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Background: The purpose of this study was to identify prostate cancer (PC) oncogenic microRNAs (miRs) based on miR microarray
and to investigate whether these oncogenic miRs may be useful as PC biomarkers.

Methods: Initially, we carried out miR microarray and real-time PCR using RWPE-1, PC-3, DU-145 and LNCaP cells. To investigate
the function of miR-183, we used a miR-183 knockdown inhibitor in cell growth and wound-healing assays. We used several
algorithms and confirmed that they are directly regulated by miR-183.

Results: We identified three potential oncogenic miRs (miR-146a, miR-183 and miR-767-5P). The expression of miR-183 in PC cells
(PC-3, DU-145 and LNCaP) was upregulated compared with RWPE-1 cells. MiR-183 expression was also significantly higher in PC
tissues compared with that in matched normal prostate tissues. Additionally, miR-183 expression was correlated with higher
prostate-specific antigen, higher pT and shorter overall survival. MiR-183 knockdown decreased cell growth and motility in PC cells
and significantly decreased prostate tumour growth in in vivo nude mice experiments. We identified Dkk-3 and SMAD4 as
potential target genes of miR-183.

Conclusion: Our data suggest that oncogenic miR-183 may be useful as a new PC biomarker and that inhibition of miR-183
expression may be therapeutically beneficial as a PC treatment.

Prostate cancer (PC) is the second leading cause of cancer death
among men, accounting for 11% of deaths in the United States
(Jemal et al, 2010). The etiology of PC is largely unknown,
although several risk factors, such as ethnicity, family history and
age, are associated with the disease (Pienta and Esper, 1993;
Roemeling et al, 2006). In addition, several dietary constituents
have been linked to PC risk and prevention (Shukla and Gupta,
2005; Chan et al, 2006). As prostate-specific antigen (PSA)
screening test has spread, the number of cured patients has tended
to increase. Also a significant number of patients with lymph node
metastasis are identified during radical prostatectomy (Cheng et al,
2001) and 50% of those patients diagnosed with metastasis die
within 5 years (Pound et al, 1999). Therefore, new tumour markers
and effective therapeutic strategies are needed for PC.

MicroRNAs are well-known examples of non-coding RNAs
(Ying et al, 2008) and identified human miRs currently number

1424 according to miRBase (http://www.mirbase.org/). Micro-
RNAs bind to the 30UTR of target gene mRNA and repress protein
translation or induce mRNA cleavage (McManus and Sharp,
2002), thereby inhibiting protein expression. It has been reported
that aberrant expression of miRs occurs in PC (Volinia et al 2006;
Porkka et al, 2007; Ambs et al, 2008; Ozen et al, 2008; Schaefer
et al, 2010). Decreased expression of tumour-suppressor miRs
result in increased expression of target oncogenes, whereas
increased expression of oncogenic miRs leads to loss or decreased
expression of target tumour-suppressor genes.

Therefore, the aim of this study is to identify new oncogenic
miRs that influence PC progression and validate their function.
Another aim of this project is to identify new therapeutic methods
for PC treatment. In this study, we identified PC oncogenic miRs
based on miR microarray data. After validating the microarray
results, we identified miR-183 as a potential PC oncogenic
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miR. We confirmed its expression in PC tissues and performed
functional analyses. We also established miR-183 low-stable
expressing PC cell lines using a lenti-viral system and tested
whether miR-183 inhibitor decreased PC growth compared with
control inhibitor. Finally, we used a target scan algorithm
(microRNA.org) to identify Dkk-3 and SMAD4 as target genes
of miR-183. We also performed 30UTR luciferase assays and
western blot analysis to look at target gene protein expression in
miR-183 knockdown prostate cells. Finally, we showed that Dkk-3
and SMAD4 overexpression decreased the tumourigenicity of PC
cells via WNT/b-catenin signalling.

MATERIALS AND METHODS

Cell lines and cell cultures. RWPE-1 cells derived from normal
prostate epithelial cells were used as controls (ATCC, Manassas,
VA, USA). Prostate cancer cell lines (PC-3, DU-145 and LNCaP)
were purchased from the ATCC. Permanent stocks of cells were
prepared and all cells were stored at � 80 1C until use. Cells were
used for experiments within 6 months. RWPE-1 cells were cultured
in keratinocyte-SFM (GIBCO/Invitrogen, Carlsbad, CA, USA).
Prostate cancer cell lines were cultured in RPMI-1640 medium
(UCSF Cell Culture Facility, San Francisco, CA, USA) supple-
mented with 10% fetal bovine serum.

