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Abstract

It is not fully clear which measurable factors can reliably predict chronic stroke patients’

recovery of motor ability. In this analysis, we investigate the impact of patient demographic

characteristics, movement features, and a three-week upper-extremity intervention on the

post-treatment change in two widely used clinical outcomes—the Upper Extremity portion of

the Fugl-Meyer and the Wolf Motor Function Test. Models based on LASSO, which in vali-

dation tests account for 65% and 86% of the variability in Fugl-Meyer and Wolf, respectively,

were used to identify the set of salient demographic and movement features. We found that

age, affected limb, and several measures describing the patient’s ability to efficiently direct

motions with a single burst of speed were the most consequential in predicting clinical recov-

ery. On the other hand, the upper-extremity intervention was not a significant predictor of

recovery. Beyond a simple prognostic tool, these results suggest that focusing therapy on

the more important features is likely to improve recovery. Such validation-intensive methods

are a novel approach to determining the relative importance of patient-specific metrics and

may help guide the design of customized therapy.

Introduction

Recovering from stroke is a highly variable process [1] that is difficult to influence or predict.

There are many clinical assessments to evaluate the state of a patient and gauge his or her

long-term prognosis. Some assessments are sufficiently reliable [2], though there is no widely

accepted gold standard [3, 4]. In practice, a battery of clinical evaluations are conducted, each

used to assess a different aspect of a patient’s condition. Common assessment areas include:

(1) motor ability, such as Fugl-Meyer [5]; (2) functional performance, such as Wolf Motor

Function Test [6]; and (3) self-reported motor activity, as in the case of the Motor Activity Log

[7] and the Functional Independence Measure [8]. There is no consolidated outcome measure
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that encompasses these disparate evaluations, and there is general consensus that a combina-

tion of assessments provides the best profile of a patient [9].

The relationship between these clinical assessments and a patient’s movement features

while performing a task is not fully understood, nor whether or how they are impacted by

non-movement variables such as socio-demographic characteristics. Prediction of patient

recovery has been an area of active research where much of the recent developments have

focused on using imaging techniques to correlate changes in brain structure and perfusion pat-

terns to clinical outcomes [10–15], or to use other neurophysiological and neuroimaging bio-
markers to predict recovery [16, 17]. However, these approaches offer reasonable predictions

of recovery only when the brain is imaged immediately following a stroke.

Recent computational work has shown promise predicting some clinical measures. How-

ever, the complex algorithms used were able to explain approximately 60% of the clinical out-

come variability at best. To date, few and relatively recent studies used robots to explore the

relationship between patient progress and clinical outcomes [18, 19]. There has also been

recent success in using psychological priming to influence patient recovery from stroke with-

out directly controlling for aspects of movement [20].

One difficulty associated with exploring the relationship between patient progress and clini-

cal outcomes is the reliability of clinical outcomes [21, 22], especially in attempting to identify

small changes in a patient’s condition or small differences between patients. These changes are

often within the test-retest and inter-rater variability ranges for the clinical measures, making

them difficult to use under these conditions. Some researchers have looked into using robots

to obtain a more comprehensive set of clinical assessments [23, 24]. However, these works did

not attempt to predict the most widely-accepted clinical outcomes of Upper Extremity Fugl-

Meyer (UEFM) and Wolf Motor Function Test (WMFT).

Another computational challenge is the low number of patients in many of these studies.

Combined with the high number of measurable assessments (features) available, few methods

are available that produce reliable predictions while also pinpointing the most important fea-

tures. The field of machine learning has recently offered robust tools to address these chal-

lenges. Here, we compared the top three candidate algorithms best known for their abilities to

predict in this type of scenario of few observations and many features (mathematically referred

to as the high p low n problems). Importantly, we then used cross-validation to assess the cer-
tainty of such predictive power, allowing us to gauge confidence in our results.

In this study, we investigated the relationships between the changes in two typically-used

clinical outcomes (Upper Extremity Fugl-Meyer, UEFM, and Wolf Motor Function Test,

WMFT) following a three-week bimanual self-telerehabilitation (Fig 1A) randomized placebo-

controlled intervention. We trained N = 26 chronic stroke survivors for a two-week period (six

1-hour training sessions, Fig 1B) and extracted variables pertaining to three domains: patient

movement, clinical state and demographics (Table 1). For more details regarding the features

listed in the table, please refer to the “Construction of the Feature Set” heading in our Materials

and Methods section.

