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Abstract

Chronic hepatitis B virus (HBV) infection is a major risk factor for developing hepatocellular 

carcinoma (HCC), and HBV X protein (HBx) acts as cofactor in hepatocarcinogenesis. In liver 

tumors from animals modeling HBx- and HBV-mediated hepatocarcinogenesis, downregulation of 

chromatin regulating proteins SUZ12 and ZNF198 induces expression of several genes, including 

epithelial cell adhesion molecule (EpCAM). EpCAM upregulation occurs in HBV-mediated HCCs 

and hepatic cancer stem cells, by a mechanism not understood. Herein we demonstrate HBx 

induces EpCAM expression via active DNA demethylation. In hepatocytes, EpCAM is silenced by 

PRC2 and ZNF198/LSD1/Co-REST/HDAC1 chromatin modifying complexes. Cells with stable 

knockdown of SUZ12, an essential PRC2 subunit, upon HBx expression demethylate a CpG 

dinucleotide located adjacent to NF-κB/RelA half-site. This NF-κB/RelA site is in a CpG island 

downstream from EpCAM transcriptional start site (TSS). Chromatin immunoprecipitation (ChIP) 

assays demonstrate HBx-dependent RelA occupancy of NF-κB half-site, while RelA knockdown 

suppresses CpG demethylation and EpCAM expression. TNF-α activates RelA, propagating 

demethylation to nearby CpG sites, shown by sodium bisulfite sequencing. RelA-dependent 

demethylation occurring upon HBx expression requires methyltrasferase EZH2, TET2 a key 

player in cytosine demethylation, and inactive DNMT3L, shown by knockdown assays and 

sodium bisulfite sequencing. Co-immunoprecipitations and sequential ChIP assays demonstrate 

that RelA in the presence of HBx forms a complex with EZH2, TET2 and DNMT3L, although the 

role of DNMT3L remains to be understood. Interestingly, the human EpCAM gene also has a CpG 

island downstream from its TSS, and a NF-κB binding site flanked by CpGs. HepG2 cells derived 

from human HCC exhibit demethylation of these NF-κB-flanking CpG sites, and HBV replication 

propagates demethylation to nearby CpG sites. DLK1, another PRC2 target gene, also upregulated 

in HBV-mediated HCCs, is demethylated in liver tumors at CpG dinucleotides flanking the NF-kB 
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binding sequence, supporting that this active DNA demethylation mechanism functions during 

oncogenic transformation.
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INTRODUCTION

Chronic infection by the hepatitis B virus (HBV) is linked to hepatocellular carcinoma 

(HCC).
1
 The multifunctional HBx protein encoded by HBV

2, 3 is essential for the viral life 

cycle
4
, and implicated in HCC pathogenesis acting as a cofactor in hepatocarcinogenesis

5, 6 

by a mechanism not well-understood. Regarding this mechanism, our earlier studies
7-9 

employed a genome-wide shRNA library screen and identified down-regulation of SUZ12 

and ZNF198 proteins has role in HBx-mediated oncogenic transformation
4
.

SUZ12 is a component of the Polycomb Repressive Complex 2 (PRC2), comprised of 

essential subunits EZH2, SUZ12 and EED, that mediates the repressive trimethylation of H3 

on lysine27 (ref. 10). LSD1/Co-REST/HDAC1 complex, stabilized by ZNF198 (ref. 11), 

erases activating histone modifications, namely methylations of H3 on lysine4 and 

acetylations. Moreover, the repressive chromatin modifying activity of these two complexes 

is coupled by binding the long noncoding RNA (lncRNA) HOTAIR.
12

 In animal models of 

HBx- and HBV-mediated hepatocarcinogenesis down-regulation of ZNF198 and/or SUZ12 

in liver tumors is associated with elevated expression of a subset of SUZ12/PRC2 target 

genes including the epithelial cell adhesion molecule EpCAM.
13

 EpCAM expression 

characterizes both bi-potential liver progenitors
14, 15

 and hepatic cancer stem cells
16

. Here, 

we investigate the mechanism of EpCAM gene reactivation, using an immortalized mouse 

liver cell line expressing HBx via the Tet-off expression system
17

, in combination with 

stable knockdown cell lines of SUZ12 and ZNF198 (ref. 9).

EpCAM is a 40kDa transmembrane protein highly expressed in most epithelial cancers.
18, 19 

The elevated expression of EpCAM in rapidly proliferating tumor cells, together with its 

role in the activation of Wnt signaling
20, 21

, and the enhanced expression of c-myc and 

cyclins
22, 23

, support a role for EpCAM in tumor progression and cancer initiating/stem 

cells
24

. However, despite the frequent and elevated expression of EpCAM in tumors and 

cancer initiating cells the molecular mechanism mediating EpCAM transcription is not 

understood. In Hep3B cells, Wnt/β-catenin signaling was shown to up-regulate EpCAM-

luciferase reporter expression.
16

 In human ovarian cancer cell lines EpCAM expression was 

correlated with changes in DNA methylation and histone modifications
25

, and in human 

embryonic stem cells (hESCs) the EpCAM gene was identified as a PRC2 target
26

. Our 

studies also identified EpCAM expression to be epigenetically silenced by the PRC2 and 

LSD1/Co-REST/HDAC1 chromatin modifying complexes in untransformed hepatocytes.
13

Another epigenetic mechanism directly involved in regulating transcription is DNA 

methylation of cytosine residues at CpG dinucleotides, generating 5-methylcytosine.
27

 This 

epigenetic modification is mediated by de novo DNA methyltransferases DNMT3A and 
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DNMT3B, and propagated to daughter cells during DNA replication by the maintenance 

enzyme DNMT1.
28

 The DNMT3 family also includes the catalytically inactive DNMT3L. 

