaging (GRAPPA) acceleration rate = 2, Cartesian 
sampling pattern, and retrospective ECG-triggering with 
25 cardiac phases calculated. To simulate the reference 
real-time images, the k-space data were first GRAPPA-
reconstructed. The images were then resampled to 
2 × 2   mm2  resolution and 37.7  ms temporal resolution. 
The ground-truth images for the U-Net were generated 
using sensitivity-encoding coil combination. Addition-
ally, a backward and forward non-uniform fast Fourier 
transform (NUFFT) was applied prior to coil combina-
tion, which consisted of a tiny golden angle (32.049°) 
radial trajectory with 12 lines per frame. These under-
sampled images were coil-combined and used as inputs 
to the U-Net (Fig. 1b). All steps to generate training data 
were implemented in MATLAB (MathWorks, Natick, 
Massachusetts, USA) and are summarized in Fig. 1b.

Training
Ground-truth and input images were center-cropped to 
144 × 144 and 20 frames. The starting frame was ran-
domly selected to achieve 20 consecutive frames if nt ≥ 
20, and  the dynamic series was padded  to 20 if nt< 20. 
During a single training iteration the model was opti-
mized using 16 slices from different patients (i.e., batch 
size), and for each patient a single slice was randomly 
selected from the complete short axis stack. Thus, each 
iteration consisted of ground-truth and input arrays 
of size 16 × 144 × 144 × 20, which were normalized by 
the  95th percentile magnitude pixel intensity within the 
48 × 48 central region across frames. The U-Net was 
implemented in PyTorch v1.9.0 (Facebook, Menlo Park, 
California, USA) and trained for 2,900 iterations. The 
initial learning rate was set at 0.001 and was reduced by 
5% every 100 iterations, using the mean square error loss 
function and Adam optimizer [29].

Inline implementation
The inline integration was implemented using the Sie-
mens Framework for Image Reconstruction (FIRE) pro-
totype and an external server, which was equipped with 
8 Tesla V100 graphics processing units (GPUs), each with 
32 GB memory and 5120 cores. All data were processed 
in the external server. FIRE provided a data stream-
ing interface between the Siemens Image Reconstruc-
tion Environment (ICE) in the scanner and the external 
server environment. Specifically, acquired k-space data 
was converted to the International Society for Magnetic 
Resonance in Medicine Raw Data (ISMRMRD) format 
[30] in real-time and sent to the FIRE server via the FIRE 
emitter. A secure shell protocol (SSH) tunnel between the 
vendor reconstruction computer and the external FIRE 
server provided securely encrypted data streaming. The 
DRAPR program was deployed in the external server 
inside a Docker container v20.10.7. Within the Docker, a 
PyTorch-based NUFFT reconstruction was implemented 
to enable fast inline reconstruction using a single 32 GB 
GPU by parallelizing the execution of multiple k-space 
trajectories. Radial k-space data were reconstructed by 
executing the torchkbnufft v1.2.0 module [31] with low 
point precession, 2-neighbor interpolation, and by treat-
ing frames and coils as batch and channel dimensions. 
The coil sensitivity was estimated from the time-aver-
aged NUFFT images using an adaptive coil combination 
method [32] implemented without smoothing and with 
a single iteration. Reconstructed images were returned 
using the FIRE receiver (Fig. 2).

Compressed sensing reconstruction
For comparison, the GRASP framework [22] was imple-
mented offline. The following parameters were used: 
temporal total variation regularization weight = 0.02 [21], 
line-search operations per iteration = 150 [22], and total 
number of iterations = 30. Image reconstruction was per-
formed in the external server using a single 32 GB GPU.

Evaluation
Imaging was prospectively performed on a 3  T CMR 
scanner (MAGNETOM Vida Siemens Healthineers) using 
an 18-channel cardiac coil and a 12-channel spine array.