Results/Discussion

Only some models were able to effectively predict clinical outcomes (WMFT and UEFM)

using quadratic polynomials of the features given in Table 1, and pairwise interactions (see

Methods). Next, we used only those successful models to identify and rank salient predictors

of these clinical outcomes, and these rankings were consistent in 4-fold cross-validation with

100 repeats. These two steps are described in more detail in the sections below.

Feature selection in stroke outcomes
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Fig 1. Experiment design. (A) Patients reach bimanually to two targets, pseudorandomly placed at one of four possible locations in

the workspace. Patients return to a central “Home” position after every center-out reach. Patient’s wrists are represented by red

spheres. Their task is to get the red spheres inside the yellow targets at the same time. (B) Patients underwent six treatment sessions

over two weeks. They were evaluated prior to and immediately after training, as well as one week post-training. Our goal is to use the

initial assessment, clinical, and demographic information Table 1 to predict the change in outcome measures between the baseline

assessment and the final (retention) assessment.

https://doi.org/10.1371/journal.pone.0205639.g001
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Regression performance

Of the regression models we tested, we found that Least absolute shrinkage and selection oper-

ator (LASSO) [25] models performed best. We also employed elastic nets [26], which general-

ize the LASSO method, Random Forests [27], and Least Angle Regression (LARS) [28] to

simultaneously conduct a sensitivity analysis of our choice of LASSO penalty and establish

benchmarks for predictive ability. We relied on both the root mean square error (RMSE;

S2 Fig) and the coefficient of determination (R2; S3 Fig) to quantify model performance.

LASSO’s success may be unsurprising, because it has the advantage of being able to narrow

down the high-dimensional feature space to identify important features in cross-validation,

and demonstrate the impact of those features on clinical outcomes. Prediction using LASSO

was comparable to both the performances of LARS and a range of elastic net models with

Table 1. Baseline demographic and movement features for N = 26 randomized study subjects, Collected at the Rehabilitation Institute of Chicago (Now Shirley

Ryan AbilityLab) in the years 2012–2014.

Movement Features a Control Arm (n = 13) Treatment Arm (n = 13) Abbr.

mean� sd max� sd s2� sd mean� sd max� sd s2� sdb

Reaction Time (s) 0.121 ± 0.063 0.508 ± 0.215 0.028 ± 0.023 0.196 ± 0.145 0.704 ± 0.504 0.075 ± 0.129

Trial Time (s) 8.748 ± 2.131 9.690 ± 1.107 1.090 ± 1.266 8.630 ± 1.735 9.984 ± 0.078 2.186 ± 2.515

Initial Direction Error (rad) 0.806 ± 0.293 2.495 ± 0.407 0.913 ± 0.336 0.915 ± 0.152 2.524 ± 0.268 1.007 ± 0.257 IDE

Pre-Movement Speed (m/s) 0.032 ± 0.021 0.120 ± 0.079 0.001 ± 0.002 0.024 ± 0.013 0.107 ± 0.074 0.001 ± 0.001 PMS

Maximum Speed (m/s) 0.264 ± 0.054 0.386 ± 0.101 0.005 ± 0.004 0.273 ± 0.069 0.407 ± 0.071 0.004 ± 0.002

Initial Movement Ratio 0.264 ± 0.157 0.791 ± 0.153 0.080 ± 0.040 0.280 ± 0.139 0.803 ± 0.146 0.081 ± 0.031 IMR

Speed Ratio 0.571 ± 0.204 1.00 ± 0.00 0.094 ± 0.046 0.615 ± 0.167 1.00 ± 0.00 0.112 ± 0.027

Path Length Ratio 3.448 ± 1.178 5.613 ± 2.595 1.249 ± 1.701 3.307 ± 0.999 5.913 ± 2.533 1.557 ± 1.639 PLR

Number of Speed Peaks (count) 12.81 ± 5.073 19.85 ± 7.105 16.63 ± 14.01 11.45 ± 3.220 18.38 ± 3.595 15.81 ± 9.676 NSP

Maximum Perpendicular Distance (m) 0.099 ± 0.030 0.158 ± 0.053 0.001 ± 0.001 0.089 ± 0.035 0.151 ± 0.060 0.001 ± 0.001 MPD

Percentage of Movement in the Target Direction (%) 44.4 ± 15.4 57.7 ± 14.1 0.60 ± 0.30 46.3 ± 10.5 63.5 ± 13.6 0.80 ± 0.50 PMTD

Arrest Period Ratio 0.375 ± 0.101 0.654 ± 0.138 0.022 ± 0.009 0.403 ± 0.120 0.674 ± 0.122 0.022 ± 0.011 APR