In ESCs, DNMT3L activates DNA methylation at gene bodies and suppresses DNA 

methylation at promoters of bivalent genes.
29

 DNA demethylation also has a crucial role in 

activation of silenced genes. The Ten-Eleven Translocation (TET) enzymes, TET1, TET2 

and TET3 catalyze oxidation of 5mC to hydroxylated 5hmC form, leading to cytosine 

demethylation.
30

 Recent studies have identified direct interaction of TETs with specific 

transcription factors as a mechanism for targeting demethylation of specific cytosine 

residues, referred to as active DNA demethylation.
31-33

Herein, we demonstrate that EpCAM transcription is dependent on cellular context. In 

SUZ12 knockdown cells expressing HBx, a CpG site located in proximity to an A/T-centric 

NF-κB half-site
34

, downstream from the transcriptional start site (TSS) of EpCAM, becomes 

demethylated. This demethylation is necessary for EpCAM expression. We show EpCAM 

expression by HBx requires the transcription factor RelA, the methyltransferase EZH2, the 

TET2 enzyme catalyzing the conversion of 5-methylcytosine to 5-hydroxymethylcytosine, 

and the catalytically inactive DNMT3L. Although the role of DNMT3L in this complex is 

not understood, we interpret these results to mean that RelA binds specifically to the NF-κB 

half-site, 5’GGGAAT3’ (ref. 35, 36), and via interaction with EZH2, recruits TET2 and 

DNMT3L to the EpCAM sequence. Thus, our results identify a novel mechanism of active 

DNA demethylation, directed by RelA binding to its half-site.

RESULTS

PRC2 and LSD1/Co-REST/HDAC1 complexes coordinately regulate activity of the EpCAM 
promoter

Our earlier studies observed a correlation between loss of function of PRC2 and LSD1/Co-

REST/HDAC1 chromatin modifying complexes and EpCAM expression in liver tumors of 

animals modeling HBx- and HBV-mediated hepatocarcinogenesis.
13

 To understand the 

molecular mechanism deregulating EpCAM expression in HBx- and HBV-mediated HCCs, 

we employed the tetracycline regulated HBx-expressing 4pX-1GIPZ cell line
17

, derived from 

the immortalized mouse hepatocyte AML12 cell line
37

, and knockdown cell lines for SUZ12 

and ZNF198, namely 4pX-1-SUZ12kd and 4pX-1-ZNF198kd, described earlier
4
 (Fig. S1A). 

Indeed, EpCAM expression exhibited HBx-dependent induction and enhanced expression in 

SUZ12 and ZNF198 knockdown cell lines (Fig. S1B).

To directly link regulation of EpCAM expression to PRC2 and LSD1/Co-REST/HDAC1 

complexes, first, we examined the effect of knockdown of lncRNA HOTAIR known to tether 

together these complexes.
12

 HOTAIR knockdown in 4pX-1GIPZ cells increased EpCAM 

mRNA by nearly 10-fold (Fig. 1A), while in 4pX-1-SUZ12kd and 4pX-1-ZNF198kd cells the 

increase was only 2-fold and 4-fold, respectively (Fig. 1A). EpCAM immunoblots and flow 

cytometry with EpCAM antibody of HBx-expressing 4pX-1GIPZ cells further confirm 

EpCAM induction by HOTAIR knockdown (Fig. 1B and C). To further demonstrate 

coordinated effects of PRC2 and LSD1/Co-REST/HDAC1 complexes on the EpCAM 

promoter, we performed ChIP assays with antibodies for H3K27me3 and H3K4me1 using 

4pX-1-SUZ12kd and 4pX-1-ZNF198kd cell lines. HBx expression had no effect on the 
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association of H3 with the EpCAM promoter. However, the histone modifications of the 

EpCAM promoter in the SUZ12 and ZNF198 knockdown cell lines exhibited an HBx-

dependent increase in the activating modification H3K4me1, and a reduction of the 

repressive modification H3K27me3, in comparison to 4pX-1GIPZ cells (Fig. 1D and Fig. 

S2). Together, these results support the PRC2 and LSD1/Co-REST/HDAC1 complexes 

coordinately regulate histone modifications of the EpCAM promoter.

HBx induces DNA demethylation of EpCAM CpG sites in a cell context-dependent manner

Since histone modifications correlate with DNA methylation of CpG sites in gene regulatory 

sequences
38-40

, and the PRC2 complex interacts with DNMTs
41

, we examined whether 

DNA methylation regulates EpCAM expression. Indeed, treatment with 5-Aza-2-

deoxycytidine, an inhibitor of DNMTs enhanced EpCAM expression (Fig. S3A). 