MicroRNA microarray. For miR microarray, total RNA was
extracted from RWPE-1, PC-3 and LNCaP cells using a miRNeasy
Mini Kit. MicroRNA microarray analysis was carried out and
analysed by LC Science (Houston, TX, USA).

Clinical samples. A total of 31 patients with pathologically
confirmed PC were enrolled in this study (Veterans Affairs
Medical Center at San Francisco). Written informed consent was
obtained from all patients and the study was approved by the
UCSF Committee on Human Research (Approval number: H9058-
35751-01). The detailed information of patients is shown in
Supplementary Table 1.

Transfection and RNA extraction. Ambion Anti-miR miRNA
inhibitors (Negative Control/hsa-miR-183, Ambion/Applied Bio-
systems, Foster City, CA, USA) were tranfected with siPORT
NeoFX transfection agent (Ambion). Plasmids and pmirGLO dual-
luciferase miRNA target expression vector (Promega, Madison,
WI, USA) were transiently transfected into cells with Lipofecta-
mine 2000 (Invitrogen). RNA (miR and total RNA) was extracted
from formalin-fixed, paraffin-embedded (FFPE) human PC
(n¼ 31) and matched adjacent non-cancerous normal prostate
tissues or benign prostate hyperplasia tissues using a miRNeasy
FFPE kit (Qiagen, Valencia, CA, USA) after laser capture micro-

dissection based on pathologist reviews. MicroRNAs and total
RNA were extracted from cell lines using a miRNeasy Mini and
RNeasy Mini Kit (Qiagen).

Cell viability assay. Viability of PC cells was measured by MTS
assay (CellTiter 96 Aqueous One Solution Cell Proliferation Assay,
Promega) 4 days after transfection of anti-miR miRNA inhibitors
and plasmids (Mock/DKk-3/SMAD4). Cell viability was deter-
mined by absorbance measurements at 490 nm using SpectraMAX
190 (Molecular Devices, Sunnyvale, CA, USA).

Wound-healing assay. Prostate cancer cells were seeded in six-
well plates and transfected with anti-miR miRNA inhibitors. At
24 h after tranfection, cells were transferred from 6-well plates to
12-well plates. After 24 h, a wound was formed by scraping the
cells with a 200-ml pipette tip and washing twice with medium.
Cells were observed at 0 and 48 h after scraping and photographed
with a microscope (Nikon, Tokyo, Japan).

Plasmid. PrecisionShuttle pCMV6-Entry Vector and Myc-
DDK-tagged ORF clone of homo sapiens dickkopf homolog-3
(Xenopus laevis, Dkk-3), transcript variant 1 as transfection-ready
DNA NM_015881.5 were purchased from ORIGENE (Rockville,
MD, USA). In order to make a SMAD4 overexpressing plasmid,
SMAD4 was amplified with total RNA from RWPE-1 by reverse
transcription–PCR (RT–PCR).

The following primers were used: SMAD4 NheI cloning forward
primer, 50-GCTAGCttgcttcagaaattggagacatatt-30; SMAD4 XhoI
cloning reverse primer, 50-CTCGAGattttgtagtccaccatcctgataa-30.
Polymerase chain reaction products were cloned into the pTarge
T-Mammalian Expression Vector System (Promega). pCMV6-
SMAD4 was obtained by subcloning a NheI–XhoI fragment from
pTargeT-SMAD4 into the NheI–XhoI site of pCMV6-Entry
Vector.