Patient Characteristics c

Age (yrs) 55.54 ± 12.63 55.23 ± 9.11

Height (in) 67.62 ± 3.36 69.85 ± 4.01

Mass (lbs) 190.08 ± 27.56 214.31 ± 47.41

Months Since Stroke (months) 65.15 ± 70.32 64.00 ± 40.96

Females (count) 5(38.5%) 5(38.5%)

Left Dominant Arm (count) 3(23.1%) 2(15.4%)

Left Affected Arm (count) 9(69.2%) 5(38.5%)

Affected Arm = Dominant Arm (count true) 5(38.5%) 6(46.2%)

Hemorrhagic Stroke (count) 5(38.5%) 4(30.8%)

Cortical Lesion (count) 5(38.5%) 8(61.5%)

Subcortical Lesion (count) 9(69.2%) 6(46.2%)

Brainstem Lesion (count) 1(7.7%) 3(23.1%)

Initial Fugl-Meyer Score (Fugl-Meyer Units) 38.31 ± 6.77 36.08 ± 6.86 Initial UEFM

Initial Wolf Motor Function Time Score (sec) d 12.35 ± 16.40 8.59 ± 6.99 Initial WMFT

Initial Box-and-Blocks Score (number of blocks) 27.54 ± 15.15 27.00 ± 9.06 Initial BB

a Features are based on 20 trials per subject

b s2 denotes the variance of a feature, s2� represents the mean of this variance for a feature
c ± notation refers to mean ± sd
d WMFT is timed and therefore inversely related to ability

https://doi.org/10.1371/journal.pone.0205639.t001
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varying parameterizations S3 Fig. However, unlike elastic nets and LARS, LASSO shrinks the

coefficient of features deemed not consequential and, thus, leads to a more parsimonious

model compared to the other methods. We decided to further examine LASSO models more

closely to determine the smallest subset of features that can produce the same high perfor-

mance as the other methods (which tend to use many more features).

Our models predicted the change in patients’ Wolf Motor Function Test (WMFT) with bet-

ter coefficient of determination (mean ± sd: 86.07% ± 5.26%) than the change in Upper

Extremity Fugl Meyer (65.34% ± 17.45%). Interestingly, first-order LASSO models performed

better for predicting WMFT change, while second-order models (using the base 51 features,

their interactions, and quadratic terms) performed better in predicting UEFM change.

The poorer prediction performance with UEFM may be partly due to its coarse, discrete

nature. That is, the continuous nature of the model prediction is more precise than the

discretely reported UEFM. This may inflate the resulting RMSE values. While categorization

of UEFM and the subsequent use of logistic and multinomial models may offer a remedy,

there are no clear guidelines for establishing thresholds for discretizing the measures.

We found that for WMFT, first-order models mostly performed better than the more com-

plex second-order ones S2 Fig. This is likely due to the increased likelihood of over-fitting in

the second-order case, leading to poorer performance under cross-validation. The pairwise

interactions and second-order terms are also likely to magnify the multicollinearity problem.

These issues are well known to degrade performance of the LASSO algorithm [25, 29]. The

lack of an advantage to using second-order models leads us to conclude that first-order

LASSO models are sufficient for making predictions in the WMFT case. We are less confident

in recommending this for the UEFM predictions because of lower predictability. An added

advantage of first-order models is that they are easier to interpret and understand, and rela-

tionships between predictive features and the outcomes can be more readily translated into

actionable clinical interventions.

In contrast, Random Forests exhibited poor performance with very low R2 (for both first-

and second-order models). R2 was < 2.24% and < 4.68% for UEFM and WMFT, respectively.

These R2 values were consistent with high RMSE (� 5 UEFM and� 6.2 WMFT). This is likely

due to either collinearity or sparsity (or both). The large 51-feature input space makes this

problem implicitly sparse and the sparsity of the outcomes can be observed in Fig 2, where sev-

eral extreme values are represented by only a single subject. Cross validation removed points

that often led to complete exclusion of some regions of the input/output spaces, worsening

predictions. Collinearity by itself has little effect on a Random Forests [30, 31] because

repeated random re-sampling can discriminate between collinear features; however, collinear-

ity is likely to compound the effects of sparsity.

Another issue is that Random Forests tend to under-perform when the proportion of fea-

tures that should have been selected (also called consequential covariates) is small ([32], section

15.3.4). Poor performance is not unreasonable if only some features are pertinent to clinical

outcome, and the likelihood of randomly selecting any consequential feature at each split in a

decision tree is lower. However, our lack of a priori knowledge of salient features motivated

this analysis. Nevertheless, because of poor prediction from Random Forests, our subsequent

analytic approach below focuses only on the LASSO approach.