Furthermore, quantification of the levels of 5-hydroxymethylcytosine (5hmC) of the 

EpCAM sequence by hydroxymethylated DNA immunoprecipitation assays (hMeDIP) 

demonstrated an increase in cytosine hydroxymethylation by HBx in 4pX-1GIPZ and 4pX-1-

SUZ12kd cells (Fig. S3B), suggesting that active DNA demethylation regulates EpCAM 

expression.

Next, we employed sodium bisulfite sequencing to investigate effects of SUZ12 and 

ZNF198 knockdown on the DNA methylation pattern of the EpCAM gene. Employing the 

Methprimer program, we identified a CpG island comprised of 12 CpG dinucleotides 

downstream from the transcriptional start site (TSS) of EpCAM (Fig. 2A). Sodium 

bisulphite treatment of DNA from 4pX-1GIPZ cells (Fig. 2B) and 4pX-1-ZNF198kd cells 

(Fig. 2C) showed the DNA methylation pattern of the 12 CpG dinucleotides did not exhibit 

significant change due to HBx expression. Interestingly, in SUZ12 knockdown cells (Fig. 

2D) an HBx-dependent demethylation was observed at CpG dinucleotide #10, in nearly 90% 

of sequenced clones. CpG site #10 is adjacent to an A/T-centric RelA half-site.
34

 Earlier X-

ray crystallographic studies of the RelA homodimer demonstrated its binding to the A/T 

centric half-site.
34

RelA together with EZH2 regulate EpCAM expression in SUZ12 knockdown cells

To determine whether DNA demethylation of CpG site #10, located in proximity to an A/T-

centric RelA half-site
34

, is functional in EpCAM expression, first, we examined by ChIP 

assays whether RelA binds to the EpCAM sequence spanning the 12 CpG sites. In 4pX-1-

SUZ12kd cells, HBx increased by nearly 50% the occupancy of the EpCAM CpG island by 

RelA (Fig. 3A). Next, we knocked-down RelA by siRNA transfection in 4pX-1-SUZ12kd 

cells and monitored EpCAM expression by PCR. We observed a 5-fold reduction in EpCAM 

mRNA levels by RelA knockdown, supporting the functional significance of RelA in 

EpCAM transcription (Fig. 3B). By contrast, RelA knockdown in 4pX-1-ZNF198kd cells 

resulted only in 1.5-fold decrease in EpCAM mRNA levels (Fig. S4).

Recent studies have shown direct interaction of EZH2 with RelA/RelB heterodimer in 

promoting expression of NF-κB targets in breast cancer.
42

 Therefore, we investigated 

whether EZH2 has a similar role in EpCAM expression. We determined EZH2 protein levels 

in the three cell lines
26

 as a function of HBx expression. Interestingly, HBx increased 
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protein level of EZH2 in all three cell lines (Fig. 3C). Next, we examined by ChIP assays 

association of EZH2 with the EpCAM sequence containing the RelA half-site. In 4pX-1-

SUZ12kd cells, EZH2 exhibited enhanced occupancy at the EpCAM sequence (Fig. 3D); by 

contrast absence of SUZ12 occupancy at that site (Fig. 3D) suggests that EZH2 interacts 

alone, not in complex with the other subunits of PRC2. Reciprocal co-immunoprecipitations 

of RelA and EZH2 demonstrate that these proteins interact with each other (Fig. 3E), in 

agreement with similar observations by others.
42

 To determine whether association of RelA 

and EZH2 with the EpCAM sequence has functional significance, we knocked-down EZH2 

and quantified by PCR EpCAM mRNA levels. In 4pX-1-SUZ12kd cells, transfection of 

EZH2 siRNA reduced expression of EpCAM (Fig. 3F), thereby demonstrating that the 

interaction between RelA and EZH2 (Fig. 3E) is functionally important for EpCAM 

expression.

TET2 and DNMT3L are required for DNA demethylation of EpCAM

The HBx-dependent demethylation of CpG dinucleotide #10, observed selectively in SUZ12 

knockdown cells, suggested an active DNA demethylation mechanism. To investigate this 

mechanism, we determined by PCR mRNA levels of enzymes involved in DNA 

demethylation. The dioxygenases TET1-3 directly convert 5mC to 5hmC.
43, 44

 On the other 

hand, the catalytically inactive DNMT3L indirectly maintains low levels of DNA 

methylation at gene promoters/regulatory sequences by displacing DNMT3A and DNMT3B 

from binding the PRC2 complex.
29

 TET1 (ref. 45) and DNMT3L
29

 were reported to interact 

with EZH2. However whether TET2 and TET3 enzymes interact with EZH2 is unknown.

