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Pattern identification (PI), a unique diagnostic system of traditional Asian medicine, is

the process of inferring the pathological nature or location of lesions based on observed

symptoms. Despite its critical role in theory and practice, the information processing

principles underlying PI systems are generally unclear. We present a novel framework

for comprehending the PI system from a machine learning perspective. After a brief

introduction to the dimensionality of the data, we propose that the PI system can

be modeled as a dimensionality reduction process and discuss analytical issues that

can be addressed using our framework. Our framework promotes a new approach in

understanding the underlying mechanisms of the PI process with strong mathematical

tools, thereby enriching the explanatory theories of traditional Asian medicine.

Keywords: pattern identification, machine learning, dimensionality reduction, diagnostic system, traditional Asian

medicine, traditional Chinese medicine, syndrome differentiation

INTRODUCTION

Pattern identification (PI), a distinctive diagnostic system found in traditional Asian medicine
(TAM), is a clinical reasoning process that uses the signs and symptoms of patients to identify
diagnostic patterns (1). These patterns convey information about the nature of the disease or the
location of lesions and serve as a guide for treatment selection (2) (e.g., drain for a “excess” pattern
and tonify for a “deficient” pattern). Notably, patterns in TAM are pragmatic concepts that are
widely accepted as a useful treatment target rather than actual pathogens or objectively measurable
states (3). It can be said that PI is a strategy chosen to make diagnostic decisions based on naked
sense observations and to determine corresponding treatments. Despite their centrality in theory
and practice, the information processing principles of PI have remained relatively superficial.
Additionally, abstract descriptions make it difficult to objectively describe the PI process, resulting
in a low level of consistency between practitioners (4–6).

In recent years, approaches based on machine learning (ML) have demonstrated remarkable
performance in a variety of tasks, including image classification, speech processing, and natural
language processing, all of which are difficult to solve using knowledge-based approaches (7).
Interestingly, this success has spawned approaches in systems neuroscience that use ML to study
how the brain works (8–11). The strategy is to use ML algorithms as a computational model of
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the brain and to benchmark this model in order to gain a better
understanding of how the brain represents, learns, and flexibly
processes high-dimensional information.

Inspired by the idea that ML models can help capture critical
aspects of the brain’s computation, we present a novel framework
for explaining how information is processed in the PI system
and why it is effective. Within our framework, we model the
PI system as a dimensionality-reduction algorithm and propose
several research questions. By leveraging ML’s framework, we can
adopt powerful mathematical tools, broaden the scope of inquiry,
and enrich explanatory theory in TAM.

MANUSCRIPT FORMATTING

A Brief Introduction to Dimensionality
Reduction
In this paper, we view the PI system through the lens
of dimensionality reduction process, which reduces high-
dimensional data to a low-dimensional representation. To that
end, we’ll discuss high-dimensional data and dimensionality
reduction briefly. Rather than providing strict mathematical
definitions, we will explain these concepts with examples to aid
intuitive understanding.

The dimensionality of data is defined as the number of
features (attributes) that describe the observations in data
(Figure 1A) (assuming that the number of rows (observations)
exceeds the number of columns (features/attributes) and the data
matrix is full-rank, which is easily satisfied in noisy, real-world
datasets). A larger number of features leads to a more detailed
representation of the observation (i.e., high representational
power) (12). Additionally, when compared to low-dimensional
space, high-dimensional space makes data classification easier
(13). For instance, while classification in a low-dimensional space
requires non-linear and complex decision boundaries, data can
be made linearly separable by adding additional dimensions
(axes) (Figure 1B).

