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Context: Male hypogonadism adversely affects body composition, bone mineral density
(BMD), and metabolic health. A previous report showed that pre-treatment testosterone
(T) levels of <200 ng/dl is associated with greater improvement in spine BMD with T
therapy. However, to date, there is no study that investigates whether baseline T levels
also influence body composition and metabolic response to T therapy.

Objective: The aim of this study is to determine if there are differences in the changes in
body composition, metabolic profile, and bone turnover markers, in addition to BMD, in
response to T therapy in men with a baseline T level of <264 ng/dl compared to those with
levels ≥264 ng/dl.

Methods: This is a secondary analysis of a single-arm, open-label clinical trial
(NCT01378299) on pharmacogenetics of response to T therapy conducted between
2011 and 2016 involving 105 men (40–74 years old), with average morning T < 300 ng/dl,
given intramuscular T cypionate 200 mg every 2 weeks for 18 months. Subjects were
divided into those with baseline T levels of <264 ng/dl (N = 43) and those with ≥264 ng/dl
(N = 57). T and estradiol (E2) were measured by liquid chromatography/mass
spectrometry; serum bone turnover markers (C-telopeptide [CTX], osteocalcin, and
sclerostin), adiponectin, and leptin were measured by enzyme-linked immunosorbent
assay; glycated hemoglobin (HbA1c) was measured by high-performance liquid
chromatography; and areal BMD and body composition was measured by dual-energy
x-ray absorptiometry (DXA).

Results:Men with T < 264 ng/dl showed greater increases in total fat-free mass (FFM) at 18
months compared to those with T ≥ 264 ng/dl (4.2 ± 4.1 vs. 2.7 ± 3.8%; p = 0.047) and
unadjusted appendicular FFM at 6 and 18 months (8.7 ± 11.5 vs. 4.4 ± 4.3%, 7.3 ± 11.6 vs.
2.4 ± 6.8%; p = 0.033 and p = 0.043, respectively). Menwith T ≥ 264 ng/dl showed significant
decreases in HbA1c at 12 months (−3.1 ± 9.2 vs. 3.2 ± 13.9%; p = 0.005), fasting glucose at
18 months (−4.2 ± 31.9 vs. 13.0 ± 57.3%; p = 0.040), LDL at 6 months (−6.4 ± 27.5 vs. 12.8
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± 44.1%; p = 0.034), and leptin at 18 months (−40.2 ± 35.1 vs. −27.6 ± 31.0%; p = 0.034)
compared to those with T < 264 ng/dl. No significant differences in BMD and bone turnover
markers were observed.

Conclusion: T therapy results in improvement in body composition irrespective of
baseline T levels but T < 264 ng/dl is associated with greater improvement in FFM,
whereas a T level of ≥264 ng/dl favors improvement in metabolic profile.
Keywords: testosterone, body composition, HbA1c, bone turn over markers (BTM), hypogonadism
INTRODUCTION

There is an emerging role of testosterone (T) therapy in the
management of obesity in men (1). It is well known that overt
hypogonadism in men adversely affects body composition, bone
density, and metabolic health. Several cross-sectional and
longitudinal studies have reported the association between low
serum T and risk of metabolic syndrome or Type 2 diabetes
(T2D) (2–9). As a result, there is growing interest in studying the
role of T therapy in cardiometabolic health. To date, studies looking
at the effects of T therapy on body composition have provided
equivocal results, with some showing improvement in waist
circumference, visceral fat (10–12), and subcutaneous fat (13),
and others with no such improvement (14). Indeed, most of these
are short term and underpowered, and only a few are longitudinal.

The role of T in the improvement of BMD is well established
(15–17). To this point, however, only one study by Synder et al.
looked at different pre-treatment serum T concentrations and
showed that T replacement therapy showed the greatest
improvement in BMD at the lumbar spine in patients with
pre-treatment testosterone levels of <200 ng/dl (18). This study
was done decades ago when the measurement of serum T was
not standardized yet. Recently, T assay has been standardized
and LC/MS is considered as the gold standard because of its
higher specificity, sensitivity, and precision. In addition, the
cutoff for low T has been changed to 264 ng/dl from 300 ng/dl
used in the previous guidelines (19). Hence, it remains unknown
if those who received T outside of the current guidelines
benefited from T therapy. The objective of this secondary
analysis is to determine if there are differences in the changes
in body composition, metabolic parameters, and bone turnover
markers, in addition to BMD, in response to T therapy in men
with baseline T level measured by LC/MS and defined as low by
the current Endocrine Society guidelines, i.e., T < 264 ng/dl [88]
compared to those with levels ≥264 ng/dl. We hypothesize that T
therapy in men with pre-treatment testosterone levels of <264
ng/dl will show greater benefit in terms of improvement in body
composition, and metabolic and bone parameters.
MATERIALS AND METHODS

Study Design and Study Population
This study is a secondary analysis of longitudinal data obtained
from hypogonadal male veterans who volunteered to participate in
n.org 2
an open label clinical trial investigating the effect of genetics on T
therapy (20), carried out from October 2011 to November 2016
(ClinicalTrials.gov identifier: NCT01378299). Information
regarding study design, inclusion and exclusion criteria of the
subjects, as well as details of T therapy have been published
elsewhere (21). In brief, hypogonadism was defined as an
average total T of <300 ng/dl from two samples taken in the
morning. The study was conducted at the University of New
Mexico VA Health Care System (NMVAHCS) and at the Michael
E. DeBakey VAMedical Center (MEDVAMC) in accordance with
guidelines of the Declaration of Helsinki for the ethical treatment
of human subjects. The protocol was approved by the Institutional
Review Boards of the University of New Mexico and of Baylor
College of Medicine. Participants were recruited from patients
attending the Endocrine, Urology, and Primary Care Clinics of the
NMVAHCS and MEDVAMC. Recruitment was accomplished
either through flyers or letters to physicians about patients who
may qualify for the study. Written informed consent was obtained
from each subject. The inclusion criteria were male patients
between 40 and 75 years of age with no medical problems that
may prevent them from finishing the study. Exclusion criteria
included treatment with bone-acting drugs (e.g., bisphosphonates,
teriparatide, denosumab, glucocorticoids, sex steroid compounds,
selective estrogen receptor modulators, androgen deprivation
therapy, and anticonvulsants) and finasteride. Additional
exclusion criteria included osteoporosis and history of fragility
fractures or diseases known to affect bone metabolism, such as
hyperparathyroidism, chronic liver disease, uncontrolled or
untreated hyperthyroidism, and significant renal impairment
(creatinine of >1.5 mg/dl). Those with a history of prostate
cancer, breast cancer, and untreated sleep apnea also met the
criteria for exclusion.