Employing RT-PCR we quantified mRNA levels of TET1-3 as a function of HBx expression 

(Fig. 4A and Fig. S5). TET1 did not exhibit HBx-dependent induction in the three cell lines 

(Fig. S5A). TET2 and TET3 mRNAs exhibited statistically significant HBx-dependent 

induction in both 4pX-1GIPZ and 4pX-1-SUZ12kd cells, whereas in 4pX-1-ZNF198kd cells 

only TET2 was induced (Fig. 4A and Fig. S5B). Interestingly DNMT3L was induced by 

HBx only in 4pX-1-SUZ12kd cells (Fig. 4C). Immunoblots of TET2 and DNMT3L 

confirmed this HBx-dependent induction (Fig. 4B and D). Since TET2 lacks the CXXC 

motif required for DNA binding, present in TET1 and TET3 (ref. 30), we reasoned TET2 

may interact with the RelA/EZH2 complex (Fig. 3E). Therefore, we knocked-down TET2 in 

4pX-1-SUZ12kd cells by siRNA transfection and quantified expression levels of EpCAM. 

Knockdown of TET2 in the presence of HBx significantly reduced EpCAM expression in 

4pX-1-SUZ12kd cells (Fig. 4E). By contrast, siRNA knockdown of TET3 had no effect on 

EpCAM mRNA levels (Fig. S5C). Also, knockdown of DNMT3L by siRNA transfection 

reduced EpCAM expression in 4pX-1-SUZ12kd cells (Fig. 4F).

TET2 and DNMT3L are in complex with EZH2 and RelA in HBx expressing cells

Next, we examined whether RelA, EZH2, DNMT3L and TET2 are in complex (Fig. 5). 

Indeed, RelA co-immunoprecipitated DNMT3L and EZH2, while expression of HBx 

enhanced the amount of co-immunoprecipitated EZH2 and TET2 (Fig. 5A). Conversely, 

TET2 co-immunoprecipitated EZH2, and in the presence of HBx we detected increased 

levels of TET2, RelA and DNMT3L (Fig. 5B). In turn, DNMT3L co-immunoprecipitated 

EZH2 and RelA, while HBx expression increased the amount of co-immunoprecipitated 
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EZH2 and TET2 (Fig. 5C). Importantly, this complex comprised of RelA, EZH2, TET2 and 

DNMT3L does not contain SUZ12, since immunoprecipitation of SUZ12 does not co-

immunoprecipitate these proteins (Fig. 5D). To demonstrate the functional assembly of the 

RelA-directed EZH2/TET2/DNMT3L complex, we employed two approaches (Fig. 5E and 

F). First, we performed ChIP assays with the RelA antibody and sequential ChIP assays 

(SeqChIP) with antibody for TET2, DNMT3L and EZH2. HBx expression in 4pX-1-

SUZ12kd cells increased the association of TET2, DNMT3L and EZH2 with RelA-bound to 

the EpCAM CpG island (Fig. 5E). Conversely, siRNA knockdown of RelA reduced the 

amount of TET2, DNMT3L and EZH2 that immunoprecipitated in ChIP assays with the 

EpCAM sequence (Fig. 5F). Taken together, these results demonstrate the requirement for 

RelA in the formation of the EZH2/TET2/DNMT3L complex, and the association of these 

proteins with the EpCAM chromatin.

RelA and EZH2 are necessary for DNA demethylation of CpG site #10 of EpCAM

To directly demonstrate the role of the complex comprised of RelA/EZH2/TET2/DNMT3L 

in DNA demethylation of EpCAM CpG site #10, we knocked-down by siRNA transfection 

each of these proteins in HBx-expressing 4pX-1-SUZ12kd cells. Sodium bisulfite 

sequencing of DNA isolated from HBx-expressing 4pX-1-SUZ12kd cells following 

knockdown of RelA, EZH2, TET2 or DNMT3L demonstrated that CpG site #10 was now 

mostly methylated (Fig. 6).

TNF-α treatment and HBV replication propagate DNA demethylation to additional CpG 
sites in proximity to the RelA/NF-κB site

To confirm the role of RelA in demethylation of the EpCAM sequence, we activated RelA 

by treatment with TNF-α (0.1 ng/ml), in HBx expressing cells transfected with EZH2. 

Although HBx activates NF-κB signaling
46

, we reasoned treatment with TNF-α will further 

increase or prolong RelA activation. Indeed, under these conditions, EpCAM expression was 

further elevated (Fig. 7A). Interestingly, sodium bisulfite sequencing detected DNA 

demethylation of additional CpG sites, sites #3, 4, 6 and 9 (Fig. 7B), supporting that the 

level/duration of RelA activation influences demethylation of additional CpG sites.

To link these findings to the regulation of the human EpCAM promoter, we determined by 

sodium bisulfite sequencing the methylation pattern of a 450bp sequence downstream from 

the TSS of the human EpCAM gene, containing 61 CpG dinucleotides (Fig. 8A). 