Luciferase reporter assay. A pmirGLO dual-luciferase miRNA
target expression vector was used for 30UTR luciferase assays
(Promega). The 24 target-suppressor genes of miRNA-183 were
selected based on a target scan algorithm (microRNA org. (http://
www.microrna.org/microrna/home.do)). Table 1 shows the primer
sequences used for the 30UTR plasmids of Dkk-3 and SMAD4.
Supplementary Table 2 shows the primer sequences used for the
30UTR plasmids of 22 genes that subsequent 30UTR luciferase
assays showed were not significantly affected. Plasmids for 30-UTR
luciferase assays were made as described previously (Ueno et al,
2011). For 30-UTR luciferase assay, PC-3 cells were transfected
with hsa-miR-183 precursor and pmirGLO Dual-Luciferase
miRNA target expression vectors with wild-type or mutant target
sequence using Lipofectamine 2000 (Invitrogen).

Table 1. Primer sequences

Primer name Sequence

Dkk-3 forward 50-AAACTAGCGGCCGCTAGTaaTGATGTTTTCAGGTGTCATgT-3

Dkk-3 reverse 5́-CTAGAcATGACACCTGAAAACATCAttACTAGCGGCCGCTAGTTT-30

Mutated Dkk-3 forward 50-AAACTAGCGGCCGCTAGTaaCTCTGCTCTGAGTCTTGCCgT-30

Mutated Dkk-3 reverse 50-CTAGAcGGCAAGACTCAGAGCAGAGttACTAGCGGCCGCTAGTTT-30

SMAD4 forward 50-AAACTAGCGGCCGCTAGTctTCAAAAATAATGTGCCATgT-30

SMAD4 reverse 50-CTAGAcATGGCACATTATTTTTGAagACTAGCGGCCGCTAGTTT-30

Mutated SMAD4 forward 50-AAACTAGCGGCCGCTAGTctCGCCCCCCCCCTCTGGCCgT-30

Mutated SMAD4 reverse 50-CTAGAcGGCCAGAGGGGGGGGGCGagACTAGCGGCCGCTAGTTT-30

Bold shows PmeI (AAAC/GTTT) and XbaI (T/CTAGA) sites. Underline shows NotI internal site. Italics show the target sequence.
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b-Catenin has an important role in Wnt-b-catenin signalling in
cancer cells. Stabilised b-catenin translocates to the nucleus and
complexes with Tcf regulating the expression of several oncogenes.
To monitor Wnt/b-catenin signal-transducing activity, we used
TOPflash reporter plasmid containing Tcf-binding sites and
measured Tcf transcriptional activity to observe the b-catenin-
dependent pathway. For TOPflash luciferase assay, PC-3 cells were
transiently co-transfected with pCMV6-Entry Vector, pCMV6-
Dkk-3, pCMV6-SMAD4, TOPflash (Upstate, Lake Placid, NY,
USA) and pRL-TK Vector (Promega) encoding Renilla luciferase
as an internal control for transfection efficiency using FuGENE
HD (Roche Diagnostics, Basel, Switzerland). Luciferase assay was
performed using the Dual-Luciferase Reporter Assay System
(Promega) at 48 h after transfection. Data are presented as the
mean value±s.d. for triplicate experiments and the level of
luciferase activity obtained with wild-type sequence or pCMV6-
Dkk-3/pCMV6-SMAD4 vectors compared with mutant-
type sequence or empty vectors in transfected cells that are
normalised to 1.

TOPflash luciferase assays were performed to examine the effect
of miR-183 on the Wnt/b-catenin signalling pathway. Initially,
anti-miR-183 inhibitor was transfected into PC-3 and DU-145 cells
with siPORT NeoFX and after 48 h cells were trypsinised and
re-suspended on 48-well plates. After 16 h, TOPflash and pRL-TK
transfection were performed. Lysates were harvested after 48 h and
TOPflash activity was measured as described above.

Quantitative RT–PCR. Extracted total RNA was reverse-tran-
scribed into single-stranded cDNA with a TaqMan microRNA
reverse transcription kit (Applied Biosystems). Real-time PCR was
performed using first strand cDNA with TaqMan Fast Universal
PCR Master Mix (Applied Biosystems). The assay numbers for the
miR endogenous control (RNU48) and target miRs were as follows:
RNU48 (001006), miR-183 (002269), miR-96 (000434), miR-182
(002334), b-actin (Hs99999903_m1), Dkk-3 (Hs00247426_m1)
and p21 (Hs00355782_m1). Quantitative PCR was performed on
an Applied Biosystems Prism 7500 Fast Sequence Detection
System (Applied Biosystems). Quantitative PCR parameters for
cycling were as follows: 95 1C for 20 s 40 cycles of PCR at 95 1C for
3 s and 60 1C for 30 s. All reactions were done in a 10-ml reaction
volume in triplicate. The mRNA and miR expression levels were
determined using the 2–DCT method.

