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Abstract

Background: Members of the phylum Chlamydiae are obligate intracellular pathogens of humans and animals and
have a serious impact on host health. They comprise several zoonotic species with varying disease outcomes and
prevalence. To investigate differences in virulence, we focused on Chlamydia psittaci, C. abortus and Waddlia
chondrophila. Most threatening is C. psittaci, which frequently infects humans and causes psittacosis associated with
severe pneumonia. The closest relative of C. psittaci is C. abortus, which shares the vast majority of genes but less
frequently infects humans, and causes stillbirth and sepsis. W. chondrophila is more distantly related, and occasional
human infections are associated with respiratory diseases or miscarriage. One possible explanation for differences in
virulence originate from species-specific genes as well as differentially expressed homologous virulence factors.

Results: RNA-sequencing (RNA-Seq) was applied to purified infectious elementary bodies (EBs) and non-infectious
reticulate bodies (RBs) in order to elucidate the transcriptome of the infectious and replicative chlamydial states.
The results showed that approximately half of all genes were differentially expressed. For a descriptive comparison,
genes were categorised according to their function in the RAST database. This list was extended by the inclusion of
inclusion membrane proteins, outer membrane proteins, polymorphic membrane proteins and type III secretion
system effectors. In addition, the expression of fifty-six known and a variety of predicted virulence and immunogenic
factors with homologs in C. psittaci, C. abortus and W. chondrophila was analysed. To confirm the RNA-Seq results, the
expression of nine factors was validated using real-time quantitative polymerase chain reaction (RT-qPCR). Comparison
of RNA-Seq and RT-qPCR results showed a high mean Pearson correlation coefficient of 0.95.

Conclusions: It was shown that both the replicative and infectious chlamydial state contained distinctive
transcriptomes and the cellular processes emphasised in EBs and RBs differed substantially based on the chlamydial
species. In addition, the very first interspecies transcriptome comparison is presented here, and the considerable
differences in expression of homologous virulence factors might contribute to the differing infection rates and disease
outcomes of the pathogens. The RNA-Seq results were confirmed by RT-qPCR and demonstrate the feasibility of
interspecies transcriptome comparisons in chlamydia.
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Background
Chlamydiae are obligate intracellular gram-negative
bacteria that infect a wide range of hosts [1]. Within the
phylum, the family Chlamydiaceae is most prominent
and comprises the important human pathogens
Chlamydia (C.) trachomatis and C. pneumoniae [2].
Besides Chlamydiaceae, there are other chlamydia-like
families, such as Waddliaceae, that also infect humans
[1, 3, 4]. All members of Chlamydiaceae have a very
reduced genome of about 1.1 megabase pairs (Mbp) and
share the majority of protein-coding genes [5]. Although
the genomes are highly similar, host specificity and viru-
lence differ substantially [1, 6]. Striking examples of this
are seen for the close relatives C. psittaci and C. abortus
[7, 8]. C. psittaci is the causative agent of ornithosis (also
known as psittacosis), the most widespread zoonotic
chlamydiosis [7, 9, 10]. In birds, the symptoms include
lethargy, hyperthermia, abnormal excretions and respira-
tory distress [11]. The sequelae of psittacosis in humans
range from clinically silent or mildly flu-like to an acute
illness with severe pneumonia and death, and even
human-to-human transmissions of C. psittaci were re-
ported [12–14]. C. abortus, the closest relative of C. psit-
taci, is less widespread but still of economic importance
because it is the aetiological agent of abortion in sheep
and goats [8] and it is able to colonise the human pla-
centa [15]; the major threat concerns pregnant women
with close contact to stillborn ruminants. The resulting
infections can lead to preterm stillbirth and a sepsis-like
disease [16]. C. psittaci and C. abortus share the majority
of genes, but there are genetic differences that might be
responsible for the host specificity and tissue tropism.
These factors include the number of polymorphic mem-
brane proteins (Pmps), genes within the plasticity zone
(PZ) and the existence of a plasmid [5]. Other
chlamydia-like organisms like Waddlia (W.) chondro-
phila also exhibit the characteristic biphasic develop-
mental cycle and occasionally infect humans [1, 4, 17].
Additional similarities between W. chondrophila and
Chlamydiaceae concern the functional type III secretion
system (T3SS) and the presence of various homologous
virulence factors [18]. However, the genome architecture
of W. chondrophila is different, with a genome size of
about 2.1 Mbp and double the number of genes as the
Chlamydiaceae [18]. Furthermore, W. chondrophila en-
codes some virulence-related genes that are not present in
Chlamydiaceae, but the Pmps and PZ are absent [18, 19].
The most striking similarities of all Chlamydiae is the
biphasic developmental cycle and the establishment of an
intracellular inclusion in which the chlamydiae reside, a
structure highly modulated by the pathogen [20]. The
developmental cycle is characterised by the alternation of
infectious elementary bodies (EBs) and non-infectious re-
ticulate bodies (RBs) [1, 21]. EBs are small, extracellular