Testosterone Therapy
Therapy consisted of intramuscular injection of 200 mg of T
cypionate administered every 2 weeks. The dose was
subsequentially adjusted to reach the T serum target level of
17.3 to 27.7 nmol/L (500–800 ng/dl). However, after the third
year of the study, upon the direction of the FDA, this target was
changed to 17.3 to 20.8 nmol/L (300–600 ng/dl). This change
affected the last 6 months of data for 16 subjects at NMVAHCS
and of all 15 subjects at MEDVAMC. We did not detect
significant difference in T levels among those affected and
those not affected by the change as published previously (21).
For all subjects, safety monitoring and dose adjustments were
July 2022 | Volume 13 | Article 915309
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performed based on T and hematocrit (Hct) levels; dose
adjustment modalities have been published elsewhere (21). The
participants were given T therapy for 18 months.

Biochemical Measurements
Fasting blood samples were collected at baseline; serum samples
were extracted and stored at –80°C until analysis except for the
baseline screening of T levels. Baseline serum T represents an
average from 2 determinations taken 30 min apart between 8:00
and 11:00 a.m., and measured using automated immunoassay,
detection range 10 to 3,200 ng/dl (Vitros®, Ortho Clinical
Diagnostics, Rochester, NY). The coefficient of variation (CV) for
T assay was ≤20% for T < 50 ng/dl and ≤ 10% for T 200 to 1,000 ng/
dl. At the end of the study, T and E2 for each time point were
measured by liquid chromatography/mass spectrometry (Mayo
Clinic Laboratories, Mayo Clinic, Rochester, MN, USA). T intra-
assay CVs were 7.4%, 6.1%, 9.0%, 2.3%, and 0.9% at 0.65, 4.3, 48,
118, and 832 ng/dl, respectively. Interassay CVs were 8.9%, 6.9%,
4.0%, 3.6%, and 3.5% at 0.69, 4.3, 45, 117, and 841 ng/dl,
respectively. The detection range was 0.5 to 2,000 ng/dl. For
analyses in this study, T values by LC/MS from blood obtained at
screening were used (see Statistical Methods section). E2 assay
sensitivity was 0.23 pg/ml to 405 pg/ml, intra-assay CV was 1.4%
to 11.8%, and interassay CV was 4.8% to 10.8% (20). Luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) were
assessed by a third-generation chemiluminescent assay, while (22)
alkaline phosphatase (ALP) was assessed by Vitros Systems at the
Michael E. DeBakey and Albuquerque VAMedical Centers. Fasting
glucose was measured using a Unicel DxC 800 auto-analyzer
(Beckman Coulter, Fullerton, CA, USA) and HbA1c by high-
performance liquid chromatography (Tosoh G8, South San
Francisco, CA, USA). The following were measured using
enzyme-linked immunosorbent assay kits: C-terminal telopeptide
of type I collagen (CTX), marker of bone resorption (Crosslaps;
Immunodiagnostic System Inc., Gaithersburg, MD, USA),
osteocalcin, marker of bone formation (Metra OC; Quidel
Corporation, San Diego, CA, USA), sclerostin (TECO medical
Sclerostin HS Enzyme Immunoassay Kit, Quidel Corp, San Diego,
CA, USA), and adiponectin (Quantikine; R&D Systems; CV 5.5%).
The CVs for the above assays in our laboratory are <10% and <3.5%
for HbA1c. RIA kits were used to measure leptin (Leptin HL-81K;
Linco Research Inc; CV 5.6%).

Body Mass Index
Body weight was measured using a standard weighing scale and
height was obtained using a stadiometer. BMI was calculated as
body weight in kilograms (kg) divided by the square of the height
in meters (m2) and expressed as kg/m2.

Body Composition
Total body mass, lean body mass (mineral-free and fat free), fat
mass, and truncal fat were measured by whole body DXA
(Enhanced Whole Body Software version 11.2; Hologic, Inc.) as
previously described (23). The percentages of whole and regional fat
mass (% fat) were obtained from the estimated readings given by the
machine for each region of interest. The percentage of total and
regional lean mass (% lean) was calculated as lean mass/total or
Frontiers in Endocrinology | www.frontiersin.org 3
regional mass. We used percentages of fat and lean body mass to
correct for body size in the study population. Fat-free mass was
calculated by adding whole body bone mineral content to the lean
mass (22). The CV for lean mass and fat mass in our laboratory is
1.5% (22). BMI and body composition were assessed at baseline, 6,
12, and 18 months.

Areal Bone Mineral Density by Dual
Energy X-Ray Absorptiometry
Areal BMD was measured by DXA of the lumbar spine and
proximal femur using Hologic Discovery (Hologic Inc, Bedford,
MA, USA). Regions of interest in the femur include the total hip
and femoral neck. The CVs at our center are ~1.1% for the
lumbar spine and 1.2% for the proximal femur (21).