Western blot analysis. For total protein extraction, at 24 and 72 h
after transfection, cells were washed in ice-cold phosphate-buffered
saline and added to RIPA lysis and extraction buffer (Fisher
Scientific, Pittsburgh, PA, USA) containing Protease Inhibitor
Cocktail I (Millipore, Billerica, MA, USA). Dishes were incubated
for 5 min on ice and cells were collected with a cell lifter and
incubated for 30 min on ice followed by centrifugation at 12 000 g
for 20 min at 4 1C. The supernatant as total protein was collected.

For nuclear and cytoplasmic fraction protein, at 48 h after
transfection, cells were washed in ice-cold phosphate-buffered
saline and re-suspended in cold buffer containing 10 mM HEPES,
pH 7.3, 10 mM KCl, 1 mM EGTA, 0.1 mM EDTA and Protease
Inhibitor Cocktail I were lysed in 0.5% IGEPAL CA-630 (Sigma,
St Louis, MO, USA) for 15 min followed by centrifugation at
1000 g for 5 min at 4 1C. The supernatant as cytoplasmic fraction
protein was collected. The pellet was re-suspended in cold buffer
containing 20 mM HEPES, pH 7.3, 400 mM NaCl and Protease
Inhibitor Cocktail I were lysed for 30 min followed by centrifuga-
tion at 17 000 g for 15 min at 4 1C. The supernatant as nuclear
fraction protein was collected. Extracted protein was analysed
using primary antibodies, followed by anti-mouse and -rabbit IgG
HRP-conjugated secondary antibodies (Cell Signaling Technology,
Beverly, MA, USA), and were visualised with LumiGLO Reagent
and peroxide reagent (Cell Signaling Technology). The primary
antibodies used were as follows: anti-Dkk-3 antibody 1 : 100

dilution (#10365-1-AP, Proteintech Group, Inc., Chicago, IL,
USA), anti-SMAD4 antibody (1 : 200 dilution, #9515, Cell Signal-
ing), anti-b-catenin antibody (1 : 1000 dilution, #9562, Cell
Signaling), anti-CREB antibody (1 : 100 dilution, #9197, Cell
Signaling) and anti-b-actin antibody (1 : 2000 dilution #3700,
Cell Signaling Technology).

Establishment of stable miR-183 knockdown cells and inhibition
of in vivo cell growth. Lentivirus system transfection was per-
formed using Lenti-Pac HIV Expression Packaging Kit (Gene
Copoeia, Rockville, MD, USA) according to the manufacturer’s
instructions. Hsa-miR-183 inhibitor vector (HmiR-AN0244-
AM03, GeneCopoeia) or miRNA inhibitor scrambled control
clone for pEZX-AM03 (CmiR-AN0001-AM03, GeneCopoeia) with
Lenti-Pac HIV mix were transfected into 293Ta cells (Gene
Copoeia) and medium was replaced with fresh medium containing
1/500 volume of the TiterBoost reagent 14 h after transfection. The
supernatant containing lentiviral particles was collected in sterile
tubes 48 h after medium replacement, centrifuged at 500 g for
10 min and filtered using a 0.45-mm PES filter (Whatman/Fisher
Scientific). PC-3 cells were infected with lentiviral particles with
Polybrene (8mg ml� 1; Sigma-Aldrich), medium containing lenti-
viral particles was replaced with fresh medium after 24 h and then
incubated for 72 h. Stably transfected cells were selected
after transfection using Hygromycin (100 mg ml� 1, Invitrogen,
Carlsbad, CA, USA). Medium containing Hygromycin was
replaced every 3 days. Stable miR-183 knockdown PC cells or
control cells were injected subcutaneously into the right back side
flanks of a 5-week-old nu/nu mice. Before injection, miR-183
expression was confirmed by real-time PCR to determine whether
the miR-183 expression was significantly lower compared with that
in control cells. Animals consisted of four female nude mice (strain
BALB/c nu/nu; Charles River Laboratories, Inc., Wilmington, MA).
Tumour size was measured with calipers once a week for 6 weeks,
and tumour volume was calculated on the basis of width (x) and
length (y): x2y/2, where xoy. All animal care was in accordance
with the guidelines of the San Francisco Veterans Affairs Medical
Center and the study was approved by the San Francisco VA
IACUC (Protocol number: 11-003-01).