particles that are responsible for the dissemination and in-
vasion of susceptible cells. After internalisation, EBs differ-
entiate into the larger, replicative RBs. RBs exist, except
for extruded inclusions, inside the host cell and after
various cycles of replication they differentiate into EBs,
which are released by host cell lysis [21].
In this study, we applied RNA-Sequencing (RNA-Seq)

to purified EBs and RBs of C. psittaci, C. abortus and W.
chondrophila. Thereby, we elucidated the transcriptomes
of the infectious and non-infectious states and compared
the expression of virulence and immunogenic factors.
The rationale for this approach is that C. psittaci and C.
abortus have highly similar genomes and a
well-documented zoonotic potential but differ substan-
tially in disease outcome and host preference [1, 5, 15, 22].
It is reasonable that these differences originate from the
presence of species-specific genes but also due to the
differential expression of homologous virulence factors.
The more distant relative W. chondrophila was chosen as
a third model because while infections occur in humans
they are less frequent compared to C. psittaci and C.
abortus. Moreover, W. chondrophila may infect the
human respiratory tract and is also associated with mis-
carriage, features that resemble tissue tropism and disease
outcomes of C. psittaci and C. abortus [17, 23].

Results
Genome comparison
The genome architecture of C. psittaci or C. abortus is
very different when compared to W. chondrophila, with
striking variations including genome size, number of
genes and presence of PZ and Pmp genes (Table 1).
However, W. chondrophila contains a family of unique
outer membrane proteins (OMPs) [19]. Furthermore, C.
psittaci and W. chondrophila WSU 86–1044 harbor a
plasmid, which originated from a common ancestor [18],
that is absent in C. abortus (Table 1).
The number of species-specific and homologous genes

in C. psittaci, C. abortus and W. chondrophila are shown
in Fig. 1a. Altogether 562 homologs present in all three
pathogens were identified. The genes participate in es-
sential cellular processes like respiration, cell division,
DNA, fatty acid, protein and RNA metabolism (Fig. 1b).
Functional categories of the genes were assigned to the
RAST database. To extend the list of categories, T3SS
effectors were predicted with a previously published
SVM approach and EffectiveT3. Further, predictions of
inclusion membrane proteins (Incs), OMPs and Pmps
were assembled from the literature as described in the
Methods. However, potential virulence-related genes
among the homologs from all three pathogens were also
found, mainly involved in cell wall synthesis, membrane
transport and formation of chlamydial OMC. The close
relatives to C. psittaci and C. abortus share the majority
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of 916 protein-coding genes, of which 354 were not
present in W. chondrophila (Fig. 1a). The genes mainly
encode Pmps, Incs and T3SS effectors (Fig. 1b), all of
which are classes of proteins involved in virulence [24].
Beside these homologs, there are few species-specific
genes, i.e., fifty-four in C. psittaci and only sixteen in C.
abortus (Fig. 1a).

Raw data processing and coverages
A summary of the trimming, assembly and alignment re-
sults is shown in Additional file 1: Figure S1, left panels).
High sequencing depths were achieved for all three or-
ganisms in the range of 47 to 603 genome coverages
(Additional file 2). Distribution of aligned reads to
various genome locations are also shown in Additional
file 1: Figure S1, right panels). Most reads mapped to
mRNAs and thus resulted in high sensitivity: 96% in W.
chondrophila and in C. psittaci and C. abortus virtually all
protein-coding genes were ascertained to be expressed.

Intraspecies comparison of gene expression in EBs and RBs
The raw counts, normalised expression levels in EBs and
RBs and functions of the corresponding proteins are
listed in Additional files 3, 4 and 5. In C. psittaci, 601
genes (61.6%) were differentially expressed (Fig. 2a),
whereby 290 were upregulated in EBs and 311 in RBs.
An enrichment analysis of categorised genes was per-
formed in order to transfer biological functions to the
high number of differentially expressed genes. The most
prominent biological category in C. psittaci EBs was
“Protein Metabolism”, in which the expression of
eighty-nine genes was upregulated (Fig. 2b). A second
category was overrepresented in EBs, i.e., “Virulence,
Disease and Defense”, which comprised virulence factors
(see Additional file 3). Several categories, however, were
underrepresented in EBs: “Amino Acids and Deriva-
tives”, “Cofactors, Vitamins and Prosthetic Groups”,
“DNA Metabolism” and “Polymorphic Membrane