Statistical Methods
For this secondary study, we first determine the T cutoff score,
which divides the sample size into two groups based on body
composition at baseline. Screening for the parent clinical trial
was based on an automated T immunoassay; however, this
secondary analysis is based on the LC/MS assay done at the
end of the study from stored baseline samples. Using a nonlinear
regression threshold model of cutoff score of baseline T values
that maximizes the separation of Y = total FFM and of Y = total
fat into two groups, the optimum cutoff score was 200 ng/dl for
the immunoassay T and equivalently 262 ng/dl for the mass
spectrometry T for both outcomes (Supplementary Figure 1).
Since it caused no difference in separation of our body
composition outcomes, we use the cutoff score of 264 ng/dl as
defined by the Endocrine Society for the diagnosis of
hypogonadism [88]. Hence, we grouped our participants to
those with T < 264 ng/dl and T ≥ 264 ng/dl.

Baseline values, percent changes, and absolute changes from
baseline data are presented as mean ± SD in the tables and means
± SE in the figures. To test whether the changes in body
composition, metabolic parameters, and BMD/bone turnover
markers are influenced by baseline T levels (as shown above),
these 3 domains are considered separately (Supplementary
Figure 2). The analysis for each variable between the two T
levels at each visit was done by analysis of covariance
(ANCOVA) with the 2 testosterone levels as a grouping factor
and with baseline measure of each variable as a covariate.

All results for body composition and BMD were additionally
adjusted for age and BMI. The results of metabolic, hormonal, and
safety profile, and bone turnover markers were adjusted for baseline
only. Unadjusted p-values are explicitly indicated. A p-value of 0.05
or less is considered statistically significant. Data were managed
using Excel 2013 (Microsoft, Redmond, WA) and analyzed using
SAS version 9.3 (SAS Institute, Inc., Cary, NC, USA).
RESULTS

Baseline Characteristics
A total of 105 subjects participated in the study; 100 subjects had
T level by mass spectrometry available. Forty-three had T levels
July 2022 | Volume 13 | Article 915309
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<264 ng/dl and 57 had T levels of ≥264 ng/dl. The baseline
characteristics of all the subjects are listed in Table 1. Men with T
< 264 ng/dl had higher weight (105.1 ± 17.0 kg vs. 97.8 ± 16.5 kg,
p = 0.033) and BMI (33.8 ± 5.8 kg/m² vs. 31.4 ± 5.0 kg/m², p =
0.035) compared to those with T ≥ 264 ng/dl. The remaining
characteristics did not differ significantly between the two
groups. Out of the 105 subjects in the entire study, 49 had
T2D, while 56 did not have diabetes. Among the 49 patients with
T2D, 42 were treated with blood glucose-lowering agents: 2 were
treated with sulfonylureas alone, 8 with metformin alone, 6 were
on sulfonylurea + metformin, 7 were on insulin alone, 1 patient
was on a combination of sulfonylurea + insulin, 11 were on
metformin + insulin, 4 were on a combination of sulfonylurea +
metformin + insulin, 2 were on metformin + incretin agonists,
and 1 patient was on combination of metformin + insulin +
incretin agonist (20). A total of 70 subjects completed the study
(33 in the group with T < 264 ng/dl and 37 in the group with T ≥
264 ng/dl).
Body Composition Outcomes
Table 2 shows changes in body composition over the course of 18
months of T therapy between the two groups. Men with T < 264 ng/
dl showed a greater increase in total FFM at 18months compared to
men with T ≥ 264 ng/dl (4.2 ± 4.1% vs. 2.7 ± 3.8%, p = 0.047)
(Figure 1A and Table 2). Furthermore, those with T < 264 ng/dl
showed a greater increase in unadjusted FFM at the appendicular
site at both 6 and 18 months compared to those with T ≥ 264 ng/dl
(8.7 ± 11.5% vs. 4.4 ± 4.3%, p = 0.033 and 7.3 ± 11.6% vs. 2.4 ± 6.8%,
p = 0.043, respectively) (Figure 1B, Table 2). However, after
adjusting for age and BMI, only the 6-month comparison
remained statistically significant (p = 0.034), while the significance
at 18 months became borderline (p = 0.082). Truncal FFM did not
change significantly between the two groups.

Both groups of men showed a decline in total as well as
regional (truncal and appendicular) fat mass over time. However,
there were no significant between-group differences in total and
Frontiers in Endocrinology | www.frontiersin.org 4
regional (truncal and appendicular) fat mass. An increase in total
and regional (truncal and appendicular) lean mass was seen in
both groups at all time points but no between-group differences
were observed.

The changes in BMI did not differ significantly between the
two groups (data not shown).
Metabolic Profile and Adipokines
Hemoglobin A1c and Lipid Profile
Table 3 shows that HbA1c declined significantly at 12 months in
men with T ≥ 264 ng/dl in comparison to those with T < 264 ng/
dl (−3.1 ± 9.2% vs. 3.2 ± 13.9%, p = 0.005) (Figure 2A and
Table 3). This reduction in HbA1c was, however, less at the 18-
month time point resulting in borderline significant difference
between the two groups (p = 0.082). At 18 months, there was an
increase in fasting blood sugar (FBS) in the group with T < 264
ng/dl in contrast to a decrease in those with T ≥ 264 ng/dl
resulting in significant between-group differences (13.0 ± 57.3%
vs. –4.2 ± 31.9%, p = 0.040).

At 6 months, LDL levels declined in men with T ≥ 264 ng/dl
compared to the increase in those with T < 264 ng/dl (–6.4 ±
27.5% vs. 12.8 ± 44.1%, p = 0.034). Total cholesterol and HDL
levels decreased at all time points in both groups with no
significant between-group differences. Men with T < 264 ng/dl
had an increase in triglycerides (TG) levels by the end of the
study, while levels were unchanged among those with T ≥ 264
ng/dl with no significant between-group differences.

