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The COVID-19 pandemic continues to be a public health threat. Multiple mutations in the spike protein of 
emerging variants of SARS-CoV-2 appear to impact on the effectiveness of available vaccines. Specific antiviral 
agents are keenly anticipated but their efficacy may also be compromised in emerging variants. One of the most 
attractive coronaviral drug targets is the main protease (Mpro). A promising Mpro inhibitor of clinical relevance is 
the peptidomimetic nirmatrelvir (PF-07321332). We expressed Mpro of six SARS-CoV-2 lineages (C.37 Lambda, 
B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omicron, P.2 Zeta), each of which carries a strongly prevalent missense 
mutation (G15S, T21I, L89F, K90R, P132H, L205V). Enzyme kinetics reveal that these Mpro variants are cata-
lytically competent to a similar degree as the wildtype. We show that nirmatrelvir has similar potency against the 
variants as the wildtype. Our in vitro data suggest that the efficacy of the specific Mpro inhibitor nirmatrelvir is not 
compromised in current COVID-19 variants.   

Since its emergence in late 2019,1 COVID-19 has significantly 
impacted on societies worldwide.2 Over 5.7 million deaths have been 
attributed to COVID-19, with the number of confirmed SARS-CoV-2 
infections surpassing 400 million.3 The outbreak of SARS-CoV-2 
prompted multiple successful vaccine development campaigns.4 

Currently approved vaccines, such as viral vector or mRNA vaccines, 
successfully limited the pandemic’s impact on global health.5,6 Most 
COVID-19 vaccines function by stimulating an immune response against 
the SARS-CoV-2 spike protein (S)7–9 but, as the spike gene has gathered 
considerable genetic variability,10,11 it is a concern if the effectiveness of 
existing vaccines is affected by variants of SARS-CoV-2.5,6,10,12 At the 
time of writing, the World Health Organization (WHO) lists five variants 
of concern (VOC; Alpha, Beta, Gamma, Delta, Omicron) and two vari-
ants of interest (VOI; Lambda, Mu).13 A possible reformulation of the 
vaccines adjusted to currently circulating lineages of SARS-CoV-2 is 
being investigated.14–16 The deployment of vaccines clearly remains the 
best public health measure to control the spread of SARS-CoV-2 and the 
severe health effects of COVID-19.17,18 

Complementary to preventive vaccines, antiviral drugs are urgently 
needed to combat COVID-19.19 Since the discovery of SARS-CoV-1 in 
2003,20 several coronaviral drug targets have been identified,21 

including the RNA-dependent RNA polymerase (RdRp, nsp12),22 the 
helicase (nsp13),23 the papain-like protease (PLpro, part of nsp3)24 and 

the main protease (Mpro, 3CLpro, nsp5).25 Despite this, treatment options 
for COVID-19 are limited. Recombinant neutralizing monoclonal anti-
bodies (mAbs) are employed in the clinical management of COVID-19, 
but resistance of the SARS-CoV-2 Omicron variant is a major 
concern.26 The orally active drugs molnupiravir (MK-4482, EIDD-2801, 
Lagevrio™) and nirmatrelvir (PF-07321332, Paxlovid™ as combination 
drug with ritonavir as booster) were first approved for emergency use in 
the United Kingdom and the United States in late 2021. Molnupiravir 
targets RdRp by acting as a nucleoside analogue prodrug, but was 
originally developed against different RNA viruses.27 Nirmatrelvir is an 
orally available peptidomimetic targeting Mpro, employing a nitrile 
warhead to covalently bind the catalytic cysteine residue in the active 
site of the protease (Fig. 1).28 

SARS-CoV-2 Mpro is a homodimeric cysteine protease, which pro-
cesses the majority of the viral polyproteins pp1a and pp1ab encoded by 
the ORF1a/b gene.25,29 Inhibition of Mpro thus ultimately hinders the 
assembly of the replication and transcription complexes (RTCs).25,30 The 
protease has a distinct recognition motif, with – in the Schechter-Berger 
notation31 – preference for leucine in P2 and especially strong preference 
for glutamine in P1.25,32 Human host proteases have different substrate 
specificities and it is therefore anticipated that selective inhibitors have 
limited off-target effects.25 

Previous research on SARS-CoV-1 Mpro (which is 96% identical in 
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amino acid sequence to SARS-CoV-2 Mpro)25 demonstrated that missense 
point mutations can influence protease activity. Mutants have been 
identified with slightly enhanced (S284, T285, I286)33–34 and slightly or 
severely reduced catalytic activity (G11, N28, S139, F140, E166, N214, 
R298).33,35–39 Specifically the R298A mutation has become a tool to 
study the protease in its monomeric form, since it inactivates the pro-
tease by disrupting the Mpro dimer.36 The present study assesses the Mpro 

mutants of emerging SARS-CoV-2 lineages. We analyzed the most 
widespread amino acid substitutions in SARS-CoV-2 Mpro, characterized 
them by enzyme kinetics and assessed their susceptibility to inhibition 
by nirmatrelvir. 