Table 1 General genomic features of C. psittaci, C. abortus and
W. chondrophila

Feature C. psittaci
02DC15a

C. abortus
S26/3b

W. chondrophila
WSU 86-1044f

Chromosome size (nt) 1,172,182 1,144,377 2,116,312

Contigs 2b 1 2

Plasmid size (nt) 7557b – 15,593

G + C content (%) 39 40 44

Genes 1023 1009 1919

Protein-coding genes 975 933 1863

Pmps 22a + c 16d + e –

Protein-coding genes in the PZ 16 6 –

Pseudo genes 6 34 12

tRNA 38 38 37

rRNA operons 1 1 1
ahttps://www.ncbi.nlm.nih.gov/genome/839?genome_assembly_id=169284
bThis study
cVoigt et al. (2012)
dhttps://www.ncbi.nlm.nih.gov/genome/1091?genome_assembly_id=300526
eThomson et al. (2005)
fhttps://www.ncbi.nlm.nih.gov/genome/?term=Waddlia+chondrophila

Fig. 1 Annotation of homologous protein-coding genes in C. psittaci, C. abortus and W. chondrophila. (a) Venn diagram showing the number of
protein-coding genes that are unique or shared among C. psittaci, C. abortus and W. chondrophila. (b) The 562 homologous genes in all three
pathogens are mainly involved in fundamental cellular processes, whereas the 354 genes shared only among C. psittaci and C. abortus encode
mainly virulence-related genes like inclusion membrane proteins, polymorphic membrane proteins and type three secretion system effectors
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Proteins”. In RB transcripts, the categories “Amino Acids
and Derivatives” and “Cofactors, Vitamins and Prosthetic
Groups” were overrepresented, whereas transcripts in
the category “Protein Metabolism” were underrepre-
sented (Fig. 2b). Due to the genomic similarities of C.
psittaci and C. abortus, species-specific genes might
have great impact on the increased virulence of C. psit-
taci. A known virulence factor present in C. psittaci but
not in C. abortus or W. chondrophila is the MACPF do-
main gene (CPS0B_RS02865) located in the PZ that was
similarly expressed in EBs and RBs (Additional file 6).
Virtually all C. psittaci isolates contained a 7.5 kb

plasmid that was absent in C. abortus. The plasmid in

chlamydia is known to be involved in infectivity and
virulence [25, 26] and in C. psittaci it contains eight
genes, seven of which are encoded on the plus strand.
Plasmid reads represented 1.49% of the RB and 0.67% of
the EB libraries, respectively, and three genes, pgp1,
pgp2 and pgp8, were differentially expressed in EBs and
RBs (Additional file 6). Of these, the DNA helicases
pgp1 and pgp2 were more abundant in EBs, whereas the
integrase pgp8 was upregulated in RBs.
In C. abortus, 397 genes (42.6%) were differentially

expressed (Fig. 2c), 207 of which were upregulated in
EBs and 190 in RBs, respectively (Additional file 4). Like
in C. psittaci, most of the genes upregulated in EBs

Fig. 2 EBs and RBs show highly diverse gene expression in C. psittaci, C. abortus and W. chondrophila. The left panel shows the number of
similarly and differentially expressed genes in the assigned functional categories for C. psittaci (a), C. abortus (c) and W. chondrophila (e). About
half of all genes are differentially expressed in EBs and RBs (black) in all three species. The right panel shows the number of up-regulated genes
in EBs (blue) and RBs (green) in C. psittaci (b), C. abortus (d) and W. chondrophila (f) within each functional category. Overrepresentation (black
asterisks) and underrepresentation (magenta asterisks) of genes within the functional categories are indicated. Significance threshold is depicted
by asterisks and represent p-value < 0.05 (*), p-value < 0.01 (**) and p-value < 0.001 (***)
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belonged to the category “Protein Metabolism” (Fig. 2d).
Other categories that were overrepresented in C. abortus
EBs were “Predicted Incs”, “T3SS effectors” and “Plasticity
Zone”. In C. abortus RBs, there was only one overrepre-
sented category, “T3SS Apparatus” (Fig. 2d). Among the
sixteen C. abortus-specific genes (Fig. 1a), no known viru-
lence factor was found, but a comprehensive description
of these genes and their potential functions are discussed
in the Additional file 7.
In W. chondrophila, 998 genes (54.2%) were differen-

tially expressed (Fig. 2e), of which 479 were upregulated
in EBs and 519 in RBs (Additional file 4). Again, the cat-
egory “Protein Metabolism” contained most differentially
expressed genes, but in contrast to C. psittaci and C. abor-
tus, this category was overrepresented in RBs (Fig. 2f). A
second overrepresented category in RBs was “RNA
Metabolism”, whereas in EBs “T3SS Effectors”, “T3SS
Apparatus”, “Carbohydrate Metabolism” and “Respiration”
were overrepresented (Fig. 2f).
From the 1271 W. chondrophila specific genes (Fig. 1a),

most are involved in metabolic processes but some encode
known virulence factors that participate in membrane
transport, drug resistance or belong to the W. chondro-
phila ompA family; several were differentially expressed in
EBs and RBs (see Additional files 6 and 7 for discussion).