Adipokines
Leptin levels decreased from baseline at 6, 12, and 18 months in
both groups; however, the decrease was significantly greater in
men with T ≥ 264 ng/dl compared to those with T < 264 ng/dl at
18 months (−40.2 ± 35.1% vs. –27.6 ± 31.0%, p = 0.034)
(Figure 2B and Table 3). Meanwhile, adiponectin decreased at
the end of the study in both groups with no significant between-
group difference (Figure 2C and Table 3).
TABLE 1 | Demographic and baseline clinical characteristics.

Characteristics T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-value

Age (years) 59.0 (6.8) 59.9 (9.5) 0.603
BMI 33.8 (5.8) 31.4 (5.0) 0.035

Weight (kg) 105.1 (17.0) 97.8 (16.5) 0.033
Vitamin D 25-hydroxy (ng/ml) 27.0 (9.1) 28.1 (10.4) 0.603
PTH (pg/ml) 50.5 (22.4) 48.4 (20.9) 0.651
ALP (U/L) 81.4 (22.2) 81.1 (21.0) 0.949
T2D (%) 21 (48) 24 (42.1) 0.547
HbA1c (%) 6.7 (1.5) 6.6 (1.7) 0.659

Sedentary lifestyle, n (%) 36 (92.3) 39 (84.8) 0.600
Smoking status (yes), n (%) 16 (37.2) 22 (38.6) 1.000
HTN, n (%) 30 (69.8) 35 (61.4) 0.406
HLD, n (%) 30 (69.8) 38 (66.7) 0.830

Statin use, n (%) 20 (46.5) 23 (40.35) 0.549
CVD, n (%) 4 (9.3) 11 (19.3) 0.387
OSA, n (%) 14 (32.6) 12 (21.1) 0.421
July 2022 | Volume 13 | Article
Values are expressed as means (SD), except T2D, sedentary lifestyle, smoking status, HTN, HLD, statin use, CVD, and OSA values expressed as n (%).
Bolded p-values are statistically significant. T, testosterone; PTH, parathyroid hormone; ALP, alkaline phosphatase; T2D, type 2 diabetes; HbA1c, glycated hemoglobin; HTN,
hypertension; HLD, hyperlipidemia; CVD, cardiovascular disease; OSA, obstructive sleep apnea.
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TABLE 2 | Changes in body composition with testosterone therapy from baseline to 18 months between the two groups.

Body Composition Outcomes T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-values

Unadjusted Adjusted

Total FFM (kg)
Baseline 68.2 (7.2) 66.2 (8.5) 0.219
6 months
%
D

5.2 (4.6)
3.5 (3.0)

3.8 (3.7)
2.4 (2.4)

0.142 0.101

12 months
%
D

5.1 (3.7)
3.6 (2.3)

3.4 (4.0)
2.6 (3.5)

0.233 0.266

18 months
%
D

4.2 (4.1)
3.6 (5.8)

2.7 (3.8)
1.8 (2.5)

0.121 0.047

Appendicular FFM (kg)
Baseline 30.5 (4.5) 29.9 (4.1) 0.515
6 months
%
D

8.7 (11.5)
2.5 (2.8)

4.4 (4.3)
1.2 (1.3)

0.033 0.034

12 months
%
D

8.5 (12.3)
2.3 (2.8)

4.9 (4.5)
1.5 (1.3)

0.138 0.264

18 months
%
D

7.3 (11.6)
2.0 (2.6)

2.4 (6.8)
0.7 (2.1)

0.043 0.082

Truncal FFM (kg)
Baseline 33.4 (3.4) 32.4 (4.6) 0.231
6 months
%
D

4.2 (5.4)
1.3 (1.7)

5.0 (10.3)
1.6 (3.6)

0.702 0.751

12 months
%
D

3.9 (4.8)
1.2 (1.5)

2.8 (5.3)
0.9 (1.6)

0.434 0.243

18 months
%
D

3.3 (4.8)
1.0 (1.6)

3.0 (4.4)
0.9 (1.4)

0.830 0.341

Total Fat Mass (kg)
Baseline 35.3 (11.2) 31.3 (10.3) 0.071
6 months
%
D

−6.8 (8.40)
−2.2 (2.9)

−6.0 (5.1)
−1.9 (2.0)

0.599 0.574

12 months
%
D

−7.9 (8.00)
−2.6 (2.7)

−7.8 (10.3)
−2.2 (3.8)

0.955 0.933

18 months
%
D

−5.0 (10.1)
−1.4 (3.4)

−6.2 (9.8)
−1.7 (3.3)

0.631 0.839

Appendicular Fat Mass (kg)
Baseline 15.0 (4.5) 13.5 (4.1) 0.099
6 months
%
D

−7.1 (10.3)
−0.9 (1.4)

−6.8 (4.8)
−0.9 (0.8)

0.859 0.633

12 months
%
D

−8.4 (7.3)
−1.2 (1.1)

−6.5 (9.5)
−0.7 (1.4)

0.399 0.200

18 months
%
D

−7.2 (10.1)
−0.9 (1.4)

−7.8 (8.7)
−0.9 (1.1)

0.790 0.938

Truncal Fat Mass (kg)
Baseline 19.0 (7.0) 16.5 (6.4) 0.074
6 months
%
D

−7.9 (10.1)
−1.4 (1.9)

−5.7 (8.0)
−1.0 (1.4)

0.303 0.358

(Continued)
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Bone Outcomes
a) Areal Bone Mineral Density (BMD) by DXA
At baseline (Table 4), subjects with T < 264 ng/dl had a
significantly higher BMD at the lumbar spine and total hip
when compared to those with T ≥ 264 ng/dl (1.161 ± 0.15 g/cm2

vs. 1.081 ± 0.14 g/cm2, p = 0.010 and 1.124 ± 0.146 g/cm2 vs.
1.039 ± 0.12 g/cm2, p = 0.002, respectively). Both groups showed
a progressive increase in BMD at the lumbar spine, with no
significant between-group differences in either unadjusted or
adjusted BMD changes. Similarly, there were no significant
between-group differences in BMD changes (unadjusted and
adjusted) at the total hip and femoral neck.