Performance of the proposed approach was evalu-
ated by initially recruiting 8 healthy subjects (3 male, 
23 ± 2  years) in whom only rest images were collected 
to establish the performance of inline DL-accelerated 
radial imaging at rest. Subsequently, 14 subjects (5 male, 
44 ± 21  years) were recruited for an EX-CMR imaging 
protocol in which both rest and post-exercise images 
were collected. This cohort consisted of 6 healthy sub-
jects and 8 patients whose inclusion criteria were 
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symptoms of cardiac disease and a previous stress test for 
suspicion of CAD.

In all subjects, rest imaging consisted of standard 
breath-hold, ECG-gated Cartesian segmented cine 
images covering the LV in short axis view collected 
with the following imaging parameters: bSSFP readout, 
FOV = 360 × 360  mm2, matrix size = 208 × 208, resolu-
tion = 1.7 × 1.7  mm2, slice thickness = 8  mm, distance 
factor = 25%, TE/TR = 1.41/3.12  ms, flip angle = 35°, 
temporal resolution = 53  ms, Cartesian trajectory with 
GRAPPA acceleration rate = 2, and retrospective ECG-
triggering with 25 cardiac phases calculated. In addition, 
8 short axis slices of free-breathing ECG-free real-time 
radial cine images covering the LV were obtained using 
the DL-accelerated radial imaging prototype with the 
following parameters: bSSFP readout, FOV = 288 × 288 
 mm2, resolution = 2 × 2  mm2, slice thickness = 8 mm, dis-
tance factor = 35%, TE/TR = 1.5/3.1  ms, flip angle = 28°, 
radial lines per phase = 12, tiny golden angle, and tem-
poral resolution = 37.7 ms. In subjects who participated 
in the Ex-CMR protocol, real-time radial imaging was 
repeated after exercise using identical parameters. Exer-
cise on these subjects was done using a CMR-compatible 
cycle ergometer (Lode, Groningen, The Netherlands) 
outside of the scanner bore after rest imaging. Work rate 

started at 25  W, and was increased by 25  W every two 
minutes while maintaining a constant pedaling speed 
of 75  rpm. Immediately after reaching target heart rate 
([220-age] × 0.85) or exhaustion, subjects were returned 
to the scanner bore for post-exercise stress imaging. 
Exercise typically lasted 6–12 min, and there was a 4–8 s 
gap between the end of exercise and stress imaging 
(Fig. 3).

Image analysis
We used both quantitative assessment of LV function 
and structure and subjective image quality assessment to 
evaluate the performance of inline DL-accelerated radial 
real-time cine imaging.

Endocardial and epicardial LV myocardial borders from 
cine datasets acquired at rest were automatically delin-
eated using an open-source segmentation model [33] 
and were verified by another reader (M.A.M.). LV end-
diastolic and end-systolic volumes (LVEDV and LVESV, 
respectively) and LV ejection fraction (LVEF) were calcu-
lated from the extracted contours.

Three readers (C.T, J.M, and E.S) with > 5 years of expe-
rience in CMR were blinded to the acquisition and recon-
struction methods, and independently assessed the cine 
datasets. Datasets were graded on a 4-point Likert scale 

Fig. 2 Inline implementation of real‑time cine with deep learning‑based radial acceleration. Multi‑coil raw radial k‑space data acquired from the 
scanner is processed in the Image Reconstruction Environment (ICE) on the vendor reconstruction computer. Using the International Society for 
Magnetic Resonance in Medicine Raw Data (ISMRMRD) format, the collected data is transferred to the Framework for Image Reconstruction (FIRE) 
server using a FireEmitter functor. The FIRE server is located in the vendor reconstruction computer. The data is then transferred from the FIRE server 
to an external server via a connecting Secure Shell Protocol (SSH) tunnel. In the external sever, a Docker containing all Python dependencies such 
as PyTorch is used to process the raw k‑space data in a single 32 GB Graphics Processing Unit (GPU). The deep‑learning radial acceleration with 
parallel reconstruction (DRAPR) technique was implemented in the Docker. First, a non‑uniform fast Fourier transform (NUFFT) is used to grid and 
reconstruct undersampled multi‑coil radial k‑space data. GPU parallelization is done in PyTorch by treating frames and coils as batch and channel 
dimensions. This approach enables application of the NUFFT at 10 ms per frame. Coil sensitivity and combination is subsequently performed in 
PyTorch at negligible computational cost. These coil‑combined images are send to the U‑Net for de‑aliasing, which requires 6.6 ms per frame. The 
total processing time of 16.6 ms is about half the 37.7 ms temporal resolution of collected frames. Images are then returned to the FIRE server 
via the same SSH tunnel, and to ICE using a FireInjector functor. Finally, the reconstructed de‑aliased images are finalized into DICOM format and 
returned to the scanner computer console for immediate display
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for level of residual artifacts in the entire FOV (1-non-
diagnostic, 2-severe, 3-moderate, 4-minimal).