It is important to note that UEFM and WMFT measure different aspects of movement diffi-

culties. Not only do UEFM and WMFT have an inverse relationship, UEFM measures motor

ability while WMFT measures function. Concretely, where UEFM evaluates how well patients

perform fundamental actions such as bending their elbow, WMFT measures the time it takes

patients to effectively perform functional tasks such as grasping and transporting an object. In

Feature selection in stroke outcomes
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the sample of patients involved in this study, while participants with higher impairment levels

(low UEFM) needed more time to complete functional tasks (high WMFT) (S6 Fig).

Feature importance

To identify a reduced feature space we were interested in the relative importance of predictor

features. We used 4-fold cross-validation enumerate how often a feature was selected (feature

sufficiency), and feature omission allowed us to measure the impact of removing a feature on

model prediction ability (feature necessity). The features selected most frequently by LASSO

to predict UEFM change (red diamonds on Fig 3) were age (younger patients improved

more), height (taller patients improved more), and affected arm (non-dominant arm improved

more). Next on the list were several movement features related to either speed or stability: vari-

ance of speed ratio (higher variance improved more), number of speed peaks (fewer speed

peaks improved more), and maximum speed (lower speeds did better). While Fig 3 shows the

top 10 features, a full list of all features is shown in Supporting Information S5 Fig.

These results are consistent with previous research. It is known that cognitive performance

declines with age [33]. Since height correlates with arm length [34], we posit that taller patients

Fig 2. Model output distributions showing sparsity. Both UEFM and WMFT include few (sometimes one) subject(s)

representing extreme values of clinical change. Clinical changes for these subjects will be difficult to predict under

cross validation.

https://doi.org/10.1371/journal.pone.0205639.g002

Feature selection in stroke outcomes
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Fig 3. Feature ranking to predict UEFM change. Red diamonds mark the proportion of times during cross-validation where each feature was selected,

with the red horizontal axis on top showing the range. The effect of removing each feature on the adjusted coefficient of determination R2 is shown in

blue, each dot represents a single cross-validation run. Blue boxes show the lower quartile, median, and upper quartile of the R2 for each feature. The

bottom horizontal axis measures the change in this R2 with respect to the median R2 of the full model, which is represented by the vertical blue line. The

full model is shown at the top for comparison. None of the features stood out as clearly redundant or clearly essential for the model. Pairwise

correlations of each feature with the outcome are shown in magenta to the left of each row.

https://doi.org/10.1371/journal.pone.0205639.g003

Feature selection in stroke outcomes
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had an easier time reaching their virtual targets. Our results also agree with the effect of hand-

edness on stroke recovery discussed in [35]. Higher variability leads to more comprehensive

and often better learning [36]. Stroke survivors had fewer submovements as they improved

[37].

Another way to gauge importance was to see how model fit was influenced by excluding a

feature (blue on Fig 3). The model fit median R2 (over the 100 cross-validation runs) was most

negatively impacted when either age, height or dominant side were removed, consistent with

rank results above. Interestingly, removing some features resulted in changes in R2 that

spanned wide ranges and even had median improvement (such as when maximum trial time

and sex were removed), suggesting that it was better to exclude these features from consider-

ation. With this amount of variable data, no concrete statements can be made on the impor-

tance of these features on UEFM change.

Feature importances were more distinguishable when we inspected WMFT changes, with

all of the top 10 selected by LASSO in nearly 100% of the cross-validation runs (Fig 4, Red).

These were initial WMFT score (severely impaired improved more, which had the strongest

correlation with WMFT change, r = 0.78), affected hemisphere (left side affected improved

more), max path length ratio (higher ratios improved more), variance in number of speed

peaks (more consistent improved more), mean max speed (this time higher speeds improved

more), arrest period ratio (less time moving improved more), and age (younger improved

more). It is also important to point out that mean maximum speed was next in correlation

strength (r = 0.24).

That change in WMFT scores was best predicted by patients’ initial performance shows

that the Wolf Motor test itself is a robust, consistent measure of functional recovery. The other

features deemed important to the prediction indicate possible interventions to improve these

WMFT changes.

These results were also supported by feature exclusions. Predictions were most negatively

impacted when initial WMFT was excluded, as well as the affected hemisphere (Fig 4, blue).