However, high-dimensional space does not come without
drawbacks. Due to the fact that more than four-dimensional
space is beyond human cognition, high-dimensional data are
unintuitive, making it difficult to interpret or derive insights.
More importantly, as the input dimension increases, the
classifier’s performance on unseen data typically degrades rather
than improves. A common explanation for this is the “curse of
dimensionality” (14). As the dimension increases, the volume of
space in which data are represented increases exponentially, to
the point where available data become sparse (Figure 1C) (15).
In this case, the model is likely to miss generalizable patterns
in the data. One solution is to increase the size of the training
data until the density is sufficient, while another is to reduce the
dimensionality of the data, which is usually the more practical
option (16).

Apart from these disadvantages of high-dimensional data,
the typical motivation for dimensionality reduction is that the
genuine dimension (i.e., degree of freedom) of the space may
be significantly less than the number of features due to feature
dependencies (17). That is, even if the dataset contains hundreds

or even millions of features, the majority of variation may be
explained by a handful of latent variables. There are numerous
dimensionality-reduction algorithms, and which one to use
depends on the nature of the data and the research objective.
For instance, principal component analysis (PCA), one of the
most widely used linear dimensionality-reduction techniques,
seeks to identify orthogonal axes [i.e., principal components
(PCs)] that best account for the variance of the data via a linear
combination of existing axes (18). By projecting the data into a
subspace of leading PCs, we can obtain a compact representation
of the data, albeit with some information loss (Figure 1D). There
are also non-linear techniques such as Isomap (19), t-stochastic
neighbor embedding (20), uniform manifold approximation
and projection (21) that capture non-linear relations between
variables. Overall, the motivations for dimensionality reduction
in dealing with high-dimensional data are as follows: first, high-
dimensional data are unintuitive; second, they are prone to the
curse of dimensionality; and third, a dataset’s dimensionality may
be artificially high.

Modeling the PI as a
Dimensionality-Reduction Process From
the Symptom Space
One of the most distinctive characteristics of TAM in clinical
practice is the use of patterns to identify and treat the patient.
TAM physicians evaluate patient’s clinical symptoms and signs
and classify them according to specific pattern groups (4).
The identified patterns provide basis for prescribing treatments
including herbal formula (22). Each patient can be thought of
as a point in a multidimensional symptom space, with each
dimension corresponding to a distinct symptom. If the total
number of symptoms is p, the patient is represented as a p-
dimensional vector whose elements are the coordinate values on
each symptom axis. Similarly, the herbal space can be defined in
the same way, with each dimension representing an individual
herb. If the total number of herbs is q, a herbal prescription (a
mixture of herbs) is represented as a q-dimensional vector whose
elements are the coordinate values for each herbal axis. Following
that, treatment selection can be formulated as a mapping from
the symptom space to the herbal space (To keep the discussion
concise, treatment is limited to herbal prescriptions). From the
doctor’s perspective, there are several motivations to reduce the
dimension of the input data to perform this task successfully.
Assuming the symptom and herbal space have dimensions
of p and q, respectively, the number of theoretically possible
mappings is qp. Even if each p and q are on a tens-scale, they
are already beyond the cognitive capacity of any single human
memory. In this case, shrinking the input space’s dimension
can exponentially reduce the number of available alternatives
(Figure 2A).

Additionally, there is frequently a high degree of correlation
and redundancy among individual symptoms, limiting possible
patterns of variation (e.g., fever may have a positive correlation
with thirst and a negative correlation with a pale face). In other
words, a small number of independent patterns can effectively
describe the system’s behavior, resulting in symptom data that
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FIGURE 1 | Schematic figures explaining the features of high-dimensional data. (A): Intuitive understanding of multidimensional data. Each observation (row) in each

table is described by one or more features (columns) and visualized as a point in one-, two- or three-dimensional space. This representation is easily extended to

four-dimensional space or higher, but it cannot be visualized. (B): By transforming the dataset into high-dimensional space, the data can be separated using a linear

decision boundary. (C): Curse of dimensionality. As the dimension of the space increases, the volume of the space expands exponentially, and the density of the

space becomes increasingly sparse. (D): Projection into an intrinsic-dimensional space. Data laid out in three-dimensional space can be approximated by a

two-dimensional plane composed of newly discovered axes that account for majority of the data variability.

may span only a constrained, low-dimensional subset of the
entire space. In this case, the overall structure of the symptom
data, which may not be visible at the individual symptom level,
may be more important for treatment selection. Disentangling
the data based on latent patterns may aid in revealing the data’s
intrinsic structure (Figure 2B).