b) Bone Turnover Markers (BTM)
Table 5 shows that there were no significant between-group
differences in changes in osteocalcin, CTX, and sclerostin levels.
Frontiers in Endocrinology | www.frontiersin.org 6
Hormonal and Safety Profile
By virtue of study design and to keep T levels at a particular goal,
men with low baseline T levels of <264 ng/dl had a greater increase
in T levels by the end of the study period (18 months) compared to
those with T ≥ 264 ng/dl (185.9 ± 231.6 ng/dl vs. 93.2 ± 90.2 ng/dl, p
= 0.023) (see Table S1). Similarly, men with T < 264 ng/dl showed a
greater increase in E2 levels at 12 months compared to those with T
≥ 264 ng/dl (154.9 ± 121.9 pg/ml vs. 63.7 ± 100.6 pg/ml, p = 0.013).

Hct increase was significantly higher at 6 months in men with T
< 264 ng/dl compared to those with T ≥ 264 ng/dl (5.6 ± 3.4% vs. 3.5
± 2.7%, p = 0.001) (see Table S1). There were no significant
between-group differences in the PSA levels. For subjects with T
< 264 ng/dl: 7 experienced a significant increase in Hct defined as
≥55%, 3 had cardiovascular events, and 2 had cerebrovascular
events. For those with T ≥ 264 ng/dl: 2 had a significant increase
in Hct, 4 had cardiovascular events, and 1 had a prostate
TABLE 2 | Continued

Body Composition Outcomes T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-values

Unadjusted Adjusted

12 months
%
D

−7.5 (11.4)
−1.3 (2.1)

−7.5 (11.6)
−1.2 (2.3)

0.985 0.994

18 months
%
D

−3.7 (12.3)
−0.6 (2.2)

−4.8 (12.9)
−0.8 (2.2)

0.729 0.811

Total Lean Mass (kg)
Baseline 65.5 (7.0) 63.6 (8.3) 0.241
6 months
%
D

5.5 (4.8)
3.5 (3.1)

3.9 (3.9)
2.4 (2.4)

0.136 0.096

12 months
%
D

5.2 (3.9)
3.3 (2.5)

3.6 (4.1)
2.3 (2.6)

0.133 0.104

18 months
%
D

4.3 (4.3)
2.7 (2.7)

2.9 (3.9)
1.8 (2.5)

0.171 0.074

Appendicular Lean Mass (kg)
Baseline 29.2 (4.2) 28.2 (4.0) 0.253
6 months
%
D

7.0 (5.9)
2.0 (1.8)

5.9 (9.2)
1.5 (2.1)

0.563 0.446

12 months
%
D

6.7 (5.6)
1.9 (1.5)

6.6 (9.9)
1.8 (2.3)

0.987 0.939

18 months
%
D

5.8 (5.1)
1.6 (1.4)

9.3 (29.9)
2.3 (7.0)

0.535 0.500

Truncal Lean Mass (kg)
Baseline 32.7 (3.3) 31.8 (4.5) 0.242
6 months
%
D

4.3 (5.5)
1.3 (1.7)

3.6 (4.8)
1.1 (1.5)

0.559 0.378

12 months
%
D

3.9 (4.9)
1.2 (1.5)

2.8 (5.4)
0.8 (1.7)

0.391 0.220

18 months
%
D

3.3 (4.9)
1.0 (1.6)

3.0 (4.4)
0.9 (1.4)

0.834 0.348
J
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Values are means (SD); change scores are reported as percent (%) change and absolute change (D) from baseline value. Between-group p-values are reported as unadjusted by t-tests
and adjusted for baseline, age, and BMI by analysis of covariance (ANCOVA). Bolded p-values are statistically significant. FFM, fat-free mass; T, testosterone.
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enlargement but benign by biopsy. A complete list of adverse events
can be found elsewhere (20).
DISCUSSION

Our study shows that T therapy results in improvement in the
different parameters of body composition in men irrespective of
their baseline T levels, though men with T < 264 ng/dl, had a
significantly greater increase in total and appendicular FFM
compared to those with T ≥ 264 ng/dl. However, and in
contradiction to our hypothesis, men with T ≥ 264 ng/dl
experienced an improvement in several metabolic parameters
compared to those with T < 264 ng/dl. On the other hand, no
differences in the changes in BMD and bone turnover marker
Frontiers in Endocrinology | www.frontiersin.org 7
were observed between those with a baseline T level of <264 ng/
dl, and those with ≥264 ng/dl.

It is known that sex steroids play a crucial role in energy
metabolism, fat redistribution, body composition, and appetite
(24, 25). Some of the oldest studies in humans have shown that
there is an inverse relationship between T and visceral adipose tissue
and that increasing obesity, particularly abdominal obesity, is
associated with decreasing T levels in young men (26, 27).
Conversely, there is evidence that T levels are positively correlated
with insulin sensitivity, and men with low T have a threefold higher
prevalence of metabolic syndrome than their eugonadal
counterparts (28). A randomized controlled trial (RCT) showed
that T treatment in hypogonadal men with T2D increases insulin
sensitivity, increases lean mass, and decreases subcutaneous fat (29).
There are several other studies showing similar results (30–36);
A

B

FIGURE 1 | Changes (%) in total and appendicular fat free mass with testosterone (T) therapy according to baseline testosterone level. T < 264 ng/dL (red line), T
≥264 ng/dL (blue line). & Unadjusted P < 0.05, *Adjusted P value < 0.05, adjusted for age and body mass index. (A) Total FFM increased in both groups at 6, 12
and 18 months, but the increase at 18 months was greater for those with T < 264 ng/dL compared to those with T ≥264 ng/dL (adjusted p = 0.047). (B)
Appendicular FFM increased uniformly in both groups at 6, 12 and 18 months. However, the increase was greater in group with T < 264 ng/dL at 6 months
(unadjusted p = 0.033 and adjusted p = 0.034) and 18 months (unadjusted p = 0.043) compared to those with T ≥264 ng/dL.
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TABLE 3 | Changes in metabolic profile and adipokines with testosterone therapy from baseline to 18 months between the two groups.