Statistical analyses were performed using the statisti-
cal package for social sciences (SPSS; version 28.0.0.1, 
Statistical Package for the Social Sciences, International 
Business Machines, Inc., Armonk, New York, USA). 
Quantitative measures of LV function were expressed as 
mean ± standard deviation. Differences in measures of LV 
function between techniques were evaluated using one-
way repeated measures analysis of variance (ANOVA) 
with post hoc testing using Bonferroni correction. Dif-
ferences were also visualized using Bland–Altman 
plots and expressed as mean difference [mean differ-
ence ± 1.96 × standard deviation of the difference]. Sub-
jective measures of artifact level scores were expressed 
as mean ± standard deviation and percentage of cases in 
each category. Differences in artifact level scores between 
techniques were evaluated using the Friedman test with 
Bonferroni correction for images acquired at rest, and 
the Wilcoxon signed-rank test for images acquired post-
exercise. A P-value < 0.05 was considered statistically 
significant.

Results
Resting ECG in all patients showed sinus rhythm. Stand-
ard cine in one patient showed poor image quality due to 
off-resonance artifacts. This patient was excluded from 
the analysis of LV function since proper contouring was 
not possible, but was included in the analyses of image 
quality. In addition, one of the patients was unable to 
complete the Ex-CMR protocol due to a leg cramp during 

supine cycle exercise. The baseline and post-exercise 
heart rates were 72 ± 15 and 124 ± 19 bpm, which repre-
sent an average increase of 53 ± 20 bpm.

Reconstruction of real-time radial cine images with 
GRASP and DRAPR was successful in all cases. Using 
GRASP to reconstruct cine data whose frame matrix size 
was 288 × 288 required 1.2 s per frame for pre-processing 
and 6.1 s per frame for application of compressed sens-
ing to the coil-combine complex images. With DRAPR, 
pre-processing times of 10 ms per frame were achieved, 
and application of the U-Net model to the coil-combine 
complex images was achieved in 6.6 ms per frame. Thus, 
for instance, an acquisition over 4 heart beats (i.e., ~ 100 
frames) and 12 slices would require 2.4  h with GRASP 
and 20 s with DRAPR.

Measures of LV function across all subjects based on 
breath-hold ECG-gated segmented cine and free-breath-
ing ECG-free real-time radial cine reconstructed with 
GRASP and DRAPR were 114 ± 15  mL, 118 ± 17  mL, 
and 117 ± 17  mL for LVEDV; 43 ± 9  mL, 49 ± 10  mL, 
50 ± 10  mL for LVESV; and 62 ± 7%, 58 ± 10%, 57 ± 7% 
for LVEF. Comparison of measures based on ECG-gated 
and GRASP cine showed differences in LVEDV (4.4 mL 
[−  14.1, 22.8], P = 0.138) that were not significantly dif-
ferent from zero. However, differences in LVESV (6.4 mL 
[− 3.5, 16.3], P < 0.001) and LVEF (− 4.3% [− 14.3, 5.6], 
P = 0.003) were significant. Similarly, comparison of 
measures based on ECG-gated and DRAPR showed dif-
ferences in LVEDV (3.0 mL [− 11.7, 17.8], P = 0.320) that 
were not significantly different from zero. Differences in 
LVESV (7.0 mL [− 1.3, 15.3], P < 0.001) and LVEF (− 5.0% 