Interestingly CpG site #23 is adjacent to an NF-κB site (Fig. 8A). We employed a human 

liver cancer cell line derived from HepG2 cells, named HepAD38 cell line.
47

 HepAD38 cells 

support HBV replication via the stable integration of the HBV genome under control of the 

tetracycline-regulated (Tet-off) expression system.
47

 Under conditions of HBV replication 

by tetracycline removal, monitored by the increased protein levels of the viral HBc antigen 

(Fig. 8B), EpCAM expression increases
13

, SUZ12 levels decreased
13

, while EZH2 levels 

increased (Fig. 8B). In turn, the downregulation of SUZ12 and ZNF198 proteins observed in 

HBV replicating cells resulted in reduction of the repressive H3K27me3 modification, 

whereas H3K4 modifications associated with transcriptional activation were increased (Fig. 

8C). ChIP assays show reduction of the repressive H3K27me3 associated with the EpCAM 

promoter as a function of HBV replication (Fig. 8D). In agreement with the tumor origin of 

Fan et al. Page 6

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this cell line, sodium bisulfite sequencing showed that CpG site #23 was unmethylated. 

Interestingly, upon induction of HBV replication for two days, additional CpG sites became 

demethylated (Fig. 8E), as with EZH2 overexpression and TNF-α treatment in 4pX-1-

SUZ12kd cells, suggesting that active DNA demethylation is involved in the expression of 

the human EpCAM gene, in HBV replicating cells.

In further support of this mechanism, we re-analyzed the HCC transcriptome data of Boyault 

et al
48

 which classified HCCs in six subgroups (G1-G6). Of interest is the G1 group of 

tumors associated with low copy number of HBV and overexpression of genes expressed in 

fetal liver. Indeed, the G1 group exhibits robust expression of hepatic progenitor genes 

EpCAM and DLK1 (ref. 49) (Fig. 9A and Supplementary Table S1), both genes are targets 

of the PRC2 and LSD1/Co-REST/HDAC1 complexes
13

. The G1 group also exhibits a small 

but statistically significant induction of EZH2 and RelA (Fig. 9A and Supplementary Table 

S1), key players in our mechanism of active DNA demethylation (Fig. 6).

To evaluate the methylation status of the EpCAM CpG island under study (Fig. 8A) in 

human HCCs, we examined the methylation data (Illumina Human Methylation 450 array) 

from The Cancer Genome Atlas (TCGA), by evaluating the beta value (β) defined as the 

ratio of intensities between methylated vs. non-methylated DNA. However, beta values for 

the EpCAM CpG island under study are not represented in TCGA data. Since DLK1 is also 

overexpressed in the G1 group of HCCs, and is the target of PRC2 and LSD1/Co-REST/

HDAC1 complexes
13

, we examined the DNA methylation status of CpG sites located within 

NF-κB binding sites. Employing TCGA human HCC methylome, we identified in the DLK1 

promoter a CpG dinucleotide within an NF-κB binding site. Importantly, beta values 

indicate that indeed this CpG site is demethylated in human HCCs in comparison to 

peritumoral tissue (Fig. 9B). We interpret these data to mean that the DNA demethylation 

mechanism we identified in our model cell lines is also functional in human HCCs.

DISCUSSION

In this study we provide evidence for a novel mechanism of active DNA demethylation 

induced by HBx that allows re-expression of the EpCAM gene observed in HBV-mediated 

HCCs.
13

 We demonstrate that this mechanism is directed by the transcription factor RelA. 

RelA binds to an A/T centric RelA half-site
35, 36

 located downstream from the TSS of the 

EpCAM gene (mouse and human) and directs DNA demethylation by TET2. Our results 

identify a novel bridging function for EZH2 in the formation of the DNA demethylation 

complex comprised of TET2 and the catalytically inactive DNMT3L. Although in this study 

we have not determined the mechanism by which DNMT3L functions in this complex, 

studies by others have shown that DNMT3L maintains the demethylated state in bivalent 

promoters in ESCs.
29

Specifically, while DNMT3L enhances DNA methylation at gene bodies of active genes, it 

prevents DNA methylation at the promoters of H3K27me3-positive genes, like EpCAM. Our 

results show that DNMT3L interacts directly with EZH2 and TET2. We speculate that 

following DNA demethylation, DNMT3L, recruited to the EpCAM promoter via the RelA 

complex, counteracts the activity of DNMT3A and DNMT3B, thereby maintaining 
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hypomethylation. Importantly, we demonstrate this DNA demethylation complex is induced 

by HBx in the context of SUZ12 downregulation, i.e., EZH2 acts independently of the other 

core subunits of the PRC2 complex (Figs. 3D and 5D). The cellular context of the 4pX-1-

SUZ12kd cell line resembles down-regulation of SUZ12 observed in liver tumors of animals 

modeling HBx- and HBV-mediated hepatocarcinogenesis, as well as the host cell during 

HBV replication
13

 (Fig. 8B), all of which exhibit elevated expression of EpCAM
13

. Our 

recent studies (Zhang et al, pending) have determined the mechanism by which HBx 

promotes SUZ12 downregulation, involving proteasomal degradation induced by Polo-like-

kinase1 (Plk1)-mediated phosphorylation of SUZ12. In turn, Plk1 is overexpressed in many 

human cancers including HBV-induced HCC, and is activated by HBx.
7

How HBx induces formation of the RelA-directed DNA demethylation complex is not 

understood. RelA undergoes posttranslational modifications including methylation.
50 