Expression of homologous genes in C. psittaci and C. abortus
Differential expression of homologous genes (especially
virulence factors) might be of great relevance in the
chlamydia disease outcome. The expression of 354 hom-
ologous genes shared between C. psittaci and C. abortus
(Fig. 1a) is shown in Additional file 8. In EBs, 120 (34%)
of these 354 genes were differentially expressed, whereas
in C. psittaci EBs, fifty-nine transcripts were more abun-
dant than in C. abortus (Fig. 3a). Among these are five
known and twenty-one putative virulence factors like
Incs, Pmps and T3SS effectors. Four known and six
putative virulence factors, along with five genes that en-
code hypothetical proteins, formed a cluster of highly
expressed genes (Fig. 3a). In C. abortus EBs, sixty-one
transcripts were more abundant than in C. psittaci
(Fig. 3b); these transcripts comprised nine known and
twelve putative virulence factors (particularly Pmps).
In RBs, 170 (48%) genes were differentially expressed.

The 101 transcripts more abundant in C. psittaci RBs
are shown in Fig. 4a and included eight known virulence
factors. In addition, the transcripts of forty potential
virulence factors, of which most are predicted T3SS
effectors, were more abundant in RBs of C. psittaci than
C. abortus. Noticeably, there was a cluster of highly
expressed genes comprised of four known virulence
factors (hctB, omcA, sinC and tarP) and two predicted
T3SS effectors.

In C. abortus RBs, sixty-nine transcripts were more
abundant than in C. psittaci. These transcripts included
eleven known (like the Pmps that form a cluster of
highly expressed genes) and twelve putative virulence
factors (Fig. 4b). More detailed heatmaps of differentially
expressed genes in C. psittaci and C. abortus that
include NCBI locus tags and annotation of genes are
shown in Additional file 1: Figures S2 – S5).
The expression of thirty-four known virulence factors

and immunogenic genes shared between C. psittaci and
C. abortus is summarised in Fig. 5a. Some virulence fac-
tors, like ompA, porB, pmpA and cap1, were similarly
expressed in the EBs and RBs of both organisms; ompA
was one of the most abundant transcripts. sinC and tarP
transcripts were more highly expressed in EBs and RBs
of C. psittaci compared to C. abortus. In contrast, pmpD,
pmpH, incA and incB were more highly expressed in C.
abortus. To confirm these results, we used RT-qPCR to
evaluate the expression of cap1, copB_1, incA, ompA
and sinC. We found a high level of correlation (> 0.97)
between RT-qPCR and RNA-Seq results in this interspe-
cies comparison (Fig. 5b).

Expression of homologous genes in C. psittaci, C. abortus
and W. chondrophila
C. psittaci, C. abortus and W. chondrophila shared 562
homologous genes (Fig. 1a) and the functions and
expression of these are listed in Additional file 9. These
genes also comprise homologs of general stress response
proteins (e.g., DnaK, GroEL, and GroES) that are
involved in development (e.g., HctA), adhesion (e.g.,
OmcB) and drug-resistance (e.g., PhnP).
In C. psittaci and C. abortus EBs, C. psittaci and C.

abortus 444 (79%) genes were similarly expressed,
whereas C. psittaci and W. chondrophila expressed 319
(57%) and C. abortus and W. chondrophila 310 genes
(55%) similarly. These results demonstrate that in C.
psittaci and C. abortus EBs, C. psittaci and C. abortusex-
pression of core genes is more similar than when
compared to W. chondrophila. In addition, there was
a core transcriptome in EBs that consisted of 209
(37%) genes that were similarly expressed in all three
pathogens; it comprised hrta, mgtE, phnP and sodA
(Additional file 9).
In RBs, there were only 327 (58%) genes similarly

expressed in C. psittaci and C. abortus. When compared
to RBs of W. chondrophila, C. psittaci expressed 304
genes (54%) and C. abortus expressed 345 (61%) simi-
larly. There was also a core transcriptome in RBs that
consisted of 177 (31%) similarly expressed genes in all
three pathogens, including cpaF, dnaK, gp6D, hctA, hrtA,
marC, mgtE and zntA (Additional file 9).
The most abundant transcripts of the core genome

were omcB and groEL, and the expression of these and
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other known genes shared among C. psittaci, C. abortus
and W. chondrophila is shown in Fig. 6. The interspecies
comparison resulted in several variants of expressed
genes that ranged from similarly to differentially
expressed genes in the infectious and non-infectious
states of all three species. For example, the expression
level of htrA was similar in EBs and RBs from all three
organisms. In contrast, genes like hctA, cpaF, dnaK,
marC and zntA were similarly expressed in RBs but dif-
ferentially in EBs, and other genes (e.g., sodA and phnP)
were similarly expressed in EBs from all three pathogens
but differentially expressed in RBs (Fig. 6). omcB repre-
sented a differentially expressed virulence factor. It is an
important component of the chlamydial OMC and one
of the most abundant transcripts of the core genome
(Additional file 9). It was highly expressed in EBs of C.
psittaci and W. chondrophila but much less in C. abor-
tus (Fig. 6). In order to confirm the RNA-Seq results, we
performed RT-qPCRs with primers selected for dnaK,
hctA, mip and omcB. We observed a high correlation
between RT-qPCR and RNA-seq results (see Additional
file 1: Figure S6).

