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Grooming is a common behavior for animals to care for their fur, maintain hygiene,
and regulate body temperature. Since various factors, including stressors and genetic
mutations, affect grooming quantitatively and qualitatively, the assessment of grooming
is important to understand the status of experimental animals. However, current
grooming detection methods are time-consuming, laborious, and require specialized
equipment. In addition, they generally cannot discriminate grooming microstructures
such as face washing and body licking. In this study, we aimed to develop an automated
grooming detection method that can distinguish facial grooming from body grooming
by image analysis using artificial intelligence. Mouse behavior was recorded using a
standard hand camera. We carefully observed videos and labeled each time point
as facial grooming, body grooming, and not grooming. We constructed a three-
dimensional convolutional neural network (3D-CNN) and trained it using the labeled
images. Since the output of the trained 3D-CNN included unlikely short grooming bouts
and interruptions, we set posterior filters to remove them. The performance of the
trained 3D-CNN and filters was evaluated using a first-look dataset that was not used
for training. The sensitivity of facial and body grooming detection reached 81.3% and
91.9%, respectively. The positive predictive rates of facial and body grooming detection
were 83.5% and 88.5%, respectively. The number of grooming bouts predicted by our
method was highly correlated with human observations (face: r = 0.93, body: r = 0.98).
These results highlight that our method has sufficient ability to distinguish facial grooming
and body grooming in mice.

Keywords: grooming, experimental animals, automated detection, mouse behavior, deep learning, convolutional
neural network, 3D-CNN

INTRODUCTION

Experimental animals exhibit various behaviors, such as ambulation, immobility, rearing,
scratching, and grooming. Since behavior reflects the mental and physical condition of an animal,
we can estimate it by observing its behavior. Grooming is one of the common behaviors to care
for fur, maintain hygiene, and regulate body temperature in experimental animals such as mice,
rats, and others (Almeida et al., 2015; Kalueff et al., 2016). Grooming motion is composed of
several microstructures, such as face washing and body licking (Kalueff and Tuohimaa, 2004;
Kalueff et al., 2007). They typically groom themselves from the head to the genitals and tail. Several
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studies have shown that the internal status of rodents affects
grooming frequency and/or duration. For example, stressors such
as exposure to unfamiliar environments can elicit grooming
behavior in mice (Kalueff and Tuohimaa, 2004; Reeves et al.,
2016). Additionally, it has been discovered that ordered
grooming microstructures are disturbed by neuropsychiatric
and neurodegenerative disorders in mice (Berridge et al., 2005;
Kalueff et al., 2016). These observations highlight the importance
of quantitative and qualitative grooming assessments in the
internal status evaluation of experimental animals.

There are several methods for assessing the grooming behavior
of mice and rats. Human observation is a traditional and
standard way to detect grooming. Although human observation
does not require any specific equipment, it is labor-intensive
and time-consuming. Additionally, the results vary between
observers. Several automated methods have been developed
to detect grooming in rodents. For example, Reeves et al.
(2016) established the M-track, which tracks the position of the
mouse forehand by painting fluorescent markers and detects
grooming from its trajectories. Another group showed that
the Janelia Automatic Animal Behavior Annotator, which is a
machine learning classifier (Kabra et al., 2013), could detect
grooming from top-recorded video files (van den Boom et al.,
2017). Although these studies provide accurate and rapid
grooming detection methods, many of them require special
equipment. In addition, these systems did not distinguish
grooming microstructures, such as face washing and body licking
of mice and rats.

The development of deep neural network algorithms is
noteworthy. Since Krizhevsky et al. (2012) showed that
convolutional neural networks (CNNs) exhibit outstanding
performance in image classification tasks, CNNs have become
the de facto standard method for image recognition. CNN-based
algorithms have also been developed in biology. For example,
Pereira et al. (2019) developed LEAP, which estimates the pose
of an animal from images. DeepLabCut is another common
application for pose estimation using transfer learning (Mathis
et al., 2018). We also recently showed that the combination
of CNN and long short-term memory (LSTM) layers can
be used to detect scratching behavior in mice, suggesting
that deep neural networks can be applied for the detection
of sequential movements (Kobayashi et al., 2021). Recently,
Geuther et al. (2021) proposed an automated grooming detection
method using a three-dimensional CNN (3D-CNN). However,
a method using CNN to classify facial and body grooming has
not been developed.

In this study, we aimed to establish a novel automated method
to detect facial and body grooming in mice. Here, we showed that
3D-CNN can accurately classify facial and body grooming.

MATERIALS AND METHODS

Mice Behavior Dataset
In this study, we used the videos recorded in the previous study to
establish an automated scratching detection method (Kobayashi
et al., 2021). Here, we briefly explain these videos. BALB/c mice

(12–16 weeks old; male and female sex; n = 9) were treated
with lysophosphatidic acid (LPA, Avanti Polar Lipids, Inc.,
Alabaster, AL, United States; 200 nmol/site/25 µl, 2 site/mouse,
intracutaneously). Mice were then placed in a black square arena
and their behavior was recorded by the hand camera (HDR-
CX720V, Sony, Tokyo, Japan) set at a height of 150 cm above the
arena. Recording conditions were as follows: frame rate, 60 Hz;
resolution, 1,920 × 1,080 pixels, 24-bit color. We finally obtained
30 9-min video files and used them for grooming detection. We
split the whole 30 videos into training (1–23), validation (24–
25), and test (26–30) datasets. Detailed information is shown in
Supplementary Table 1. We note that there is no overlap of mice
between training and test datasets. Several neural networks were
trained with the training dataset and evaluated their performance
using the validation dataset. We finally chose the best model, and
its performance was evaluated by the test dataset, which was used
only here.