Fig. 3 Exercise imaging protocol. Rest scans consisted of breath‑hold, ECG‑gated Cartesian segmented cine followed by free‑breathing ECG‑free 
real‑time radial cine. After rest imaging, subjects were removed from the scanner bore and were exercised in the supine position using a cycle 
ergometer. Work rate was started at 25 W and was increased by + 25 W every 2 min while subjects maintained a constant pedaling speed of 75 rpm. 
After reaching target heart rate or exhaustion, subjects were immediately placed back inside the scanner bore for post‑exercise stress imaging. This 
consisted of a repetition of the real‑time cine sequence
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[−  11.1, 1.0], P < 0.001) were significant. There were no 
significant differences between GRASP- and DRAPR-
based measures of LV function (Fig. 4).

The mean artifact level score in ECG-gated seg-
mented cine images was 3.9 ± 0.3. Only 3.0% of the 
scores were graded as severe and the remaining 97.0% 
were graded as minimal. All NUFFT-reconstructed 
real-time cine images were deemed as having a non-
diagnostic level of artifacts, while none remained non-
diagnostic after application of GRASP or DRAPR. The 
mean score in real-time cine images at rest recon-
structed with GRASP was 3.7 ± 0.6, which was com-
parable (P = 0.3) to ECG-gated images. However, 9.1% 
of scores were graded as severe. The mean scores of 
images reconstructed with DRAPR was 3.3 ± 0.7, 
which reflects a significantly higher artifacts relative to 
ECG-gated (P < 0.001) and GRASP (P = 0.02) images. 
In addition, 10.6% of scores were graded as severe 
(Fig. 5). Various subjects representing a range of scores 
are shown in Fig. 6 and Additional file 1: Video 1, i.e., 

from a mean score of 3 (reader A, B, C = 2, 4, 3) to a 
mean score of 4 (reader A, B, C = 4, 4, 4) with DRAPR. 
The artifact level of images reconstructed with GRASP 
(3.5 ± 0.8) and DRAPR (3.1 ± 0.6) during post-exercise 
stress was significantly different (P = 0.002). Relative 
to scores of images at rest, the percentage of scores 
graded as severe increased to 17.9% and 15.4%, accord-
ingly. A range from a mean artifact score of 2.3 with 
DRAPR (reader A, B, C = 2, 3, 2) to 3.7 (reader A, B, 
C = 3, 4, 4) in subjects post-exercise is shown in Fig. 7 
and Additional file 2: Video 2.

Representative real-time cine images reconstructed 
with DRAPR in patients with suspected CAD are shown 
in Fig. 8 and Additional file 3: Video 3. Ex-CMR showed 
absence of regional wall motion abnormalities in seven 
of eight patients, which was consistent with findings 
from other modalities. Specifically, exercise tolerance 
test (ETT) was negative in two patients. Stress echocar-
diography tests were also negative in three patients, and 
nuclear stress showed a moderate perfusion defect in one 

Fig. 4 Bland–Altman comparisons of left‑ventricular (LV) parameters. Measures derived from breath‑hold ECG‑gated segmented cine are compared 
to those derived from the free‑breathing ECG‑free real‑time cine reconstructed with the GRASP and deep‑learning radial acceleration with parallel 
reconstruction (DRAPR) techniques. Solid and dotted lines represent the mean difference and mean difference ± 1.96 × standard deviation of the 
difference. A The mean differences in LV end‑diastolic and end‑systolic volumes with golden angle radial sparse parallel (GRASP) were 4.4 mL and 
6.4 mL, while the mean difference in LV ejection fraction was − 4.3%. B The mean differences in LV end‑diastolic and LV end‑systolic volumes with 
DRAPR were 3 mL and 7 mL, while the mean difference in ejection fraction was − 5%
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patient. No other imaging tests were performed in any 
of these six patients. In one patient, stress echocardiog-
raphy was positive but subsequent coronary angiogra-
phy was negative for significant CAD. In the remaining 
patient whose Ex-CMR showed a regional wall motion 
abnormality, stress echocardiography showed hypokine-
sis of the LV basal inferoseptum, and coronary angiogra-
phy revealed a heavily calcified right coronary artery with 
subtotal and chronic total occlusions (Fig.  9 and Addi-
tional file 4: Video 4).