Colony formation assay. Scramble control and miR-183 knock-
down-stable transfectants were seeded in six-well microplates at a
density of 100 cells per well. After 16 days, cells (Scramble and
miR-183 knockdown-stable transfectants) were stained with
HEMA 3 STAIN SET (Fisher Scientific). The stained area was
measured by using ImageJ software.

Immunohistochemistry. Nine paraffin-embedded specimens
were used for immunohistochemistry. Antigen retrieval was
carried out by microwaving in citrate buffer (Thermo Scientific,
Waltham, MA, USA). Slides were incubated at 4 1C overnight with
anti-SMAD4 antibody (#ab40759, Abcam, Cambridge, MA, USA)
and anti-Dkk-3 antibody (Proteintech Group, Inc.). The Thermo
Scientific Lab Vision Ultra Vision Detection System (Thermo
Scientific) was used as chromogen. Immunohistochemical staining
was evaluated by visually assessing staining intensity (0–3). We
used the Human Protein Atlas (http://www.proteinatlas.org/) as a
reference for immunohistochemistry assessment. The criteria of
intensity are as follows: 0, negative expression; 1þ , weakly positive
expression; 2þ , moderate positive expression; 3þ , strongly
positive expression.

Statistical analysis. All statistical analyses were performed using
GraphPad prism 5 software (GraphPad Software, San Diego, CA,
USA). A P-value of o0.05 was regarded as statistically significant.
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RESULTS

Expression of miR-183 in prostate cell lines and primary tissues
and association of miR-183 with clinicopathological parameters.
To identify oncogenic miRs in PC, miRs were screened by a
commercial miR microarray service using normal prostate
epithelial cell (RWPE-1) and PC cell lines (PC-3 and LNCaP).
Expression levels of three miRs (miR-146a, miR-183 and miR-767-
5P) in PC-3 and LNCaP cells were 15-fold higher than that of
RWPE-1 cells (Figure 1A). To validate miRNA expression, we
performed real-time PCR and found that miR-183 expression in
PC cells (PC-3, DU-145 and LNCaP) was significantly higher than
RWPE-1 (Figure 1B). However, miR-146a and miR-767-5p
expression in PC cells (PC-3, DU-145 and LNCaP) was not
significantly different from RWPE-1 (data not shown). We also
observed miR-182 and miR-96 expression level because miR-182,
miR-183 and miR-96 are clustered genes. As expected, the
expression of miR-182 and miR-96 were very similar to miR-183
expression as shown in Figure 1C and D.

To analyse miR-183 expression in clinical samples, miR-183
expression levels in clinical samples (31 samples) were investigated
by real-time PCR. We compared miR-183 expression in prostate
tumour (T) and adjacent normal tissues (N). Of 31 samples, the
T/N ratio was more than 1.0 in 18 samples (58%), indicating that
miR-183 was significantly higher in PC tissues compared
with adjacent normal prostate tissues (Figure 2A). Interestingly,
higher miR-183 expression was associated with higher PSA at
diagnosis, higher pT and shorter overall survival after radical
prostatectomy (Figure 2B). The data in Supplementary Figure 1
were from the public database GEO (accession #GSE21036; http://
www.ncbi.nlm.nih.gov/geo/. MiR-183 expression was significantly
higher in PC tissues compared with normal prostate tissues
(Supplementary Figure 1).

Functional effects of miR-183 on normal prostate cells. To
confirm the function of miR-183 in normal prostate cells, miR-183
precursor was transiently transfected into a normal prostate cell
line (RWPE-1). The expression of miR-183 was significantly higher
in miR-183 precursor-transfected RWPE-1 cells compared with
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control at 24 h after transfection (Figure 3A). Cell viability was also
1.5-fold higher in miR-183 precursor transfectants compared with
controls at 4 days after tranfection (Figure 3B).