Given this perspective, the PI system can be modeled as
the process of representing high-dimensional symptom data
in a low-dimensional space defined by a few latent patterns.
Assuming that the patient records contain p symptom variables
and are represented by r pattern variables, PI process can
be described as follows: Given a set of n patient vectors
X = {xi}

n
i=1 [i.e., the ith training sample is a vector

xi= [xi1, xi2, . . . , xip ]
T , where xij is jth feature of ith sample],

the aim is to transform each vector xi∈R
p into a new vector

zi∈R
r= [zi1, zi2, . . . , zir ]

T where r ≪ p. The mapping function
f :X ⊂ Rp → Z ⊂ Rr can be estimated differently depending
on the specific forms of the objective function.

Interestingly, human-inferred latent patterns may not
always be the optimal solution in terms of information loss
minimization, which is the primary goal of dimensionality-
reduction algorithms such as PCA. This is because, given human
expert’s inductive reasoning, reduced representations must
not only deliver compact information but also be cognitively

efficient. Indeed, the patterns in TAM, such as heat, cold,
deficiency, and excess, are primarily intuitive and metaphorical
concepts that are embodied in daily life (Figure 2C). Inferring
patterns from experiences or observations of the physical world
and explaining the physiological and pathological phenomena of
the human body in terms of these conceptual patterns are key
characteristics of TAM theory (23). While this approach may
appear crude and ideological in comparison to pathogen-based
diagnosis, it provides an intuitive foundation for inductive
reasoning (24, 25).

Research Questions in PI Systems That
Can Be Addressed Using Mathematical
Metrics Developed in ML
In this section, we raise several research questions that can be
addressed by utilizing our novel framework that models the PI
system in terms of the ML perspective. In particular, we focus on
the topics for specifying the dimensionality reduction properties
of the PI system.

Is PI a Linear or Non-linear Process?
Dimensionality-reduction algorithms can be classified
mathematically as linear or non-linear, which is critical
for implementation. Linear techniques such as PCA,
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FIGURE 2 | Framework modeling the PI with dimensionality reduction. (A): Rather than mapping high-dimensional spaces directly, the number of cases can be

reduced exponentially by first projecting the input space to low-dimensional space composed of multiple latent variables and then mapping it to the output space. (B):

Representing the data using a few underlying patterns reveals the intrinsic structure of the data, which is difficult to capture in a high-dimensional space where distinct

factors of variations are highly entangled. Each point represents sample data, and the points denoted by a black circle represent the ith sample, which is represented

in both the symptom space (xi ∈ Rp) and the pattern space (zi ∈ Rr ). The points are color-coded according to the identified patterns. (C): TAM’s low-dimensional

pattern space is constructed from metaphorical concepts that are embodied in everyday life. The pattern space in eight-principle PI, the most comprehensive type of

PI, is visualized as an example. Six of eight principle patterns are composed of the exterior, interior, cold, heat, deficiency, and excess, while the other two are Yin and

Yang, which are higher concepts that encompass the other six patterns. Six principle patterns are grouped in pairs of mutually opposing properties: exterior-interior,

cold-heat, and deficiency and excess. These three pairs represent the extent to which external pathogens penetrate the body, the nature of the disease, and the

relative superiority of the body’s resistance to pathogenic factors and the pathogenic qi, respectively. These concepts’ familiar and abstract characteristics enable

robust inference of the pathological pattern from a myriad of symptom phenotypes.

multidimensional scaling, and factor analysis are widely
used in a variety of fields. They employ straightforward linear
algebraic techniques that are easy to implement and provide
clear geometric interpretations (26). In the real world, however,
data may form a highly non-linear manifold. Low-dimensional
embeddings obtained viamethods assuming a linear submanifold
may be unsatisfactory in this case (27).