Outcome Variables T < 264 ng/dl (n = 43) T ≥ 264 ng/dl(n = 57) p-value

Unadjusted Adjusted

HbA1c (%)
Baseline 6.7 (1.5) 6.6 (1.7) 0.664
6 months
%
D

2.2 (9.0)
0.1 (0.7)

−0.2 (8.8)
−0.1 (0.8)

0.264 0.180

12 months
%
D

3.2 (13.9)
0.2 (1.1)

−3.1 (9.2)
−0.3 (0.8)

0.030 0.005

18 months
%
D

3.8 (12.5)
0.2 (0.9)

−0.6 (10.7)
−0.1 (1.0)

0.167 0.082

FBS (mg/dl)
Baseline 124.2 (45.7) 120.4 (41.4) 0.663
6 months
%
D

2.8 (41.4)
−0.9 (71.0)

−0.2 (6.2)
−0.8 (47.1)

0.691 0.611

12 months
%
D

4.2 (37.9)
−0.6 (55.0)

2.2 (31.0)
−0.4 (44.2)

0.815 0.489

18 months
%
D

13.0 (57.3)
6.1 (56.2)

−4.2 (31.9)
−6.7 (42.0)

0.131 0.040

Total Cholesterol (mg/dl)
Baseline 170.5 (44.4) 175.6 (45.0) 0.579
6 months
%
D

−1.5 (20.2)
−6.6 (33.9)

−5.6 (22.0)
−13.8 (34.7)

0.387 0.488

12 months
%
D

1.0 (21.6)
−3.0 (35.0)

−2.5 (26.9)
−9.9 (40.7)

0.567 0.934

18 months
%
D

0.9 (21.1)
−2.4 (36.8)

−3.1 (28.8)
−13.2 (43.6)

0.555 0.894

TG (mg/dl)
Baseline 188.5 (149.1) 166.6 (83.0) 0.355
6 months
%
D

1.9 (49.5)
−13.1 (112.7)

−1.3 (2.4)
−8.8 (70.0)

0.730 0.562

12 months
%
D

22.9 (63.2)
27.4 (96.7)

18.8 (61.4)
15.4 (83.4)

0.786 0.840

18 months
%
D

20.4 (63.7)
21.4 (108.6)

1.2 (47.6)
−0.4 (88.7)

0.204 0.208

LDL (mg/dl)
Baseline 95.7 (39.7) 102.0 (36.9) 0.427
6 months
%
D

12.8 (44.1)
1.9 (30.2)

−6.4 (27.5)
−9.4 (27.2)

0.019 0.034

12 months
%
D

7.1 (48.6)
−3.5 (29.1)

−4.4 (27.2)
−7.8 (29.0)

0.230 0.339

18 months
%
D

4.6 (45.1)
−3.7 (33.5)

−0.2 (32.5)
−6.1 (30.0)

0.651 0.850

HDL (mg/dl)
Baseline 40.4 (10.4) 42.6 (14.8) 0.401
6 months
%
D

−6.8 (13.0)
−3.2 (6.1)

−6.6 (19.2)
−3.2 (9.7)

0.947 0.792

(Continued)
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however, to date, there are no studies that evaluate whether the
response to T therapy varies according to baseline T levels. In
addition, the recent shift in the diagnosis of low T from <300 ng/dl
to <264 ng/dl using a more sensitive assay would suggest that some
of the patients treated for hypogonadism in the past are not
hypogonadal by the current definition. In this study, we
compared the changes in body composition in response to T
therapy between men with a T of <264 ng/dl and those with a T
of ≥264 ng/dl. We found that both groups experienced loss of total
and regional fat mass and an increase in total and regional FFM as
well as lean mass. However, men with T < 264 ng/dl derived a
greater benefit in terms of improvement in total and appendicular
FFM compared to those with T ≥ 264 ng/dl.

Interestingly, men with T ≥ 264 ng/dl experienced some
improvement in several metabolic parameters such as HbA1c,
FBS, LDL, and leptin compared to those with T < 264 ng/dl. In
our study, HbA1c and FBS did not change significantly for men
with T < 264 ng/dl, but men with T ≥ 264 ng/dl showed significant
decline in both parameters with T therapy. Since men with T < 264
ng/dl had relatively lower baseline T levels, it is possible that this
group needed more time on adequate T levels to see significant
improvement in glycemic control. That T therapy is associated with
improvement in glucometabolic profile has been reported by prior
studies. Data from an elegant study by Jones et al. showed that T
replacement results in improvement in insulin resistance and
Frontiers in Endocrinology | www.frontiersin.org 9
glycemic control in all men including those with T2D (14). A few
other RCTs (11, 37, 38) and retrospective studies (39–41) have
shown similar results. Moreover, the data from testosterone trials
showed that benefits of T therapy on insulin resistance and fasting
glucose extend to men in the elderly age group (42).

In regard to the lipid profile, whether T therapy is beneficial or
detrimental revealed inconsistent findings. While total cholesterol
decreased, HDL also decreased in both groups with no significant
between-group differences. On the other hand, LDL significantly
differed between the two groups at 6 months with an increase in
LDL in men with T < 264 ng/dl compared to a decline in those with
T ≥ 264 ng/dl. Data from two largemetanalyses and from a previous
observational study shows that T administration to hypogonadal
men is associated with a small and insignificant decrease in HDL
cholesterol and concomitant declines in total cholesterol, TG, and
LDL (43–45). Two small RCTs showed no alteration in HDLwith T
replacement in hypogonadal men (46, 47). However, unlike our
study, these studies did not examine whether baseline T level is a
determinant of lipid response to T therapy. In our study, there was
no significant difference in baseline statin use between the
two groups.