Functional effects of miR-183 on PC cell lines. To analyse the
function of miR-183 in PC cells, miR-183 and control inhibitors
were transiently transfected into PC-3 and DU-145 cells. The
expression level of miR-183 in miR-183 inhibitor-transfected PC
cells was significantly decreased compared with control inhibitor at
48 h after transfection (Figure 4A). Cell viability was also decreased
in miR-183 inhibitor transfectants compared with controls at
4 days after tranfection (Figure 4B). Cell motility was also
significantly decreased in miR-183 inhibitor-transfected cells
(Figure 4C).

miR-183 knockdown inhibits in vivo cell growth. To analyse cell
growth in vivo in a nude mouse xenograft model, lentivirus vectors
expressing control and miR-183 inhibitors were transfected into
PC-3 cells and stable transfectants were selected by Hygromycin
resistance. To confirm expression of miR-183 in stable trans-
fectants, real-time PCR was performed. The miR-183 expression
level in miR-183 knockdown-stable transfectants was decreased to
about 45% of that in control transfectants (Figure 5A). Colony

formation was significantly decreased in miR-183 knockdown-
stable transfectants compared with scramble transfectants
(Figure 5B). Control and miR-183 knockdown-stable transfectants
were transplanted subcutaneously into the left and right back side
flanks of nude mice, respectively. The average volume and weight
of tumours were significantly reduced in mice injected with miR-
183 knockdown-transfected cells (Figure 5C). The macroscopic
appearance of tumour at 42 days after inoculation showed a larger
mass in control transfectants than in miR-183 knockdown
transfectants (Figure 5C). After extracting miR from xenograft
tissues (control and miR-183 knockdown-stable transfectants), the
relative expression of miR-183 was significantly lower in tumours
of miR-183 knockdown-stable-transfected cells compared with
control tumours (Figure 5D).

Target genes of miR-183. To identify the target genes of miR-183,
we used target scan algorithms (microRNA org.), and Dkk-3 and
SMAD4 were selected as potential target tumour-suppressor genes
among 24 genes based on the 30UTR luciferase assay results
(Figure 6A and B). Dkk-3 mRNA has one potential complimentary
miR-183-binding site within its 30 UTR. SMAD4 mRNA also has
three potential complimentary miR-183-binding site within its
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30UTR. To determine the inhibitory effect of miR-183 on Dkk-3
and SMAD4 translation, 30UTR luciferase assay was performed
with PC-3 cells. The luciferase activity of Dkk-3 wild-type 30UTR
vector in miR-183 precursor-transfected cells was significantly
decreased compared with Dkk-3 mutated-type 30UTR vector
(Figure 6A). The luciferase activity of SMAD4-position 449 wild-
type 30UTR vector in miR-183 precursor-transfected cells was
also significantly decreased compared with SMAD4-position 449
mutated-type 30UTR vector, but there were no difference in
SMAD4-position 1149 and position 2982 (Figure 6B). To examine
the inhibitory effect of miR-183 on protein levels, western blot
analysis was carried out at 72 h after miR-183 inhibitor transfection
into PC cells. We observed that the protein levels of Dkk-3 and
SMAD4 in miR-183 inhibitor-transfected cells were increased
compared with control inhibitor (Figure 6C and D).

We performed immunohistochemistry and observed an inverse
association between miR-183 and target gene protein expression
(Dkk-3 and SMAD4; Supplementary Figure 2).

Effect of Dkk-3 and SMAD4 overexpression on PC-3 cells. To
confirm whether Dkk-3 and SMAD4 inhibit PC-3 cell growth,
Dkk-3/SMAD4-expressing and control vectors were transfected
into PC-3 cells. Dkk-3 and SMAD4 mRNAs were analysed by real-
time PCR at 24 h after transfection and were significantly increased
in transfected PC-3 cells (data not shown). Overexpression of
Dkk-3 and SMAD4 protein was also confirmed by western blot
analysis at 48 h after transfection (Figure 7A). Cell growth was
significantly decreased in Dkk-3 and SMAD4 transfectants
compared with control (Figure 7B). Dkk-3 and SMAD4 have an
important role in Wnt signalling pathways in cancer progression.