Because our evaluations were on the cross-validation data, the model sometimes improved

when excluding a feature. This was particularly true with max and variance of the speed ratio

(Fig 4). Unlike UEFM, the effects on the WMFT R2 had a smaller variance over cross-valida-

tion runs. The high variance and improvement of the mode upon their exclusion are key indi-

cators that more data is necessary before conclusive statements regarding their importance

may be made. The full list of feature ranks for predicting WMFT change is shown in the Sup-

porting Information section S4 Fig.

In any case, features nearly always selected by LASSO were deemed essential to prediction,

while features never selected were deemed ineffectual. In the central region (diamonds roughly

between 0.3 and 0.7 in Figs 3 and 4) were features the LASSO model could not reliably deter-

mine were important to the model. Generally, selection of these features was contingent on

which data were available to the model at the time they are considered by LASSO.

As mentioned at the beginning of this section, each of these ranking methods, though pow-

erful, has weaknesses. When shrinking the list of features, the LASSO algorithm elects to keep

the first strongly predictive features it comes across, and shrinks all features highly correlated

with those to zero, as their impact is negligible given the first features are already in the model.

Therefore, features chosen using this method should be treated as motifs, whereby each is

interpreted not as the raw quantity it represents, but as a thematic property of a patient’s con-

dition or ability to move that is helpful in predicting the outcome.

On the other hand, measuring the consequence of excluding an individual feature is not

always accurate, because we cannot control for how other correlated features compensate for

the drop in R2. One or more other factors may compensate, resulting in a small or negligible

Feature selection in stroke outcomes
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Fig 4. Feature ranking to predict WMFT change. Similar to Fig 3, proportion of cross-validations each feature was selected is shown in red. The blue

points and boxplots show the effect of excluding each feature and rerunning the LASSO models with cross-validation. A patient’s initial WMFT score

and whether their left side was affected by the stroke are the two features whose removal most negatively impacts the prediction. Conversely, removing

information about the patient’s mass, stroke type and location was most helpful to the model, improving the adjusted R2. Notable among the top ten

features is mean max speed, which showed a strong correlation with the outcome, indicating patients who were faster on the first day improved more

on the WMFT scale.

https://doi.org/10.1371/journal.pone.0205639.g004

Feature selection in stroke outcomes
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effect on R2. It is reasonable to expect that, for at least some of the features, the change in R2

reported using our method was small in spite of the importance of that feature.

Random Forests provide an estimate of feature importance that is robust against high fea-

ture correlations and not vulnerable to some of the weaknesses of LASSO for feature ranking.

We were unable to use that algorithm to rank features, however, due to small number of sam-

ples. As more clinical data appears as rehabilitation science matures, such tree methods may

better inform our understanding of outcome predictions and feature importance.

It is important to note that our intervention (whether the patient received Error-Augmenta-

tion treatment) was not deemed useful or important in predicting our clinical outcome scores.

Surprisingly, this is in spite of showing a significant benefit to the treatment type in this ran-

domized, controlled clinical study. If large set of features used here demonstrates that other

(perhaps superfluous and uncontrolled) features are much better predictors of outcome, one

questions the meaning of the classic clinical test. Truly effective interventions should appear as

consistent predictors. We posit here that our validation-intensive methods can verify if

detected effects are confounded by other factors.

One might be concerned about whether we would have used all the movement data across

the 20 trials undertaken by each patient rather than construct our features from summary sta-

tistics, where information might be lost or hidden. However, we believe there is an advantages

to using summary statistics because they can robustly resist the spurious influences of random

measurement error, while also allowing for easy interpretation. Our chosen breadth of differ-

ent types of summary statistics (mean, maximum, and variance) led to effective prediction

models that correlate with the clinical interpretation of central tendencies, best/worst perfor-

mance, and consistency.

Another concern is that only main effects and not interactions were chosen from our data.

However, our fundamental goal was to identify single factors that were related to outcomes,

therefore we focused our feature ranking analysis on the linear models. Interaction models not

only require more data, they also are more difficult to interpret in a predictive model with no a

priori selected primary exposure variable.

What is most important is the implications these results might have for patients. Younger,

taller, non-dominant-affected arm individuals were more likely to improve their abilities

(UEFM). Younger, more severely impaired, left arm affected individuals were more likely to

improve their function (WMFT). What is also important is what these results might suggest

for altering treatment strategies. While fewer speed peaks and lower maximum speeds were

loosely related to ability as measured by UEFM gains, UEFM models were less successful and

therefore not as reliable as the WMFT models. For the WMFT predictions, the set of highly

ranked features included movement speed. Speed also had a strong correlation with outcome

and suggests that interventions focusing on speed might improve prognosis. It remains to be

seen whether a therapy that encourages faster movements might lead to better functional

recovery.