Discussion
Comparison of gene expression in EBs and RBs
We showed that infectious and non-infectious chlamydial
particles contain distinctive transcriptomes, as previously
reported for C. trachomatis and C. pneumoniae [27, 28].

However, the cellular processes emphasised in EBs and
RBs differ substantially depending on the chlamydial
species (Fig. 2).
High expression of genes involved in “Protein Metab-

olism” in C. psittaci and C. abortus EBs might be due to
newly synthesised proteins that are required upon
chlamydial infection. High expression of the protein-
aceous components of the 30S and 50S ribosomal sub-
units in early infection was also shown in C. trachomatis
and C. pneumoniae EBs and in early chlamydial infec-
tion [27–30]. In addition, upregulation of Pmps, Incs
and genes involved in the T3SS apparatus formation in
C. abortus RBs is consistent with the infection model
postulated by [31].
A substantial difference between C. psittaci and C.

abortus the presence of a plasmid in C. psittaci. The
plasmid of C. trachomatis and C. muridarum is
known to be involved in the infectivity and virulence
and plasmid proteins regulate the transcription of
multiple chromosomal genes in these species [25, 32].
Interestingly, the important human and zoonotic
pathogen, C. pneumoniae, does not normally harbor a
plasmid and a study of the C. psittaci 6 BC strain
showed no effect of plasmid loss in a murine model
[33]. This indicates differences in the impact of the
plasmid on virulence among chlamydial species,
which might associated with the various niche adap-
tions of the pathogens.

Fig. 3 Heatmaps showing differentially expressed transcripts in EBs of C. psittaci and C. abortus. From the 354 homologous genes shared
between C. psittaci and C. abortus 120 were differentially expressed (Benjamini-Hochberg adjusted p-value < 0.01 and an absolute log2-fold
change > 1.0) in EBs. Of these 59 are up-regulated in C. psittaci (a) and 61 in C. abortus (b). Known as well as potential virulence factors (predicted
Incs and T3SS effectors) and genes with associated gene names are indicated. Hierarchical clustering was performed using hclust with regularized
log transformed (rlog) gene expression values and the complete linkage method
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In W. chondrophila, increased RNA and protein
synthesis was indicated during replication, whereas
T3SS apparatuses and effectors were synthesised in
the EBs (Fig. 2). Moreover, there might be respiratory
activity in W. chondrophila EBs, as previously proven
for another environmental chlamydia [34], since the
categories “Carbohydrates” and “Respiration” were
overrepresented in the infectious state.
Some upregulated transcripts in EBs might repre-

sent “carryover mRNAs” (e.g., the histone-like genes
hctA and hctB) that are important at the end of the
life cycle but degraded early after infection [35].
Other mRNAs that are required in early infection
might be preloaded into EBs in order to accelerate
corresponding protein synthesis. An example is the
virulence factor Cap1, an Inc. protein associated with
capture of lipid droplets [36] and highly expressed in
EBs (Fig. 5a). Its high expression might correspond to
the demand for lipids in order to form membranes
after chlamydia internalisation.

Expression of genes shared between C. psittaci and
C. abortus
This study is the first reported interspecies comparison
and therefore emphasis was put on the confirmation of
the RNA-Seq results. For this, RT-qPCR was used to
cross-validate the expression of nine homologous factors
that represented low, high as well as similarly and differ-
entially expressed genes. A high correlation between
RT-qPCR and RNA-Seq was found in both the intraspe-
cies (e.g. EBs with RBs of C. psittaci) and interspecies
(e.g. EBs from C. psittaci with C. abortus) comparisons
and demonstrated the validity of our approach (Fig. 5b;
Additional file 1: Figure S6).
There were large differences in the expression of genes

involved in virulence, especially in EBs, whereas most of
the genes involved in metabolic processes were similarly
expressed. It is reasonable that differential expression of
virulence factors contributes to the differences between
C. psittaci and C. abortus. For example, sinC and tarP
were more highly expressed in C. psittaci compared to