To investigate the direct effect of these genes on the Wnt-b-catenin
canonical pathway, we looked at expression of b-catenin in nuclear
and cytoplasmic fractions in Dkk-3- and SMAD4-transfected PC-3
cells. Although there was no difference in the expression of
cytoplasmic b-catenin (data not shown), the expression level of
nuclear b-catenin was decreased in Dkk-3- and SMAD4-trans-
fected PC-3 cells compared with mock cells (Figure 7C).
In addition, Tcf transcriptional activity was decreased to 70% in
Dkk-3- or/and SMAD4-transfected PC-3 cells compared with
control, indicating that Dkk-3 and SMAD4 inhibits the b-catenin-
depending pathway in PC cells (Figure 7D).

Effect of miR-183 on Wnt-b-catenin pathway. As TOPflash
luciferase activity was significantly decreased with Dkk-3 and
SMAD4 overexpression, we also performed the same assay using
miR-183 inhibitor. As shown in Supplementary Figure 3, TOPflash
luciferase activity was significantly decreased with miR-183
inhibitor transfection.

DISCUSSION

There have been several miR studies related to clinical PC and
most have shown that aberrant expression of miRNAs occurs
in PC, some of which function as tumour-suppressor genes or
oncogenes (Volinia et al, 2006; Porkka et al, 2007; Ambs et al,
2008; Ozen et al, 2008; Schaefer et al, 2010). Based on the literature,
the level of miR-183 expression in primary PC has previously been
described to be higher than adjacent normal tissues (Schaefer et al,
2010). MiR-183 is located on human chromosome 7 and forms a
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cluster with miR-96 and miR-182. MiR-183-96-182 cluster
expression has been found to be upregulated in primary PC
(Mihelich et al, 2011). We also observed that the expression of
three miRNAs (miR-183, miR-96, miR-182) was higher in PC cell
lines and their expression pattern was very similar. In this study,
we focused on miR-183 as its expression was highest of the miRNA
cluster (miR-96, miR-182, miR-183) in the microarray results from
PC cell lines. MiR-183 has also been suggested to be an onco-
miRNA in several cancers such as colon (Bandrés et al, 2006), lung
(Cho et al, 2009), hepatocellular (Li et al, 2010) and synovial
sarcoma (Sarver et al, 2010).

To confirm that miR-183 expression was higher in PC tissues,
we performed real-time PCR to determine the miR-183 expression
in laser capture microdissected clinical samples and also found that
miR-183 expression to be significantly higher in PC compared with
matched adjacent normal prostate tissues and higher miR-183
expression was associated with higher PSA at diagnosis, higher pT
and shorter overall survival after radical prostatectomy. These
results are consistent with previous results (Schaefer et al, 2010)
and accession #GSE21036 from GEO (Supplementary Figure 1)
and may suggest that miR-183 may be a tumour marker in PC.

The expression of miR-183 was also higher in three PC cell lines
(PC-3, DU-145 and LNCaP) compared with the normal RWPE-1
cells consistent with the miR microarray results. There are few
reports regarding the functional role of miR-183 in PC, thus we
overexpressed miR-183 in a normal prostate cell line (RWPE-1)
with miR-183 precursor. As expected, normal prostate cell
proliferation was significantly increased with miR-183 precursor

compared with control. We next performed functional analyses
(MTS, wound healing, colony formation and in vivo growth) using
a miR-183 knockdown technique in PC cell lines. MiR-183
knockdown inhibited PC cell proliferation and decreased PC cell
motility. We also performed an in vivo study and observed that
miR-183 knockdown reduced tumour growth. These results
suggest that miR-183 functions as an oncogene in nature
and has an important role in cell growth and motility of PC cells
and the miR-183 inhibitor may be noble treatment tool for PC.