Whether EZH2 methylates RelA or other members of the complex remains to be 

determined. Based on recent findings that RelA activity is regulated by methylation
50

, and 

by analogy to the ability of EZH2 to methylate the transcription factor STAT3 (ref. 51), it is 

reasonable to propose that EZH2 is a likely methyltransferase for RelA. HBx could alter the 

methyltransferase specificity of EZH2 by inducing its phosphorylation, as it has been shown 

to occur for the EZH2-mediated methylation of STAT3 (ref. 51). It is well-documented that 

HBx induces activation of cellular signal transduction pathways
2, 3 as well as activation of 

the mitotic Plk1 (ref. 7). Interestingly, EZH2 contains several Plk1 consensus 

phosphorylation sites. We speculate HBx-driven post-translational modifications of EZH2 

alter its methyltransferase specificity towards methylation of RelA or the other components 

of the DNA demethylation complex.

The involvement of RelA in this active DNA demethylation process is quite interesting, 

because RelA/NF-κB is constitutively activated in many human cancers including liver 

cancer.
52

 HBx
45

 as well as inflammatory stimuli originating from the microenviroment
52 

activate NF-κB. Our results demonstrating propagation of DNA demethylation to nearby 

CpG sites in the EpCAM gene upon treatment of HBx-expressing cells with TNF-α, identify 

another mechanism by which chronic inflammation could be involved in cancer 

pathogenesis. We speculate RelA/NF-κB, activated by HBx and TNF-α secreted by 

cytotoxic T lymphocytes
53

, integrates effects of chronic inflammation and HBx action in 

mediating HCC pathogenesis in chronically infected HBV patients. Furthermore, recent 

studies have shown that an inverse relationship exists between enhanced RelA expression 

and decreased HNF4 expression in human liver tumors
54

, thereby linking RelA expression 

to less differentiated HCCs exhibiting elevated expression of EpCAM
16

. Although NF-κB 

regulates various classes of genes involved in tumor development, including proliferation, 

survival and metastasis
52

, the repertoire of genes regulated via this active DNA 

demethylation mechanism directed by RelA and EZH2 requires further studies. Our results 

have identified the hepatic progenitor DLK1, another PRC2 target gene, to be demethylated 

in human HCCs at a CpG site located within NF-κB cis-acting element (Fig. 9B). Other 

genes that could undergo a similar DNA demethylation mechanism include the PRC2 target 

gene BAMBI
13

, or genes expressed in early hepatic progenitors or during hepatic lineage 

determination such as SOX9 (ref. 55) and SALL4 (ref. 56). Interestingly, these genes have 

CpG sites located within NF-κB cis-acting elements. Further studies are needed to determine 
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the mechanism by which this active DNA demethylation, associated with the NF-κB cis-

acting elements, regulates transcription.

Regarding the involvement of EZH2 in this DNA demethylation mechanism, our results 

show that EZH2 acts independently of the other subunits of the PRC2 complex (Fig. 5D). 

Whether the methyltransferase activity of EZH2 is required for its involvement in the RelA-

driven DNA demethylation is also unknown. Since EZH2 is overexpressed in many human 

cancers including liver cancer
57

 our studies identify a novel role for EZH2, independent of 

its histone3 methyltransferase function, in oncogenesis.

MATERIALS AND METHODS

Cell lines The 4pX-1 cell line is a tetracycline regulated HBx-expressing cell line, derived 

from immortalized mouse hepatocyte AML12 cells.
37

 4pX-1GIPZ is derived from the 4pX-1 

cell line
17

 containing a stable insertion of GIPZ vector and thus serving as vector control for 

the stable knockdown (kd) cell lines 4pX-1-SUZ12kd and 4pX-1-ZNF198kd. All 4pX-1-

derived cell lines express HBx by tetracycline removal for 18h and grown as described.
9, 17 

HBx expression is confirmed by RT-PCR. Treatment of indicated cell lines with 10μM 5-

aza-2’-Deoxycytidine (#11166, Cayman Chemical) was for 48h. The HepAD38 cell line that 

supports HBV replication by removal of tetracycline was grown as described.
47

Sodium bisulfite sequencing employed the following reagents and protocols described by 

the manufacturers: PureLink Genomic DNA Mini Kit (K1820-01, Invitrogen) for genomic 

DNA isolation; EZ DNA Methylation-Direct Kit (D5020, Zymo) for bisulfate treatment of 

DNA. Mouse EpCAM bisulfate sequencing primers were designed by Methprimer.
58

Chromatin Immunoprecipitation (ChIP) assays, Immunoprecipitations and immunoblot 

analyses performed using standard protocols.
13

 The following reagents and antibodies were 

used: Lysis Buffer (#9803, Cell Signaling); Normal Rabbit IgG (#2729, Cell Signaling); 

Protease inhibitor cocktail (P8340, SIGMA); ChIP assay kit (17-295, Millipore). Protein 

A/G PLUS-agarose immunoprecipitation reagent (sc-2003, SANTA CRUZ); Dynabeads 

Protein G (10003D, Invitrogen); EED antibody (#61203, Active Motif); EZH2 antibody 