Fig. 4 Heatmaps showing differentially expressed transcripts in RBs of C. psittaci and C. abortus. From the 354 homologous genes shared
between C. psittaci and C. abortus 170 were differentially expressed (Benjamini-Hochberg adjusted p-value < 0.01 and an absolute log2-fold
change > 1.0) in RBs. Of these 101 are up-regulated in C. psittaci (a) and 69 in C. abortus (b). Known as well as potential virulence factors
(predicted Incs and T3SS effectors) and genes with associated gene names are indicated. Hierarchical clustering was performed using hclust with
regularized log transformed (rlog) gene expression values and the complete linkage method
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C. abortus (Fig. 5a). Translocated actin recruiting
phosphoprotein (TARP) is translocated into the host cyto-
sol upon EB attachment [37] and is the most abundant
T3SS effector in C. trachomatis EBs [38]. Although the
detailed mechanism of chlamydial entry has yet to be elu-
cidated, evidence suggests that TARP mediates chlamydia
internalisation [39]. It facilitates the recruitment of actin

filaments to the site of EB attachment, and the high tarP
expression in C. psittaci EBs might contribute to its higher
infectivity by promoting EB internalisation [40]. sinC is
conserved in C. psittaci, C. abortus, C. caviae and C. felis,
but surprisingly not in the major human pathogens C. tra-
chomatis and C. pneumoniae [41]. SinC is secreted and
targets a conserved component of the inner nuclear

Fig. 5 Expression of homologous genes shared between C. psittaci and C. abortus. a The normalized expression (DESeq2) of 34 virulence and
immunogenic factors present in C. psittaci and C. abortus but absent in W. chondrophila are shown. Significance threshold is depicted by asterisk
(*) and represents Benjamini-Hochberg adjusted p-value < 0.01 and an absolute log2-fold change > 1.0. Homologous virulence factors for which
no gene name was found are specified with the C. psittaci NCBI locus tag. b Confirmation of the RNA-seq results with RT-qPCR for five genes
shared among C. psittaci and C. abortus. The Pearson correlation coefficient (> 0.97) demonstrates the high degree of correlation between the
RT-qPCR and RNA-seq results in both the intra- and inter-species comparison of gene expression. Standard deviation of log2-fold changes
are indicated

Beder and Saluz BMC Genomics  (2018) 19:575 Page 8 of 14



Fig. 6 Expression of homologous genes shared between C. psittaci, C. abortus and W. chondrophila. The inter-species comparison revealed that
various genes are differentially expressed in EBs and RBs. The normalized expression (DESeq2) of 22 genes (mostly virulence factors) shared
among C. psittaci, C. abortus and W. chondrophila are shown. Genes are sorted according to their functions: a adhesion and host cell entry,
b stress response, c drug resistance, d manipulation of host cell immune response, e diverse functions and f effectors secreted by the type III
secretion system. Significance threshold is depicted by asterisk (*) and represents Benjamini-Hochberg adjusted p-value < 0.01 and an absolute
log2-fold change > 1.0

Beder and Saluz BMC Genomics  (2018) 19:575 Page 9 of 14



membrane [41]. It apparently alters nuclear envelope
functions of the infected host cell and, consequently,
higher expression in C. psittaci might contribute to in-
creased virulence when compared to C. abortus [41].
In contrast, incA and incB are more highly expressed

in C. abortus EBs and RBs (Fig. 5b). Incs are located at
the interphase of the inclusion and the host cytosol and
thus are important virulence factors; they inhibit fusion
with endosomal compartments or promote fusogenicity
with host vesicles [42]. C. psittaci IncB associates with
the host protein Snapin and connects chlamydial inclu-
sions with the microtubule network [43], whereas IncA
interacts with the host protein G3BP1. This action leads
to a decreased concentration of the c-Myc protein [44],
and upregulation of incA might contribute to apoptosis
inhibition in C. abortus.
Despite these differences there were similarly

expressed virulence factors, such as ompA, porB and
pmpA and cap1, between C. psittaci and C. abortus that
might contribute to the resembling features of the path-
ogens (Fig. 5b). OmpA, PorB and PmpA are components
of the OMC, whereby OmpA is the most abundant
OMC protein and is involved in protective immunity
against chlamydia [45, 46]. In concordance, ompA was
also one of the most abundant transcripts found in C.
psittaci and C. abortus as well as in C. trachomatis and
C. pneumoniae EBs [27, 28].

Expression of homologous genes in C. psittaci, C. abortus
and W. chondrophila
In order to gain more profound insights into chlamydial
gene expression, W. chondrophila was included in the
analysis. In total, 562 homologous genes (e.g., hctA, hrtA
and omcB) present in all three pathogens were identified
(Fig. 1a). These genes participate in essential processes
like stress response, respiration, development, DNA,
fatty acid, protein and RNA metabolism (Fig. 1b). HctA
is involved in chromosome condensation at the end of
the developmental cycle [47], and the highest hctA ex-
pression was detected in W. chondrophila EBs, followed
by C. psittaci EBs, and the lowest expression was in C.
abortus (Fig. 6). Expression of the histone–like hctA
might directly influence the duration of the pathogen life
cycle. Correspondingly, hctA expression was in accord-
ance with the life cycle of each microorganism in human
cells: W. chondrophila requires 30 h, followed by C. psit-
taci (38 h) and C. abortus (48 h).
C. trachomatis HrtA is a temperature-activated serine

protease specific for unfolded proteins [48] and has
important functions in stress resistance [49]. OmcB
mediates initial contact with the host cell [50] and the
transcript is enriched in C. trachomatis EBs [27]. High
omcB expression in C. psittaci and C. trachomatis EBs
might directly influence attachment to the host cell and,

consequently, cause increased infectivity of the patho-
gens when compared to C. abortus or W. chondrophila.