Conclusion

Changes in motor ability (UEFM) and motor function (WMFT) can both be predicted by our

models. Change in WMFT is easier to predict since it is a continuous measure. Both changes

in UEFM and WMFT can be linked to specific movement features as well as patient demo-

graphics and clinical characteristics. Our validation approach also allowed us to measure the

certainty of our findings. Since we are unable to affect demographics or clinical characteristics,

features that we can influence during rehabilitation are the most critical. This work suggests

that speed would be a good first target for further study.

Feature selection in stroke outcomes
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Materials and methods

Ethics statement

This work was approved by the University of Illinois at Chicago’s Institutional Review Board

and Northwestern University’s Institutional Review Board. This work conforms to the Decla-

ration of Helsinki for research involving human subjects. All participants provided written

consent to participate in the study using consent procedures approved by both Institutional

Review Boards.

Patient selection & initial evaluation

We enrolled twenty-six chronic hemiparetic stroke survivors in our study. Participants had

mild to moderate impairment, determined by their intake Fugl-Meyer scores (range 25-49)

and were selected according to the criteria outlined in [38, 39]. Patients’ stereoscopic vision

was tested using the Stereo Fly Test. Their reaching abilities were then evaluated before starting

the study under similar conditions. Patients were instructed to reach with both arms in paral-

lel, without crossing the midline, to two targets in a three-dimensional virtual reality environ-

ment (Fig 1A). Each subject underwent baseline and post-intervention evaluations consisting

of a battery of clinical assessments performed by a therapist, followed by 20 bimanual reaches

(trials) in the virtual reality environment, each to one of four target locations chosen

pseudorandomly.

Intervention

Patients were block-randomized controlling for age and impairment as closely as possible.

Both patient groups trained for two weeks using a Phantom1 3.0 robot arm. The control

group received no intervention and used a passive robot arm, while the treatment group expe-

rienced disturbance to their paretic arm, in the form of visual and haptic Error Augmentation

(EA) [38, 40]. All patients were evaluated again immediately after the end of training, with

final evaluation taking place one week later to assess longer-term recovery effects. Our main

outcome measures were changes in the patients’ clinical scores, as evaluated by a therapist,

between the first evaluation (prior to beginning the study) and the final evaluation three weeks

later. Specifically, our clinical outcomes were the patients’ Upper Extremity Fugl-Meyer

(UEFM), which measures motor ability, and the Wolf Motor Function Test (WMFT), which

measures completion time for functional tasks. This protocol is summarized in Fig 1B.

Construction of the feature set

We gathered a total of 51 features from two sources, either demographic/physiological charac-

teristics, and descriptive statistics of movement (Table 1). Demographic and physiological fea-

tures were denoted Zil, i = 1, . . ., N, l = 1, . . ., q, where q is the number of variables, were noted

at baseline. A battery of p measured movements were observed in T = 20 trials for each i-th

subject. These measurements, Xijk, j = 1, . . ., p, k = 1, . . ., T, in T = 20, were used to compute

baseline summary features across trials for each study participant: The mean (�Xij�), maximum

(Mij�), and variance(Vij�) movement features. A descriptive summary of demographic and

moment variables is provided in Table 1.

Features were primarily based on common metrics or were reported in previous research

[18, 41, 42]; a few of the features were newly explored in this work. These included: (a) perfor-

mance-related measures evaluating error, speed, and reaction time, (b) descriptive features

such as hand path length and trial time, and (c) patients’ demographic and clinical characteris-

tics such as height, weight, stroke location, affected side, and initial clinical scores. Ultimately,
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our first-order feature set contained 51 features, and used summaries of the movement fea-

tures across the 20 evaluation reaches (mean, maximum, and variance of each feature).

Most of the features we used (as detailed in Table 1) are fairly straightforward. A few are,

however, somewhat ambiguous. For trial k, we defined speed ratio as the speed of the first

launch divided by the maximum speed, while path length ratio is the distance traveled by the

subject’s arm divided by the straight line distance from the home position to the target. We

defined reaction time as the time between the appearance of the target and the subject crossing

our pre-defined threshold of 0.06ms−1. Mean Arrest Period Ratio (MAPR) is the time the sub-

ject spent below 10% of their maximum speed for that trial divided by the total trial time.

Finally, Percentage of Movement in Target Direction (PMTD) is defined as the proportion of

the distance traveled during a trial in the effective direction to the target, defined formally as

the sum of the projections of the distance traveled between two time samples onto the straight

line path to the target, divided by the total hand path length.