(#5246, Cell Signaling); ZNF198 antibody (PA1-41457, Thermo fisher); Tri-Methyl-Histone 

H3 (Lys4) antibody (#9727S, Cell Signaling); Di-Methyl-Histone H3 (Lys4) antibody 

(#9725S, Cell Signaling); Mono-Methyl-Histone H3 (Lys4) antibody (#9723S, Cell 

Signaling); Anti-Histone H3 (tri methyl K27) antibody (ab6002, Abcam); anti-EpCAM 

antibody (ab71916, Abcam); Histone H3 antibody (61277, Active Motif) Cell ; RelA 

antibody (sc-109, SANTA CRUZ); SUZ12 antibody (ab12073, Abcam); RNase Cocktail 

Enzyme Mix (AM2286, Ambion); TET2 antibody (MABE462, Millipore); DNMT3L 

antibody (ab3493, Abcam); 5-hmC antibody (MAb-31HMC, Diagenode).

Reverse Transcription and Quantitative Real-Time PCR: RNA was isolated employing 

PureLink RNA Mini Kit (12183018A, Invitrogen). cDNA was synthesized from 2.0 μg total 

RNA isolated using iScript™ cDNA Synthesis Kit (170-8891, Bio-Rad). Quantitative real-

time PCR reactions were performed in triplicates and normalized to GAPDH employing 

FastStart Essential DNA Green Master (06924204001, Roche), SYBR green (Roche), and 

Fan et al. Page 9

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roche LightCycler 96. The 2−ΔΔCt method was used for analysis.
59

 Primer sequences are 

listed in Table S2, supplementary information.

Statistical analyses: Statistical significance was assessed by Student’s t-test. Data were 

expressed as mean ± standard deviation (SD) and *P < 0.05, **P < 0.01 and ***P < 0.001 

were considered significant.

Re-analysis of microarray data. CEL files and metadata for the microarray study of 

Boyault, et al
48

 were downloaded from ArrayExpress (accession number E-TABM-36). CEL 

files were processed with R and Bioconductor
60

 using the Robust Multi-array Average 

(RMA) function in the affy package (v 1.42.3)
61

. Probe set annotation for the Affymetrix 

Human Genome microarray U133A was obtained from the hgu133a.db (v 2.14.0) package.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The PRC2 and ZNF198/LSD1/Co-REST/HDAC1 complexes coupled by the noncoding 
RNA HOTAIR repress EpCAM Expression
A. (Left panel) PCR quantification of HOTAIR following transfection of control siRNA 

(siCtrl) or HOTAIR siRNA (siHOTAIR) in 4pX-1GIPZ, 4pX-SUZ12kd and 4pX-1-ZNF198kd 

cell lines. (Right panel) PCR quantification of EpCAM following transfection of siCtrl or 

siHOTAIR. B. Immunoblot of EpCAM following transfection of siCtrl or siHOTAIR in 

4pX-1GIPZ cells. C. Quantification of EpCAM-positive cells (upper right quadrant) by flow 

cytometry following transfection of siCtrl or siHOTAIR in 4pX-1GIPZ cells. D. ChIP assays 

with indicated antibodies in 4pX-1GIPZ, 4pX-SUZ12kd and 4pX-1-ZNF198kd cells. Data 

represent ratio of % input
62

, quantified by ChIP assays performed with (+) or without (−) 

HBx in indicated cell lines (Fig. S2 A-D).
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Figure 2. HBx induces EpCAM CpG demethylation in SUZ12 knockdown cells
A. Diagram of CpG dinucleotides in mouse EpCAM gene. The transcriptional start site 

(TSS), numbered CpG dinucleotides, an A/T centric NF-κB site, and the position of bisulfite 

sequencing primers (BSP) are indicated. B.-D. Bisulfite sequencing results of EpCAM 

clones, using DNA from indicated cell lines. Open and closed circles denote absence and 

presence, respectively, of cytosine modifications including methylation and 

hydroxymethylation.
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Figure 3. RelA and EZH2 regulate EpCAM expression in SUZ12 knockdown cells
A. ChIP assays with RelA antibody, employing 4pX-1-SUZ12kd cells grown +/− HBx 

expression by tetracycline removal for 18h, and EpCAM primers spanning CpG sites shown 

in Fig. 2A. B. PCR quantification of EpCAM mRNA following transfection of control 

siRNA (siCtrl) or RelA siRNA (siRelA). Immunoblot of RelA after transfection of siRelA 

vs. siCtrl. C. Immunoblots of EZH2 in indicated cell lines +/− HBx expression by 

tetracycline removal for 18h. D. ChIP assays with SUZ12 or EZH2 antibody, employing 

4pX-1-SUZ12kd cells grown +/− HBx expression by tetracycline removal for 18h, and 

EpCAM primers spanning CpG sites shown in Fig. 2A. E. Co-immunoprecipitations of 

EZH2 and RelA, employing lysates from 4pX-1-SUZ12kd cells grown with (+) HBx for 18h. 