Conclusion
We showed that both the replicative and infectious
chlamydial state contained distinctive transcriptomes
and that the cellular processes emphasised in EBs and
RBs differ substantially within the chlamydial species.
Further, we present here the very first interspecies tran-
scriptome comparison and found considerable differ-
ences in the expression of homologous virulence factors.
To confirm the RNA-Seq results, the expression of nine
homologous genes was cross-validated using RT-qPCR;
a high correlation was found. Differential expression of
homologous virulence factors might directly influence
infectivity, host specificity and tissue tropism of the
pathogens. It is important to note that harvesting time
points have to be considered when focusing on an inter-
species comparison of RB and EB transcriptomes. RBs
and EBs of the three pathogens were purified at different
time points in order to isolate only characteristic develop-
mental forms, e.g., by exclusion of RBs to EBs transition
states and vice versa, also referred to as intermediate bod-
ies. Our findings may not apply to forms at other time
points during infection. However, a time-resolved
transcriptome analysis of RBs and EBs is now possible due
to the presented approach and decreasing costs for
RNA-Seq.

Methods
Cell line, bacterial strains and purification of EBs and RBs
HEp-2 human epithelial cells (ATCC no. CCL-23) were
infected with C. psittaci 02 DC15, C. abortus S26/3 or
W. chondrophila 2032/99. C. abortus and C. psittaci in-
fections were carried out with a multiplicity of infection
(MOI) of 5.0, and W. chondrophila infection had a MOI
of 0.5. This difference was done due to the devastating
effects of higher W. chondrophila MOIs on the cell
monolayer. For each experiment, the infected cell mono-
layers from eight 25 cm2 cell culture flasks were pooled
by scraping in ice-cold sucrose-phosphate-glutamic acid
(SPG) buffer. Cultivation, harvest and purification of
chlamydia were carried out as previously described [51].
In order to isolate only characteristic developmental
forms (exclusion of transition states of RBs to EBs and
vice versa, also referred to as intermediate bodies), the
chlamydial developmental cycle was monitored using
fluorescence microscopy. Phases of exponential expan-
sion of the inclusions were determined by measuring the
inclusion sizes with ImageJ. Inclusion size among the
species is similar and expansion of the chlamydial inclu-
sion is linked to bacterial replication [52–55]. Time
points for RB purification were chosen during the loga-
rithmic growth phase when the inclusions were in the
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range of 4–6 μm in all species. Consequently, RBs were
purified at the following hours post-inoculation (hpi): C.
psittaci, 24 hpi; C. abortus, 36 hpi; W. chondrophila, 18
hpi. Time points for EB purification were chosen just be-
fore host cell rupture and release of the particles in
order to collect the EBs within the first propagation
cycle for all species. Thus, EBs were purified as follows:
C. psittaci, 38 hpi; C. abortus, 48 hpi; W. chondrophila,
30 hpi. We collected four (C. psittaci) or three (C. abor-
tus and W. chondrophila) biological replicates of purified
EBs and RBs.

RNA isolation and complementary DNA (cDNA) library
preparation
EB and RB pellets were incubated in 500 μL TRIsure™
reagent (Bioline) and lysed at 65 °C for 5 min followed
by phenol-chloroform extraction. The aqueous phase
was mixed with one-tenth the volume of sodium acetate
(3 M; pH = 5.2) and precipitation was carried out with
ethanol. In total, 10 μg of RNA per sample was treated
with 10 U of DNase I (Thermo Scientific) for 45 min at
37 °C. After DNase I digestion, RNA molecules longer
than 200 nucleotides were purified using the RNA Clean
& Concentrator™-5 kit (ZymoResearch). The absence of
DNA was ensured by RT-qPCR. To remove ribosomal
RNA (rRNA), the ScriptSeq™ Complete Gold Kit (Epi-
demiology) was used. RNA quality controls were per-
formed after total RNA isolation, DNA digestion and
rRNA removal using Bioanalyzer 2100 measurements
and the Agilent RNA 6000 Pico kit (Agilent Technolo-
gies). For the synthesis of cDNA libraries, 5 ng chem-
ically fragmented RNA was applied as described by the
ScriptSeq™ Complete Gold Kit (Illumina). The cDNA li-
braries were barcoded using ScriptSeq™ Index PCR
Primers (Illumina) and after PCR amplification were
purified using the AMPure XP System (Beckman
Coulter). The size distribution of cDNA and absence of
primer dimers were monitored via the Agilent High
Sensitivity DNA Kit (Agilent Technologies). Final librar-
ies were sequenced by StarSEQ GmbH (Mainz) using a
NextSeq 500 (Illumina) platform and the 150 bp
paired-end protocol. Raw sequence data were deposited
in the NCBI Sequence Read Archive under accession
numbers SRP131747, SRP131830 and SRP131936.