We next used several algorithms to identify potential target
tumour-suppressor genes of miR-183. The microRNA.org algo-
rithm identified that the 30UTR of Dkk-3 mRNA has one putative
miR-183-binding site and the 30UTR of SMAD4 mRNA has three
putative miR-183-binding sites. We performed 30UTR luciferase
assay, and observed that luciferase activity was decreased after
transfection of miR-183 precursor and a 30UTR vector containing
either Dkk-3 or SMAD4. Dkk-3 and SMAD4 protein expression
were also significantly upregulated in miR-183 inhibitor-trans-
fected PC-3 and DU-145 cells, indicating that Dkk-3 and SMAD4
are direct targets of miR-183. We also performed immunohisto-
chemistry and observed an inverse correlation of miR-183 and
target gene protein expression (SMAD4 and Dkk-3). As shown in
Supplementary Figure 2, miR-183 expression was significantly
higher in lower SMAD4 and lower Dkk-3 protein expression
samples (Supplementary Figure 2).

It is known that Dkk-3 expression in primary PC is low
(Kawano et al, 2006) and overexpression of Dkk-3 inhibits cell
proliferation in PC-3 cells through the Wnt/JNK signalling
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pathway (Abarzua et al, 2005). In our study, we also examined the
effect Dkk-3 overexpression on PC cells and our results showed
that Dkk-3 inhibited cell proliferation. This result is similar to a
previous report (Abarzua et al, 2005).

Regarding the role of Dkk-3 in the Wnt/b-catenin canonical
pathway, there have been conflicting reports. Kawano et al (2006)
reported that Dkk-3 did not affect on the Wnt/b-catenin signalling
pathway in LNCaP cells because Dkk-3 did not alter
cellular distribution of b-catenin and had no significant effect on
b-catenin/TCF-dependent transcription. However, Lu et al (2009)
reported that the activity of the Wnt/b-catenin signalling pathway
in PC-3 cells is higher among PC cells (PC-3, DU-145 and
LNCaP). In our study, we used PC-3 cells to look at the role of
Dkk-3 on Wnt/b-catenin signalling and we found that b-catenin
expression in the nuclear fraction and Tcf transcriptional activity
were significantly decreased with ectopic Dkk-3 expression,
indicating that overexpression of Dkk-3 in PC-3 cells inhibits
Wnt/b-catenin signalling.

We also identified SMAD4 as a target gene of miR-183. SMAD4
has an important role as a central intracellular signal transduction
component of the transforming growth factor-b family and is
regarded as a tumour-suppressor gene in several cancers including
PC (Hahn et al, 1996; de Winter et al, 1997; MacGrogan et al,
1997). It has also been reported that nuclear expression levels of
SMAD4 in primary PC is lower than that in benign prostate
hyperplasia tissues and is significantly reversely correlated with
Gleason score (Horvath et al, 2004). SMAD4 knockdown was
found to increase the frequency of metastasis to the lung in PC-3
cells, indicating that SMAD4 is involved in PC progression and
metastasis (Ding et al, 2011). In our study, overexpression of
SMAD4 in PC-3 cells decreased cell growth in vitro. Our results are
similar to those of previous reports, suggesting that SMAD4 is a

crucial tumour-suppressor gene in PC. As the SMAD complex
directly activates the p21 gene promoter in cooperation with the
transcription factor Sp1 (Ijichi et al, 2004), and Liu et al (2011)
showed that SMAD4 knockdown decreased c-Myc and p21 protein
in PC-3 cells, we measured p21 expression in SMAD4-transfected
PC-3 cells and observed that the level of p21 was 1.4-fold higher
compared with controls 48 h after transfection (data not shown).

Evidence of cross-talk between Smad signalling and the Wnt
pathway has been reported (Labbé et al, 2007), so we examined the
relationship between SMAD4 and b-catenin in PC. In our study,
b-catenin expression in the nuclear fraction and Tcf transcriptional
activity were significantly decreased in SMAD4- and/or Dkk-3-
transfected PC-3 cells and miR-183 knockdown decreased
Wnt/b-catenin signal-transducing activity (Supplementary
Figure 3). Our results suggest that Dkk-3 and SMAD4 may have
an inhibitory effect on the Wnt/b-catenin pathway regulated by
miR-183.

In conclusion, this is the first report to show that the oncogenic
miR-183 activates the Wnt/b-catenin pathway by directly inhibit-
ing tumour suppressors Dkk-3 and SMAD4 in PC. Our results
indicate that increased levels of miR-183 may be an important
biomarker for PC and a therapeutic target for treatment. However,
additional studies with increased number of clinical samples will be
needed to firmly establish the role of miR-183 in PC and its use in
clinical applications.
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