F. PCR quantification of EpCAM mRNA following EZH2 knockdown by siRNA 

transfection (siEZH2) in 4pX-1-SUZ12kd cells, with (+) HBx. Immunoblot of EZH2 

following transfection of siEZH2 vs siCtrl.
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Figure 4. TET2 and DNMT3L are required for EpCAM expression
A. PCR quantification of TET2 in indicated cell lines +/− HBx expression by tetracycline 

removal for 18h. B. Immunoblot of TET2 in indicated cell lines +/− HBx. C. PCR 

quantification of DNMT3L in indicated cell lines +/− HBx. D. Immunoblot of DNMT3L in 

indicated cell lines +/− HBx. E. PCR quantification of EpCAM mRNA following 

transfection of TET2 siRNA (siTET2) vs. control siRNA (siCtrl), in 4pX-1-SUZ12kd cells 

expreesing HBx. TET2 knockdown by siTET2 transfection (50pM) quantified by PCR and 

confirmed by TET2 immunoblots. F. PCR quantification of EpCAM mRNA following 

transfection of DNMT3L siRNA (siDNMT3L) vs. siCtrl, in 4pX-1-SUZ12kd cells 

expressing HBx. DNMT3L knockdown by siDNMT3L transfection (80pM) quantified by 

PCR and confirmed by DNMT3L immunoblots.
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Figure 5. TET2 and DNMT3L are in complex with EZH2 and RelA
A.-D. Immunoprecipitations (IP) with IgG and indicated antibodies using WCE from 4pX-1-

SUZ12kd cells +/− HBx expression for 18h. IPs were immunoblotted with TET2, EZH2, 

SUZ12, RelA and DNMT3L antibodies. E. ChIP assays with RelA antibody, employing 

4pX-1-SUZ12kd cells grown +/− HBx expression by tetracycline removal for 18h; ChIPed 

DNA was used in sequential seqChIP assays employing indicated antibodies and EpCAM 

primers spanning CpG sites shown in Fig. 2A. F. ChIP assays performed with indicated 

antibody, employing 4pX-1-SUZ12kd cells transfected with siRNAs for RelA (siRelA) or 

control (siCtrl), in the presence of HBx expression. EpCAM primers spanning CpG sites 

shown in Fig.2A were used.
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Figure 6. RelA, EZH2, TET2 and DNMT3L are required for HBx-induced EpCAM gene 
demethylation
A.-D. Bisulfite sequencing results of EpCAM clones, using DNA from 4pX-1-SUZ12kd 

cells expressing HBx and transfected with siRNAs for RelA (siRelA), EZH2 (siEZH2), 

TET2 (siTET2), DNMT3L (siDNMT3L) and control (siCtrl).
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Figure 7. TNF-α increases EpCAM expression and propagates demethylation of nearby CpG 
sites
A. PCR quantification of EpCAM mRNA following transfection of EZH2 expression vector 

in 4pX-1-SUZ12kd cells expressing HBx and treated with TNF-α (0.1ng/ml) for 18h. B. 
Bisulfite sequencing results of EpCAM clones, using DNA from 4pX-1-SUZ12kd cells 

expressing HBx, transfected with EZH2 expression vector, and treated with TNF-α 

(0.1ng/ml) for 18h.
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Figure 8. Increased EpCAM demethylation in HBV replicating HepAD38 cells
A. Diagram of CpG dinucleotides in human EpCAM gene. The transcriptional start site 

(TSS), numbered CpG dinucleotides, a NF-κB site, and the position of bisulfite sequencing 

primers (BSP) are indicated. B. Immunoblots of nuclear extracts isolated from HepAD38 

cells grown with (+) or without (−) HBV replication by tetracycline removal for 5 and 10 

days, employing antibodies for ZNF198, SUZ12, EED, EZH2, HBc, and Histone3 serving 

as loading control. * indicates non-specific band. C. Immunoblots of HepAD38 lysates from 

cells grown with (+) or without (−) Tet for 5 and 10 days, employing the indicated 

antibodies. D. ChIP assays with H3K27me3 antibody employing primers for the human 

EpCAM CpG island. E. Bisulfite sequencing results of EpCAM clones, using DNA from 

HepAD38 cells gown in the absence (−) of HBV replication or with (+) HBV replication for 

2 days, by tetracycline removal. % methylation is indicated. Arrows indicate CpG 

dinucleotide #23 adjacent to NF-κB site.

Fan et al. Page 21

Oncogene. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. NF-κB site-driven DNA demethylation in human HCCs
A. Boxplots showing Robust Multiarray Average (RMA) expression values for genes of 

interest in HCC Group 1 (n = 6) and the pooled value for HCC Groups 2 – 6 (n = 53). The 

RMA value for control microarrays hybridized with pooled RNA samples from non-tumoral, 

HBV-infected liver either without cirrhosis (solid red lines) or with cirrhosis (dashed red 

lines). RMA values for EpCAM, DLK1, EZH2 and RelA are shown. Statistical significance 

of the expression difference is shown in Table S1. B. DNA methylation beta value derived 

from the human HCC methylome available through The Cancer Genome Atlas (TCGA). The 

difference in beta values between normal vs. HCC is statistically significant (p=0.007).
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