Sequence analysis and statistics
Reads were trimmed using Trimmomatic [56] and quality
of trimmed reads was assessed using FastQC. Because of
the overall short-length distribution of cDNA, overlapping
paired-end reads were merged using PEAR software [57].
The assembled 36–292 bp single-end reads were aligned
to human (hg19), mitochondrial (NC_012920.1) and
corresponding chlamydial (NC_017292, NC_004552 or
NC_014225) reference genomes using Bowtie2 in

“--very-sensitive” mode [58]. For W. chondrophila 2032/
99, only a draft genome was publicly accessible and there-
fore read alignment was performed to the closest relative,
W. chondrophila WSU 86–1044 (99% sequence identity),
for which the complete genome sequence was available.
Alignment to the human genome was performed to deter-
mine the number of unaligned reads and assess the integ-
rity of the sequenced strains to the available genome
sequences. Similar percentages of unaligned reads (< 5%)
were found for both the “in-house” sequenced C. psittaci
02 DC15 (NC_017292) and the public C. abortus and W.
chondrophila genome sequences. Previously unaligned
reads for C. psittaci 02 DC15 were assembled using
trinityrnaseq-2.0.4 [59] and a plasmid was found that is
identical to C. psittaci 6 BC (NC_017288.1). Raw count ta-
bles were generated using the GenomicAlignments v1.4.2
package, whereby chlamydial rRNA and transfer RNA
(tRNA) were excluded from analyses to overcome the
variable efficiency of size selection and rRNA depletion
steps. Differential gene expression analysis was performed
using DESeq2, which normalises sequencing depth
between samples using a size factor that allows for
inter-sample comparisons [60]. DESeq2 adjusted the
p-values for multiple testing using the procedure of Benja-
mini and Hochberg, which tests the null hypothesis that
the change between treatment and control for a gene’s
expression is exactly zero. For the intraspecies comparison
of gene expression in EBs and RBs, a significance
threshold of the Benjamini-Hochberg adjusted p-value
(padj) < 0.05 was applied.

RT-qPCR
For each biological replicate of C. psittaci, C. abortus
and W. chondrophila EBs and RBs, 100 ng DNAse
I-digested RNA was reverse transcribed using iScript™
Reverse Transcription Supermix (Bio-Rad) according to
manufacturer’s protocol. For RT-qPCR, cDNA was di-
luted 1:5 in 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA.
PCR was performed in a 10 μL volume that contained
1 μL cDNA, 5 μL SsoFast™ EvaGreen® Supermix with
Low ROX (Bio-Rad) and 200 nM forward and reverse
primers (Additional file 10). RT-qPCR was performed
with a StepOnePlus™ (Applied Biosystems) system. All
RT-qPCR reactions were performed in triplicate. The
primers used in the study are listed in Additional file 9.
16S rRNA was previously applied in a variety of studies
to normalise chlamydial gene expression [35]; however,
it was not among the best candidates for housekeeping
genes in C. psittaci, C. abortus and W. chondrophila.
Therefore, a housekeeping index was defined with the
geometric mean of the most stably expressed housekeep-
ing candidates. These were pmpA and groEL for genes
shared between C. psittaci and C. abortus and hrtA for
genes shared among all three organisms. Gene expression
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was quantified using the 2-(ΔΔCt) method. The log2-fold
changes in gene expression determined by RNA-Seq and
RT-qPCR were tested for linear association using the Pear-
son correlation coefficient.

Species-specific and homologous genes
For the identification of species-specific and homologous
genes, an all-vs.-all comparison of C. psittaci, C. abortus
and W. chondrophila genomes was performed using
RAST [61]. Identified bidirectional hits were filtered,
and hits with less than 30% total DNA sequence identity
were removed. In case of multiple matches only the
best was retained. The best reciprocal hits by these
criteria were considered as homologs. For the inter-
species comparison of differentially expressed genes,
the significance threshold padj < 0.01 and an absolute
log2-fold change > 1.0 were applied.

Biological functions and enrichment analysis
Biological functions were assigned to chlamydial genes
using the RAST [61] database. To extend the list of cat-
egories, predictions for Incs, OMPs and Pmps were as-
sembled from the literature [5, 19, 62]. In C. psittaci and
C. abortus, potential T3SS effectors were predicted using
EffectiveT3 [63], with a cutoff > 0.9999, and compared
with the previously published SVM learning approach
[5]. Genes predicted to be type III secreted by both
methods were considered T3SS effectors. For W.
chondrophila, only EffectiveT3 (cutoff > 0.9999) predic-
tions were available. Differentially expressed genes in
EBs or RBs within each subcategory were tested for
over-representation using the one-sided Fisher’s exact
test implemented in R version 3.1.0. Categories with less
than two records were omitted in the Figures.
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