Discussion
In this study, we assessed the feasibility of inline real-
time cine with DL-based radial acceleration for Ex-CMR. 
We demonstrated that (1) while our training dataset 
was based on synthetic real-time images simulated from 
images acquired during breath-hold and at rest, DRAPR 
substantially suppressed artifacts in free-breathing real-
time cine images acquired during post-exercise stress; (2) 
the proposed inline implementation for seamless, low-
latency reconstruction is a feasible approach for evalua-
tion of cardiac function in Ex-CMR.

Ex-CMR with real-time radial cine has the potential 
to detect regional wall motion abnormalities in patients 
with suspected CAD. Fractional flow reserve (FFR) is the 
gold standard invasive diagnostic test to assess functional 
significance of coronary artery stenosis [34]. However, 
studies suggest that CMR can provide highly sensitive 

and specific CAD assessment compared to invasive FFR, 
and may be non-inferior at predicting adverse events [4, 
35, 36]. Compared to pharmacological stress, Ex-CMR 
may provide additional exercise-capacity and hemody-
namic prognostic information and elicit a more power-
ful stress response. Thus, exercise stress is preferable for 
cardiac stress testing when feasible. Despite its clinical 
importance, the clinical usefulness of Ex-CMR has been 
limited by lack of adequate temporal resolution and 
image quality due to elevated heart rates, exaggerated 
breathing, and gross patient motion during imaging. In 
recent years, the advent of highly accelerated sequences 
have enabled free-breathing ECG-free cine imaging [13]. 
In this feasibility study, we implemented a prototype cine 
sequence with DL-based radial acceleration and spati-
otemporal resolution of 37.7 ms and 2 × 2  mm2, respec-
tively. Our inline implementation was able to quickly 
reconstruct and suppress streaking artifacts in 16.6  ms 
per frame, and evaluation of LV function in all patients 
with suspected CAD using both rest and post-exercise 
cine images was in agreement with other stress imaging 
modalities.

Isometric handgrip was the first exercise method pro-
posed for Ex-CMR [14]. Supine ergometry was later 
proposed by Mohiaddin et  al. as an alternative exercise 
method that does not require patient repositioning and 
engages large muscle groups [37]. Previous Ex-CMR 
studies have reported exercise can be performed inside 

Fig. 5 Subjective evaluation of image quality. Three readers evaluated artifacts across all cine scans. Images were classified as having a 
1‑non‑diagnostic, 2‑severe, 3‑moderate, and 4‑minimal artifact level. The mean score of breath‑hold ECG‑gated segmented cine images was 3.0. 
The mean score of free‑breathing ECG‑free real‑time cine images reconstructed with GRASP was 3.7 at rest, with 9.1% of images graded as severe. 
The mean score during post‑exercise stress was 3.5, and the percentage of images graded as severe increased to 17.9%. Real‑time cine images at 
rest reconstructed with DRAPR had a mean score of 3.3, with 10.6% of images graded as severe. During post‑exercise stress, images had a mean 
score of 3.1. The percentage of images graded as severe increased to 15.4%. None of the real‑time radial cine images reconstructed with GRASP or 
DRAPR were labeled as non‑diagnostic. *p < 0.01. GRASP: golden‑angle radial sparse parallel; DRAPR: deep‑learning radial acceleration with parallel 
reconstruction
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the scanner bore using a cycle ergometer [20]. However, 
we found that many patients are not able to adequately 
cycle inside the scanner due to limitations of the bore 
size. With our approach, there was only a small delay 
from peak exercise intensity to stress imaging. In addi-
tion, with the exception of one patient who experienced a 
leg cramp during supine cycling, all healthy subjects and 
patients were able to complete the Ex-CMR protocol.