Leptin levels decreased with T therapy in both groups, with a
greater reduction in those with T ≥ 264 ng/dl compared to those
with T < 264 ng/dl. The decrease in leptin in response to T therapy
is not surprising as studies have shown that T administration
TABLE 3 | Continued

Outcome Variables T < 264 ng/dl (n = 43) T ≥ 264 ng/dl(n = 57) p-value

Unadjusted Adjusted

12 months
%
D

−7.2 (19.7)
−3.1 (9.8)

−10.8 (14.6)
−5.4 (7.4)

0.383 0.475

18 months
%
D

−8.1 (17.1)
−3.3 (7.1)

−15.3 (11.1)
−7.3 (7.0)

0.063 0.097

Leptin (ng/ml)
Baseline 3.1 (2.3) 2.4 (1.6) 0.125
6 months
%
D

−17.4 (56.2)
−0.8 (1.1)

−22.9 (29.4)
−0.6 (1.0)

0.612 0.552

12 months
%
D

−2.5 (76.5)
−1.2 (2.5)

−14.7 (55.6)
−1.0 (1.6)

0.492 0.160

18 months
%
D

−27.6 (31.0)
−1.3 (2.0)

−40.2 (35.1)
−1.3 (1.3)

0.170 0.034

Adiponectin (µg/ml)
Baseline 49.2 (26.6) 48.8 (27.6) 0.945
6 months
%
D

−5.9 (23.2)
−4.6 (13.6)

8.7 (66.8)
1.0 (22.1)

0.254 0.347

12 months
%
D

−1.7 (32.1)
−5.3 (16.5)

4.2 (57.1)
−0.6 (26.0)

0.644 0.880

18 months
%
D

−11.6 (45.2)
−8.3 (20.0)

−15.4 (45.4)
−8.3 (17.6)

0.767 0.618
July 2022 | Volume 13 | Artic
Values are means (SD); change scores are reported as percent (%) change and absolute change (D) from baseline value. Between-group p-values are reported as unadjusted by t-tests
and adjusted for baseline by analysis of covariance (ANCOVA). Bolded p-values are statistically significant. T, testosterone; BMI, body mass index; FBS, fasting blood sugar; HbA1c,
glycated hemoglobin; TG, triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein.
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decreases leptin, both directly by suppressing leptin messenger RNA
and leptin secretion from human adipose tissue in vitro and
indirectly by a reduction in fat mass (48, 49). Indeed, one of the
oldest studies showed normalization of leptin levels with T therapy,
highlighting that the interaction of T and leptin might be part of a
hypothalamic–pituitary–gonadal–adipose tissue axis that is
involved in body weight maintenance and reproductive function
(50). Nevertheless, it is unclear why men with higher baseline T had
greater reduction in leptin in our study.

Adiponectin levels declined progressively in men with T <
264 ng/dl and only by 18 months in those with T ≥ 264 ng/dl.
Animal studies found that T therapy reduced plasma adiponectin
concentration in both sham-operated and castrated mice (51),
and this is either from increased lipolysis or by an increased in
beta-adrenergic stimulation (52, 53). Studies in humans also
Frontiers in Endocrinology | www.frontiersin.org 10
showed that T treatment in hypogonadal men decreased
adiponectin levels (13, 51, 54, 55). Regardless, to date, the
regulatory role of T on adiponectin remains poorly understood.

Our data also provide further evidence that T treatment improves
body composition to a comparable degree between those with T of <
or ≥264 ng/dl except for FFM where improvement is significantly
better in the lowT group. It is important to note that the cutoff of T <
264 ng/dl for the diagnosis of hypogonadism corresponds to <2.5th
percentile value, based on harmonization of the normal reference
range in a healthy non-obese population of European and American
men, 19 to 39 years of age (56). The current guidelines recommendT
therapy for improvement in lean mass only in men with HIV and
against theuse for improvement in glycemic control inmenwith type
2 diabetes and low T (57). Nevertheless, in clinical practice, we
encounter a considerable numberofmiddle age and elderlymenwith
A

C

B

FIGURE 2 | Changes (%) in glycated haemoglobin (HbA1c), leptin and adiponectin with testosterone (T) therapy according to baseline testosterone level. T <264 ng/
dL (red line), T ≥264 ng/dL (blue line). & Unadjusted P < 0.05, *Adjusted P value <0.05, adjusted for baseline. (A) Among men with T <264 ng/dL, HbA1c shows a
non-significant trend towards increase from baseline value at 6, 12 and 18 months, whereas men with T ≥264 ng/dL show a significant reduction in HbA1c at 12
months (Unadjusted p = 0.030 and adjusted p = 0.005) compared to those with < 264 ng/dL. However this significance is lost at 18 months in those T ≥264 ng/dL.
(B) In both groups leptin levels decline from baseline at 6 months and appear to stabilize at 12 months, but at 18 months there is a greater decline in those with T
≥264 ng/dL compared to <264 ng/dL (p = 0.034). (C) Adiponectin levels shows an interesting trend, men in group with T < 264 ng/dL show an initial decline
followed by a slight increase and a large decline at 18 months, whereas those with T ≥264 ng/dL show an initial increase in adiponectin followed by a steep decline
from 12 to 18 months time point. However, no significant between-groups were seen.
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TABLE 4 | Changes in bone mineral density with testosterone therapy from baseline to 18 months between the two groups.