Whether to use a linear or non-linear technique should be
determined by the nature of the data being analyzed, as well as
the nature of the problem being solved. The PI process should
compress the symptom space while retaining the information
required for treatment selection, but its linear or non-linear
nature has not been investigated. For instance, the probability
of being identified as a particular pattern can increase supra-
linearly when a particular symptom pair appears concurrently,
whereas the probability may be negligible in the absence of a
single symptom.

Numerous techniques exist for quantifying non-linearity in
operations (28–30). Quantifying non-linearity may allow for
the assessment of the adequacy of currently developed tools
supporting clinical PI. For example, a questionnaire based on
linear regression may be ineffective for a disease in which
significant non-linear associations exist between symptoms
and patterns.

How and to What Extent the PI Abstracts Information
The core characteristic of human intelligence is to learn from
small samples to deal with previously unknown situations, which
are often linked with the critical challenges raised in ML (31).
For the brain to learn efficiently within its limited resources,

it is necessary to draw general conclusions from individual
experiences rather than memorize them all (32). Abstraction
and hierarchical information processing are critical capabilities
that contribute to the human brain’s remarkable capacity for
generalization (7, 33).

Given that PI is the process of representing patients’ clinical
symptoms as metaphorical patterns, it is fundamentally an
abstraction process. Abstract representations may aid physicians
in robustly inferring pathological patterns from a wide
variety of symptom combinations, thereby simplifying patient
classification. It is critical to investigate how and at what level
abstractions are made and how they contribute to patient
classification and/or treatment selection in order to gain a better
understanding of information processing in PI.

Obtaining abstract (high-level) representations while ignoring
irrelevant details is also critical in artificial intelligence (AI).
Deep neural networks, in particular, such as convolutional
neural networks and autoencoders are thought to learn abstract
representations, and abstraction in representations can be
quantified in various ways, for example, the degree of dichotomy
or the capacity for generalization (34–38). Similarly, abstractions
in PI can be explicitly quantified using the PI model’s
representation. Whether or not TAM concepts with varying
levels of abstraction are hierarchically encoded in the system,
or whether the level of abstraction varies between different
types of PI that employ distinct conceptual patterns, such as
Qi and blood, viscera and bowels (zangfu), or the five phases,
could be specific research topics. This would enable us to assess
the appropriate level of abstraction as well as its advantages
and disadvantages.
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What Is the Objective Function of the PI System?
The objective function specifies how a model’s performance/cost
is calculated, and a model is trained to maximize or minimize
it. In other words, the objective function represents the model’s
learning goal, which is a critical component thatmust be specified
in ML practice along with the learning rule and the architecture
(39). Similarly, we can consider the PI system’s objective function.
Investigating the objective function that led the development of
TAM’s clinical decision-making model into its current form will
give insight on the information processing strategy of PI system.

We can start with a common objective function of ML to
determine that of the PI system. In supervised learning, the most
widely used objective function is as follows:

f̂ = arg min
f ǫH

[
1

n

∑

n
i=1L(yi, f (xi)) + λJ(f )]

H denotes the function space of f , and the function f̂ is found by
the minimization of the cost (inside the square bracket), which is
composed of the loss function L

(

yi, f (xi)
)

and the regularization
function J(f ) with its associated regularization weight λ. yi and
f (xi) denotes the ground-truth treatment and model prediction
for the ith-sample xi, respectively. To minimize the loss, the
model should fit the training data as closely as possible. However,
the complexity of the model is constrained by the penalty
imposed by the regularization term. The strategy of having two
conflicting components in the objective function enables the
designer to consider a reasonable bias-variance trade-off (i.e.,
enhancing the model’s reliability in the face of unseen data at
the expense of greater bias) (40). In other words, the objective
function formulation expresses explicitly which characteristics
the system values and penalizes.