The underestimation of LVEF in real-time cine relative 
to ECG-gated was due to greater volume overestimation 
at end-systole compared to end-diastole. Physiologic 
and parameter variations between ECG-gated and real-
time imaging could lead to systematic differences in LV 
parameters. Further, our three-dimensional U-Net imple-
mentation applies a temporal filtering that could result in 
reduced temporal resolution and may explain the LVEF 
underestimation. In addition, it might also make visual 
detection of regional wall motion abnormalities more 
difficult, especially during post-exercise or dobutamine 
stress. Alternatively, a recurrent two-dimensional U-Net 
could avoid temporal smoothing. Nevertheless, these 
volume differences in volume were smaller than those 

reported in a previous validation study of a similar real-
time radial cine sequence reconstructed with GRASP 
[21]. In that study, comparison to ECG-gated quanti-
fication of LV parameters showed mean differences in 
LVEDV and LVESV of 15.2 mL and 7.9 mL, respectively.

In this study, we also compared DRAPR- to GRASP-
based dealiasing. Although the artifact level scores were 
higher with GRASP, the difference between the two was 
small and may not necessarily impact clinical interpreta-
tion or quantification. Indeed, we found no significant dif-
ferences between GRASP- and DRAPR-based measures of 
LV function, and both methods received a similar amount 
of severe artifact scores. Further, DRAPR was able to de-
aliased images with a 1000-fold reduction in computa-
tional time compared to GRASP. In Ex-CMR studies, cine 
images may be acquired over multiple heart beats and mul-
tiple slices. DRAPR enables inline reconstruction of these 
images in the order of seconds instead of hours, which is 
important to prevent delays in the clinical workflow.

We did not observe any dependence on heart rate in the 
artifact scores in our study. However, subjects with high 
body mass index showed increased artifact levels. The 

Fig. 6 Representative real‑time cine images of subjects at rest. The NUFFT was used to grid and reconstruct radial k‑space data. Artifacts were 
subsequently suppressed using the GRASP and DRAPR techniques. Images were classified as having a 1‑non‑diagnostic, 2‑severe, 3‑moderate, and 
4‑minimal artifact level. All NUFFT images were 1‑non‑diagnostic. The five subjects shown at end‑diastole represent the range of mean scores at 
rest. Subjects 1–4 are patients. The mean artifact levels with DRAPR for subjects 1–5 were 3.0, 3.3, 3.3, 4.0 and 4.0, accordingly. The body mass index 
(BMI) for subjects 1–5 was 38, 33, 26, 23 and 21 lbs/in2, accordingly
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lowest artifact level scores at rest represent reduced sup-
pression of streaking artifacts arising from high-intensity 
signals and field inhomogeneities in the peripheral field-
of-view. Since the peripheral FOV normally contains a 
higher amount of artifacts, better artifact suppression 
could also be achieved by using the entire image matrix 
during training. However, such implementation would 
require larger GPU memory. Alternatively, a patch-level 
training approach could perform better than or similar to 
an image-level approach with reduced memory demand.

Low latency enables quick evaluation of images, and 
also prevents computational bottlenecks that may occur 
in imaging protocols with finite computing resources. 
Our integration enabled us to perform NUFFT recon-
struction and coil combination in 10 ms per frame, which 
was almost one quarter of the temporal resolution. This 
approach could be used to speed up previously proposed 
DL methods. For example, in the model proposed by 
Shen et al. for real-time radial cine, these pre-processing 
steps were done in ~ 0.3  s per frame [27]. Better artifact 
suppression might be possible if additional GPUs are 