Utilizing the Outbreak.info database by Scripps Research,40 which 
partially operates with data provided by the GISAID Initiative,41 we 
performed an analysis of the genomes of SARS-CoV-2 lineages, including 
the VOC and VOI. The WIV04 sequence (EPI_ISL_402124)42 acted as 

wildtype (WT) reference genome. Lineage comparison43 of VOCs and 
VOIs revealed three missense mutations in the Mpro section of the 
ORF1a/b gene with > 20% frequency of occurrence. The mutations are 
G15S, which is > 85% prevalent44 in the Lambda VOI (or C.37, using 
PANGO nomenclature)45, K90R, which is > 95% prevalent46 in the Beta 
VOC (B.1.351) and P132H, which is > 95% prevalent47 in the Omicron 
VOC (B.1.1.529). The Delta VOC (B.1.617.2), which was the dominant 
lineage for most of the second half of 2021,48,49 did not display any 
particularly prevalent (>20%)43 missense mutations within the Mpro 

part of ORF1a/b, implying that its Mpro is identical to that of the WT. 
Furthermore, we chose to investigate three additional abundant Mpro 

mutations to cover a larger variety of lineages: T21I, which is > 90% 
prevalent50 in B.1.1.318, a WHO variant under monitoring (VUM),13 

L89F, which is > 95% prevalent51 in the B.1.2 lineage, and L205V, 
which is > 95% prevalent52 in the former VOI Zeta (P.2) (Fig. 2b). 

Fig. 1. SARS-CoV-2 Mpro inhibitor nirmatrelvir (PF-07321332).28 (a) Chemical structure of nirmatrelvir. (b) X-ray co-crystal structure of SARS-CoV-2 Mpro in 
complex with nirmatrelvir (NTV) indicating the catalytic dyad and key interacting residues as proposed by Owen et al. (PDB: 7RFW).28 

Fig. 2. Comparison of Mpro mutants. (a) X-ray co-crystal structure of SARS-CoV-2 Mpro in complex with nirmatrelvir (NTV) (PDB: 7RFW).28 The sites of mutations 
(red) and the catalytic dyad (blue) in the two protomers (green) are indicated. (b) List of prevalent Mpro mutations and their corresponding SARS-CoV-2 lineage. 

Fig. 3. Michaelis-Menten kinetics of SARS-CoV-2 Mpro variants specifying their catalytic efficiency (kcat/Km).  
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Hence, we selected the six mutations G15S, T21I, L89F, K90R, P132H 
and L205V for further investigations. 

X-ray crystal structures of WT SARS-CoV-2 Mpro (e.g. PDB: 6Y2E, 
6LU7)53–54 indicate that the residues G15, T21, K90 and P132 are 
solvent-exposed, whereas the hydrophobic residues L89 and L205 are 
buried within the protease. Except for the mutations T21I and P132H, 
the mutations introduce no major changes in the chemical character of 
the side-chains, as indicated by low – or, in the case of T21I and P132H, 
moderate – values of Miyata’s distances.55 The mutations G15S, T21I, 
L89F and K90R are located in domain I, whereas the mutations P132H 
and L205V are in domains II and III, respectively (Fig. 2a).25 To the best 
of our knowledge, these residues participate neither in the active site nor 
the allosteric binding sites of SARS-CoV-2 Mpro discussed by Günther 
et al.56 

WT SARS-CoV-2 Mpro and the mutants G15S, T21I, L89F, K90R, 
P132H and L205V were expressed in E. coli and purified. An established 
Förster resonance electron transfer (FRET) in vitro assay of Mpro activ-
ity54,57 was employed to determine initial velocities of the proteolytic 
activity at various substrate concentrations. The data confirmed that all 
mutants are enzymatically active, which was expected25,58 as a 
dysfunctional Mpro would prevent replication of SARS-CoV-2. The seven 
Mpro variants exhibited turnover numbers (kcat) between 0.54 and 1.03 
s− 1, and Michaelis constants (Km) ranging from 37 to 67 µM (Table S1). 
The catalytic efficiencies (kcat/Km) calculated for the mutants (0.009 to 
0.023 s− 1 µM− 1) are similar to that of WT Mpro (0.016 s− 1µM− 1), con-
firming that all Mpro variants are equally competent with regard to their 
proteolytic activities (Fig. 3, Table S1). 

Following the kinetic analysis of the SARS-CoV-2 Mpro variants, the 
clinical candidate nirmatrelvir (also known as PF-07321332; Fig. 1) was 
used to assess the potential impact of Mpro mutations on the drug’s ef-
ficacy (Fig. 4). The inhibition constant (Ki) of nirmatrelvir against SARS- 
CoV-2 WT Mpro has been reported to be 3.1 nM.28 Our FRET assay 
confirmed that nirmatrelvir inhibits the activity of Mpro variants at 
nanomolar inhibitor concentrations. Furthermore, the extent of inhibi-
tion was similar across the different protease variants. An initial 
screening at three selected concentrations showed that the compound 
displayed below 50% inhibition at 5 nM, over 50% inhibition at 20 nM 
and fully inhibited the enzymatic activity of all mutants and the WT at 
100 nM (Fig. 4a). Subsequently, we determined IC50 values of nirma-
trelvir against the mutants and WT, ranging from 10 nM to 13 nM with 
overlapping confidence intervals (Fig. 4b, Table S2). 

In summary, we identified the currently most prevalent Mpro variants 
(G15S, T21I, L89F, K90R, P132H, L205V) in different lineages of SARS- 
CoV-2 (C.37 Lambda, B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omi-
cron, P.2 Zeta) and found that, in a biochemical assay, they are cata-
lytically competent to a similar degree as the wildtype. In addition, we 
confirmed that nirmatrelvir maintains effective inhibition of all these 
Mpro variants in vitro. This suggests that the inhibitory effect of nirma-
trelvir and potentially other specific SARS-CoV-2 Mpro inhibitors would 
at present not be compromised for these virus variants. It must be noted, 
however, that widespread use of Mpro inhibitors may challenge SARS- 
CoV-2 to develop Mpro mutations that overcome these inhibitors, as 

previously experienced for, e.g., HIV protease inhibitors.59 Despite these 
challenges, protease inhibitors have revolutionized antiviral treatment 
for viral infectious diseases, including HIV and HCV.60 It can thus be 
expected that Mpro inhibitors will have a similar impact on the future 
development of the COVID-19 pandemic. 
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