Predictive models

Movement features and patient characteristics were used to predict change in clinical out-

comes: Upper Extremity Fugl-Meyer (UEFM) and Wolf Motor Function Test (WMFT). Since

the number of possible predictive features is larger than the number of observations (patients),

the most likely models to succeed used algorithms that shrink the number of features to avoid

overfitting. These models included Elastic Net [26]. Elastic Net employs penalized linear

regression with a parameter (0� α� 1) that balances l1 and l2 norm penalties (more on that

below). On one end (α = 0) there is ridge regression [43], purely penalizing the l2 norm of the

coefficients in the model, and on the other (α = 1) is LASSO (Least Absolute Shrinkage and

Selection Operator) [25], purely penalizing the l1 norm of the coefficients. We employed Least

Angle Regression (LARS) [28]), a less greedy forward feature selection algorithm. Finally, we

tried an algorithm that utilizes decision trees to make predictions (namely Random Forests

[27]).

Our first-order prediction models used 51 features (many more for second-order case) to

predict changes in clinical scores for 26 stroke survivors. Since this is an overdetermined prob-

lem that would be guaranteed to cause overfitting, the most likely algorithms to succeed would

have to reduce the number of features used by the model. One such algorithm that we imple-

mented was Elastic Nets, represented by the following formula:

min
b0;b

1

N

XN

i¼1

ðyi � b0 � xTi bÞ
2

( )

; such that
Xp�

j¼1

jbjj � t1;
Xp�

j¼1

jbjj
2
� t2 ð1Þ

where xi ¼ ½�Xi1�; . . . ; �Xip�;Mi1�; . . . ;Mip�;Vi1�; . . . ;Mip�Zi1; . . . ;Ziq�, p� = 3p + q, t1 and t2 are reg-

ularization terms related to the penalty, placing an upper limit on the sum of the first and sec-

ond norms of predictor coefficients, and βj is the coefficient of the j-th feature. In Lagrangian

form:

min
b2Rp�

(
1

N
k y � Xb k2

2
þa k bk1 þ ð1 � aÞ k bk2

)

s:t: a ¼
l1

l1 þ l2

; ð2Þ

where λ1 and λ2 are the penalty for the sum of l1 and l2 norms of the coefficients, respectively.

We tested a range of α values from 0 to 1 with increments of 0.1—where α = 0 corresponds to

a penalty purely based on the l2 norm of the coefficients (ridge regression) and α = 1 corre-

sponds to a penalty based purely on the l1 norm (LASSO regression). LASSO drives a lot of the

predictor coefficients to zero and simplifies the resulting model [25] but sometimes over-
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regularizes. On the other hand, ridge regression keeps all coefficients in the model and drives

the less useful ones close to zero, but is more difficult to interpret since it does not remove any

features from the model [43]. Intermediate α values attempt to balance removing predictors

from the model and driving their coefficients close to zero.

Least Angle Regression (LAR) adds coefficients to the model in a stepwise manner starting

with the most correlated with the outcome being modeled, then adding coefficients in order of

correlation with the residual from the previous step. LAR may behave in a more stable fashion

than regularized regression in some cases but is also highly affected by noise [[28], discussion

by Weisberg].

The chosen model in the case of regularized regression and LAR was the maximum λ
where mean cross-validation error was within 1 standard error of its minimum value, as in

[25].

Random Forests constructs an ensemble of decision trees, each based on a randomly chosen

subset of the observations and features (therefore providing validation via random sampling,

and ensuring the trees do not overfit). Each decision tree is constructed to minimize the mean

square error at each split, and contributes a “vote” to the ensemble. The value predicted by the

random forest for a new observation is either a majority vote (classification problems) or a

mean predicted value (regression problems).

For Random Forests, we built large ensembles (50,000 regression trees) with 100 repeats of

4-fold cross validation. The large number of trees was used to ensure the algorithm has ade-

quate usage of each feature to assess its importance, especially in the case of second-order

models (> 1300 predictors).

Estimation was performed under cross-validated to avoid over-fitting and reduce the influ-

ence of outliers. Over-fitting was a concern because of the limited sample size and the eventual

inclusion of second-order terms comprised of quadratic and pairwise interaction variables.

We evaluated both first- and second-order models by looking at their variance explained (mea-

sured using adjusted R2) and prediction error distribution (RMSE). The process was identical

for predicting both UEFM and WMFT changes. We repeated 4-fold cross-validation 100 times

to obtain a range for each prediction quality metric, and ensuring we took into account differ-

ent data splits.