available, or in protocols where some latency can be sac-
rificed. For instance, we concatenated real and imaginary 
components to enable DL processing with real-valued 
convolutional kernels. Alternatively, complex-valued 
convolutions may be used, but would require a two-fold 
increase in the number of parameters and a four-fold 
increase in the number of operations. Also, the artifact 
level in gridded images could be reduced by increas-
ing the number of neighbors and point precision in the 
NUFFT, or by including prior smoothing and increasing 
the number of iterations during coil sensitivity estima-
tion. Nevertheless, we showed that streaking artifacts 
were substantially suppressed using our fast inline model 
in various Ex-CMR studies in both healthy subjects and 
patients with suspected CAD.

Limitations
The present report represents a proof-of-concept study 
with a small sample size. Only one patient had a con-
firmed regional wall motion abnormality associated with 
a coronary occlusion. Therefore,  our study was too small 

Fig. 7 Representative real‑time cine images of subjects at post‑exercise stress. The NUFFT was used to grid and reconstruct radial k‑space data. 
Artifacts were subsequently suppressed using the GRASP and DRAPR techniques. Images were classified as having a 1‑non‑diagnostic, 2‑severe, 
3‑moderate, and 4‑minimal artifact level. All NUFFT images were 1‑non‑diagnostic. The five subjects shown at end‑diastole represent the range 
of mean scores at post‑exercise stress. Subjects 3–4 are healthy. Subjects 2 and 5 correspond to Subjects 1 and 4 in Fig. 6, accordingly. The mean 
artifact levels with DRAPR for subjects 1–5 were 2.3, 3.0, 3.0, 3.3 and 3.7, accordingly. The body mass index (BMI) for subjects 1–5 was 32, 38, 23, 29 
and 24 lbs/in2, accordingly. The peak heart rate post‑exercise for subjects 1–5 was 110, 108, 97, 132, and 135 bpm, accordingly
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to assess diagnostic accuracy. Our quantification of LV 
measures was limited since we used breath-hold, ECG-
gated segmented cine images to obtain reference values. 
Also, real-time cine images were acquired at only 8 slices 

with a 35% distance gap, which could cause a systematic 
bias in measures of LV volumes. We also did not evalu-
ate the optimal choice of DL architecture; however, the 
proposed implementation showed excellent artifact 

Fig. 8 Inline real‑time cine with deep learning‑based radial acceleration in coronary artery disease (CAD). Four patients are shown whose 
recruitment criteria included being symptomatic and having a stress test for suspicion of CAD. Patients underwent an exercise CMR protocol. Top 
images were collected at rest, and bottom images were collected after supine exercise using a CMR compatible cycle ergometer. Images are shown 
at end‑diastole. Patient 4 at pre‑exercise corresponds to subject 4 in Fig. 6, and at post‑exercise corresponds to subject 5 in Fig. 7, accordingly. The 
BMI for patients 1–4 was 22, 27, 26, and 24 lbs/in2, accordingly. During rest, the mean artifact levels were 3.0, 3.7, 4.0 and 4.0. The resting heart rates 
were 83, 62, 70 and 49 bpm. During post‑exercise stress, the mean artifact levels were 3.3, 3.3, 3.3 and 3.7. The peak heart rates post‑exercise were 
115, 132, 107 and 134 bpm, accordingly

Fig. 9 Illustrative clinical case. A 60‑year‑old male with worsening upper chest heaviness and shortness of breath with exertion. Stress echo 
showed focal systolic dysfunction with hypokinesis of the left‑ventricular basal inferoseptum and inferior walls at both rest and stress. Similarly, 
during an exercise CMR protocol, real‑time cine with deep learning‑based radial acceleration showed hypokinesis of the left‑ventricular basal 
inferoseptal wall during rest and at post‑exercise stress (arrows). Subsequent coronary angiography revealed a heavily calcified right coronary artery 
(arrow) with serial subtotal occlusions
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suppression with minimal reconstruction latency. Finally, 
data from a single vendor and field strength were used for 
training, and the generalizability of the trained network 
should be studied.