It will be important to investigate which type of performance
or penalty should be assessed by the loss and regularization
functions in order to induce the current PI system. For example,
when describing the long-term evolution of a PI system, the
regularization function may be used to constrain the agent’s
cognitive and/or computational load rather than to prevent
overfitting (In the long run, variance shrinks because lim

n→∞
σ 2 =

0, where σ 2 denotes the model variance).

DISCUSSION

Earlier research on developing an AI-based diagnostic system for
TAM was primarily focused on developing an expert system that
makes use of expertise and ontology (41–45), whereas in recent
years, a bottom-up approach that generates knowledge from
the data has become more prevalent. The majority of recent PI
studies utilizingML have attempted to develop predictive models
capable of reproducing a physician’s diagnosis (46–48). While
these studies explored the clinical applicability of ML algorithms
based on their predictive performance, there were also studies
examining the PI theory itself. One study validated TAM pattern
types statistically by demonstrating that patient clusters in the
data set correspond well to theoretical pattern types (49, 50), and
another used a decision tree algorithm to extract a collection of

symptoms indicative of a pattern in a particular disease (51) [For
a more comprehensive and systematic review of the application
of quantitative models in traditional medicine, see (52, 53)].
Our study is unique in that it presents a broader framework
for explaining and analyzing PI system’s information processing
strategy from a ML perspective. Additionally, while we explained
the PI process as dimensionality reduction, it is not exclusive to
other ML algorithms such as clustering.

When dimensionality reduction is used to extract latent
features, the process is comparable to that of theorization
or modeling. Both involve deriving fundamental principles or
patterns from massive and disordered data at the expense of
detailed information. A model that fully describes all data
samples is merely an enumeration of facts and is incapable
of conveying generalized knowledge. Instead, we require a
simple explanation to make sense of the data despite the
presence of residuals that the model cannot account for. This
aspect of dimensionality reduction is consistent with TAM’s
distinctive way of thinking, which seeks to interpret changes of
the patient’s symptoms and discomfort using abstract concepts
that describe the dynamic nature of the micro-environment of
the human body (54). By grasping the generalizable principles
underlying individual observations, we can explain, predict, and
manipulate the observed system’s behavior beyond the scope of
our experience.

According to cognitive psychology, humans frequently
employ heuristic strategies that arrive at satisfactory solutions
with a modest amount of computation to make decisions within
their cognitive capacity and time constraints (55–57). Numerous
models have been proposed to explain the strategies employed
by the human brain, and dimensionality-reduction model in
this paper is in line with such models. However, the constraint
on computing resources in the dimensionality reduction of
ML is not severe, resulting in differences between the human
and machine computation. Additionally, it is expected that
extensive feature selection will occur prior to dimensionality
reduction in the actual PI process, based on cues such as
the patient’s chief complaint. This procedure would be based
on the physician’s prior knowledge, which correspond to the
Bayesian prior. It is also noteworthy that reduced representations
in PI systems must be interpretable because they are the
product of conscious reasoning, unlike many ML algorithms,
including PCA.

We combine the ingredients of systems neuroscience and
ML to propose a conceptual framework for investigating the PI
system, based on TAM domain knowledge. The introduction
of a new perspective leads to the emergence of novel
research questions and methodologies, opening a novel field of
investigation. By implementing mathematical tools developed
in ML, we will be able to verify a variety of hypotheses to
which qualitative approaches have been applied primarily and
contribute to the development of shareable explicit knowledge.
This may help overcome one of TAM theory’s primary flaws,
namely that it is subjective and difficult to articulate. While
this framework leaves room for elaboration, we believe it will
serve as the foundation for developing interpretable AI for the
medical domain.
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