Ranking the features

Since LASSO regression has no built-in method for ranking model predictors and reducing

the dimensionality of the input feature space needed to predict UEFM and WMFT changes,

we devised two methods to unpack our LASSO models and determine the relative importance

of features instrumental to clinical outcome prediction.

First, we examined the shrunk feature set resulting from each of our 100 4-fold cross-valida-

tion repeats. We used the proportion of these repeats each feature was selected as our main

measure of that feature’s importance for prediction. This gave each feature a rank from 0

(always shrunk, unimportant for prediction) to 1 (never shrunk, essential for prediction).

Second, we excluded individual features and calculated the difference in prediction R2

when the feature was present and the R2
ð� jÞ when the feature was removed. We again used

4-fold cross-validation with 100 repeats. To avoid making a distributional assumption for the

change in the coefficient of variation, Dj ¼ R2 � R2
ð� jÞ, we used its median as a measure of rela-

tive importance. Features whose removal resulted in larger Δj were deemed more important to

the model.

Random forests are a powerful method [27] for ranking features in high-dimensional data

by their relative importance in predicting an outcome variable. However, we saw only limited
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success in their ability to identify important features in this data set. This is primarily due to

their failure to effectively predict changes in clinical outcomes, likely due to the small yet

highly sparse data.

Supporting information

S1 Fig. Cross-validation folds and repeats were balanced when considering individual fea-

tures. There were no obvious outliers when examining each feature’s mean for each fold dur-

ing cross-validation. Cross-validation means averaged to zero across all folds/repeats. This is

more complex when considering second-order models, but the basic sampling in our cross-

validation was balanced.

(TIF)

S2 Fig. Prediction model root mean square error (RMSE). Models were successful at predict-

ing changes in clinical outcomes, models predicting WMFT had lower errors than those pre-

dicting UEFM, Elastic Net (including LASSO and second-order Ridge) models were

successful, as was LARS, while Random Forests failed. Second-order models generally did not

provide an advantage over first-order models. (A) Root Mean Square Error (RMSE) results for

predicting WMFT change. (B) RMSE results for predicting UEFM change.

(TIF)

S3 Fig. Prediction model coefficient of determination. Models were successful at predicting

changes in clinical outcomes, WMFT models performed better than UEFM, Elastic Net

(including LASSO and second-order Ridge) models were successful, as was LARS, while Ran-

dom Forests failed. Second-order models generally did not provide an advantage over first-

order models. (A) Adjusted coefficient of determination R2 results for predicting WMFT

change. (B) Adjusted coefficient of determination results for predicting UEFM change. These

results are consistent with RMSE finding (S2 Fig). We saw higher mean R2 with first-order

than second-order Elastic Net and LARS models, and second-order models tended to have

higher variance, especially when predicting change in UEFM.

(TIF)

S4 Fig. Full list of feature ranks predicting WMFT change. Proportion of cross-validations

each feature was selected is shown in red. The blue points and boxplots show the effect of

excluding each feature and rerunning the LASSO models with cross-validation. A patient’s ini-

tial WMFT score and whether their left side was affected by the stroke are the two features

whose removal most negatively impacts the prediction. Conversely, removing information

about the patient’s mass, stroke type and location was most helpful to the model, improving

the adjusted R2. Notable among the top ten features is mean max speed, which showed a strong

correlation with the outcome, indicating patients who were faster on the first day improved

more on the WMFT scale.

(TIF)

S5 Fig. Full list of feature ranks predicting UEFM change. Red diamonds mark the propor-

tion of times during cross-validation where each feature was selected, with the red horizontal

axis on top showing the range. The effect of removing each feature on the adjusted coefficient

of determination R2 is shown in blue, each dot represents a single cross-validation run. Blue

boxes show the lower quartile, median, and upper quartile of the R2 for each feature. The bot-

tom horizontal axis measures the change in this R2 with respect to the median R2 of the full

model, which is represented by the vertical blue line. The full model is shown at the top for

comparison. None of the features stood out as clearly redundant or clearly essential for the
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model. Pairwise correlations of each feature with the outcome are shown in magenta to the left

of each row.

(TIF)

S6 Fig. UEFM and WMFT have an inverse relationship. UEFM was more sensitive to

patients with relatively higher functional ability, while WMFT was more sensitive to those

with lower functional ability. WMFT scores plateaued for patients showing larger UEFM

changes. This relationship between UEFM and WMFT may explain our observation that

slower speed predicted better recovery for UEFM while higher speeds were predictive of faster

WMFT times. Changes in clinical scores were not statistically significant after the interven-

tion.

(TIF)
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