Conclusion
Combination of highly accelerated radial sequences with 
DL enables fast acquisition and reconstruction of real-
time cine images with suppressed streaking artifacts. 
Our study demonstrated the feasibility of low-latency, 
inline implementation of such methodology for clinical 
Ex- CMR.
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Additional file 1. Representative real‑time cine videos of subjects at rest. 
The non‑uniform fast Fourier transform (NUFFT) was used to grid and 
reconstruct radial k‑space data. Artifacts were subsequently suppressed 
using the GRASP and DRAPR techniques, as shown by the sliding window 
in the videos. Images were classified as having a 1‑non‑diagnostic, 
2‑severe, 3‑moderate, and 4‑minimal artifact level. All NUFFT images were 
1‑non‑diagnostic. The five subjects shown at end‑diastole represent the 
range of mean scores at rest. Subjects 1–4 are patients. The mean artifact 
levels with DRAPR for subjects 1–5 were 3.0, 3.3, 3.3, 4.0 and 4.0, accord‑
ingly. The body mass index (BMI) for subjects 1–5 was 38, 33, 26, 23 and 
21 lbs/in2, accordingly. GRASP: golden‑angle radial sparse parallel; DRAPR: 
deep‑learning radial acceleration with parallel reconstruction.

Additional file 2. Representative real‑time cine videos of subjects at post‑
exercise stress. The non‑uniform fast Fourier transform (NUFFT) was used 
to grid and reconstruct radial k‑space data. Artifacts were subsequently 
suppressed using the GRASP and DRAPR techniques, as shown by the 
sliding window in the videos. Images were classified as having a 1‑non‑
diagnostic, 2‑severe, 3‑moderate, and 4‑minimal artifact level. All NUFFT 
images were 1‑non‑diagnostic. The five subjects shown at end‑diastole 
represent the range of mean scores at post‑exercise stress. Subjects 3–4 
are healthy. The mean artifact levels with DRAPR for subjects 1–5 were 2.3, 
3.0, 3.0, 3.3 and 3.7, accordingly. The BMI for subjects 1–5 was 32, 38, 23, 29 
and 24 lbs/in2, accordingly. The peak heart rate post‑exercise for subjects 
1–5 was 110, 108, 97, 132, and 135 bpm, accordingly. GRASP: golden‑
angle radial sparse parallel; DRAPR: deep‑learning radial acceleration with 
parallel reconstruction.

Additional file 3. Videos of inline real‑time cine with deep learning‑
based radial acceleration in coronary artery disease (CAD). Four patients 
are shown whose recruitment criteria included being symptomatic and 
having a stress test for suspicion of coronary artery disease (CAD). Patients 
underwent an exercise CMR protocol. Top images were collected at rest, 

and bottom images were collected after supine exercise using a CMR 
compatible cycle ergometer. Images are shown at end‑diastole. The BMI 
for patients 1–4 was 22, 27, 26, and 24 lbs/in2, accordingly. During rest, the 
mean artifact levels were 3.0, 3.7, 4.0 and 4.0. The resting heart rates were 
83, 62, 70 and 49 bpm. During post‑exercise stress, the mean artifact levels 
were 3.3, 3.3, 3.3 and 3.7. The peak heart rates post‑exercise were 115, 132, 
107 and 134 bpm, accordingly.

Additional file 4. Video of illustrative clinical case. A 60‑year‑old male 
with worsening upper chest heaviness and shortness of breath with 
exertion. Stress echo showed focal systolic dysfunction with hypokinesis 
of the left‑ventricular basal inferoseptum and inferior walls at both rest 
and stress. Similarly, during an exercise CMR protocol, real‑time cine with 
deep learning‑based radial acceleration showed hypokinesis of the left‑
ventricular basal inferoseptal wall during rest and at post‑exercise stress 
(arrows). Subsequent coronary angiography revealed a heavily calcified 
right coronary artery (arrow) with serial subtotal occlusions.
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