Outcome Variables T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-value

Unadjusted Adjusted

Lumbar spine (g/cm2)
Baseline 1.161 (0.15) 1.081 (0.14) 0.010
6 months
%
D

2.4 (3.3)
0.029 (0.04)

1.6 (2.8)
0.017 (0.03)

0.276 0.393

12 months
%
D

3.6 (3.0)
0.043 (0.04)

2.2 (2.5)
0.023 (0.03)

0.056 0.101

18 months
%
D

4.6 (3.4)
0.055 (0.04)

3.2 (3.5)
0.033 (0.03)

0.107 0.167

Total hip (g/cm2)
Baseline 1.124 (0.146) 1.039 (0.12) 0.002
6 months
%
D

−0.1 (3.0)
−0.002 (0.03)

0.8 (2.9)
0.009 (0.03)

0.193 0.275

12 months
%
D

0.3 (3.7)
0.001 (0.04)

0.5 (3.5)
0.004 (0.04)

0.779 0.674

18 months
%
D

0.9 (3.3)
0.007 (0.04)

0.9 (2.9)
0.009 (0.03)

0.938 0.576

Femoral neck (g/cm2)
Baseline 0.838 (0.11) 0.806 (0.12) 0.194
6 months
%
D

−0.4 (5.0)
−0.003 (0.04)

0.1 (4.0)
0.001 (0.03)

0.610 0.434

12 months
%
D

−0.5 (3.3)
−0.004 (0.03)

0.7 (4.7)
0.006 (0.04)

0.230 0.167

18 months
%
D

−0.2 (4.3)
−0.003 (0.03)

0.6 (5.4)
0.003 (0.04)

0.501 0.531
Frontiers in Endocrinology | www.frontie
rsin.org
 11
 July 2022 | Volume 13 | Artic
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TABLE 5 | Changes in bone turnover markers with testosterone therapy from baseline to 18 months between the two groups.

Outcome Variables T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-value

Unadjusted Adjusted

Osteocalcin (ng/ml)
Baseline 5.8 (3.9) 7.0 (4.8) 0.220
6 months
%
D

3.5 (55.1)
−1.2 (3.4)

−4.7 (59.8)
−0.9 (4.0)

0.535 0.939

12 months
%
D

31.1 (118.6)
−0.6 (4.0)

−7.4 (63.3)
−1.9 (4.2)

0.109 0.397

18 months
%
D

25.8 (107.2)
−0.9 (3.5)

−9.3 (46.4)
−1.8 (4.8)

0.099 0.273

CTX (ng/ml)
Baseline 0.3 (0.2) 0.3 (0.2) 0.839
6 months
%
D

−22.9 (42.0)
−0.1 (0.1)

−19.9 (58.5)
−0.1 (0.1)

0.812 0.604

(Continued)
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symptoms of hypogonadismwho also havemetabolic syndrome but
with T > 264 ng/dl and in whom T therapy is withheld yet could
potentially benefit from T based on the results from our study.

Both groups showed a progressive improvement in BMD at
lumbar spine, while BMD at the femoral neck and total hip
remained stable with no significant between-group differences.
Synder et al. also showed that spine BMD improved with T
therapy, although more in men with pre-treatment testosterone
levels of <200 ng/dl, with no significant change in BMD at the
total hip and femoral neck (18). It is well known that bone
changes at the total hip are slow to respond to gonadal steroid
treatment compared to the response at the spine (34) and could
likely explain the lack of significant improvement at the total hip
and femoral neck by 18 months in our study.

Most studies have shown that T therapy decreases markers of
bone resorption (58–60). Although our study found no significant
differences in changes in BTM between the two groups, a trend
towards an increase in osteocalcin and decrease in CTX levels was
observed for men with T < 264 ng/dl, while a trend for progressive
reduction in osteocalcin and an increase in CTX after an initial
decline was observed in those with T ≥ 264 ng/dl. Sclerostin levels,
however, appeared to decline in both groups. This decline in
sclerostin could have a beneficial effect on bone remodeling as
sclerostin inhibits osteoblast differentiation (61). In a study by
Khosla’s group, the authors showed that reduction in sclerostin is
influenced by estrogen rather than T (62). In our study, the increase
in E2 was greater in men with T < 264 ng/dl and may have
accounted for the greater reduction in sclerostin in this group.
Lastly, men with T < 264 ng/dl had a greater increase in Hct, which
is likely from the greater magnitude of T increase. Both groups
experienced a non-significant increase in PSA with no difference
between the two groups.

Our study is the first one to evaluate if the effects of T therapy on
body composition, metabolic profile, and bone are influenced by the
baseline T level. So far, only one study by Synder et al. has shown
Frontiers in Endocrinology | www.frontiersin.org 12
that BMD at the lumbar spine improved the most in men with pre-
treatment testosterone levels of <200 ng/dl; however, T was
measured before standardization in T assay was implemented.
Our study is prospective in nature with a longer follow-up period
in comparison to previously published studies (11, 12, 14, 29, 35, 58,
59, 63). There are a few limitations to our study. Firstly, it is a
secondary analysis of outcome data from our prior clinical trial.
Secondly, for this study, we had limited sample size and a dropout
rate of 28% that may have contributed to the lack of between-group
differences in some outcomes.

In conclusion, our study shows that men, regardless of baseline T
level, derived some benefit from T therapy. Men with T < 264 ng/dl
benefit from a greater increase in FFM, while men with T ≥ 264 ng/
dl, contrary to our hypothesis, appear to experience greater benefit
from the metabolic standpoint, i.e., reduction in HbA1c, glucose,
LDL, and leptin. Although prior studies have suggested
improvement in insulin sensitivity in men with low T (14, 29), a
recommendation to give T to improve themetabolic profile remains
controversial (63–65). Our findings support the partial metabolic
benefit from T among men with T ≥ 264 ng/dl who, by current
guidelines, will not be treated with T. Therefore, the information
presented in the manuscript could be valuable for both clinicians
and patients in shared decision-making.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Boards of Baylor College of
TABLE 5 | Continued

Outcome Variables T < 264 ng/dl (n = 43) T ≥ 264 ng/dl (n = 57) p-value
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