Image Preprocessing and Integration
We preprocessed images in a similar way to the previous
study (Kobayashi et al., 2021) with slight modification. Briefly,
images of all frames of each video were extracted, and an
absolute difference between two sequential images was calculated.
Differential images were cropped around the geometric center
of the mouse into a square shape, resized to 128 × 128 pixels,
and then gray-scaled and binarized. The geometric center of
the mouse was obtained by a binary-image-based algorithm
described in the previous study (Kobayashi et al., 2020). We
integrated images at t ± 10, t ± 20, t ± 30, or t ± 40 for each
time point t to use them for an input (Figure 1B), which were
hereafter referred to as “grouped images.”

Manual Grooming Annotation
We defined grooming as the following behavior which lasted
for at least five frames and whose interval was at least six
frames: washing face and head (facial grooming), licking or
washing of paws, body, tail, and genital (body grooming). These
thresholds were decided empirically during annotation processes.
We carefully watched the videos and labeled each frame as “not
grooming”: 0, “facial grooming”: 1, and “body grooming”: 2
(Figure 1A). The label of frame at time point t was assigned to
the label of grouped images at t (Figure 1B). We note that at
least two researchers checked the annotated labels and conflicts
between them were resolved by discussion before training. Labels
were converted to one-hot encoding vectors for training.

The Architecture of Convolutional
Recurrent Neural Network
The architecture and hyper-parameters of the convolutional
recurrent neural network (CRNN) were almost similar to our
previous study (Figure 2A) (Kobayashi et al., 2021). Briefly, the
network was composed of three two-dimensional (2D)-CNN
layers and two LSTM layers followed by five fully connected
(Fc) layers. For the multiclass classification, we modified CRNN
architecture as follows; the final layer has three nodes, and their
activation function was softmax instead of sigmoid.
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FIGURE 1 | Grooming picture and image integration. (A) Representative pictures of grooming. The left, middle, and right pictures show representative images of
facial grooming, body grooming, and not-grooming behavior, respectively. (B) Schematic illustration of “grouped images.” Blue boxes represent frame images. The
number above each box indicates the label annotated by humans (0: not grooming, 1: facial grooming, 2: body grooming). The green box shows “grouped images at
time t” integrated from t–10 to t + 10; the orange box shows “grouped images at time t + 1” integrated from t–9 to t + 11. The label at time t is used for that of
“grouped images at time t” [blue; frame at time point t (label = 1), orange; frame at time point t + 1 (label = 2)].

The Architecture of Three-Dimensional
Convolutional Neural Network
We constructed 3D-CNN having two blocks: 3D-CNN block and
Fc block. We referred to the C3D model (Tran et al., 2015) in
constructing our architecture. 3D-CNN blocks were composed of
one or two 3D-convolutional layers [Conv3D; kernel size: (t, w,
h) = (3, 3, 3) where t is temporal, w is width, and h is height axis)
followed by 3D-max pooling layer [pooling size: (t, w, h) = (1,
2, 2) or (2, 2, 2)]. Output feature extracted by 3D-CNN block
was flattened and input into Fc blocks. Fifty percent of units
were randomly dropped out after each 3D-max pooling layer and
between the first and second Fc layers. The activation function
of the last layer was softmax and that of all the other layers was
ReLU. Detailed information of layers is summarized in Figure 2B.

Training of Neural Networks
Twenty-three videos (1–23) were used for the training of neural
networks. We randomly reduced the number of grouped images
labeled as not grooming. For one epoch, 1,000 of not grooming,
200 of facial grooming, and 400 of body grooming grouped

images were randomly picked allowing duplicates (batch size was
8). Grouped images were randomly rotated by multiples of 20◦

and flipped for data augmentation. We used AMSGrad optimizer
with 1 × 10−4 and 3 × 10−5 learning rates for CRNN training
and 3D-CNN training, respectively. A categorical cross-entropy
loss function was used for both trainings.

Prediction of Neural Networks
The last layer of neural networks outputs three decimal values
from 0 to 1 for each grouped image. These values were interpreted
as the probability that the input grouped image belongs to
three categories (i.e., not grooming, facial grooming, and body
grooming). The category having the largest probability was
adopted as the prediction of neural networks.

Computer Hardware and Software
Trainings and predictions of neural networks were conducted
on AI-COMPLIANT ADVANCED COMPUTER SYSTEM at
the information initiative center, Hokkaido University, Sapporo,
Japan, which was equipped with Intel Xeon Gold 6230 (2.1
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FIGURE 2 | Neural network architecture and training. (A) Convolutional recurrent neural network (CRNN) architecture. The grouped images are input into three
Conv2D and Max pooling 2D layers. The output tensor is flattened and integrated into two LSTM layers followed by five Fc layers. The number in each box refers to
that of units in each layer. D 0.20: 20% drop out of the output units in each layer during training, Conv2D: 2D convolution, LSTM: long short-term memory, Fc: fully
connected. (B) Three-dimensional convolutional neural network (3D-CNN) architecture. The grouped images are input into five Conv3D and Max pooling 3D layers.
The output tensor was flattened and integrated into three Fc layers. The number in each box refers to that of units in each layer. D 0.50: 50% drop out of the output
units in each layer during training, Conv3D: 3D convolution. (C) The transition of loss value during CRNN training. (D) The transition of loss value during 3D-CNN
training.

GB) and NVIDIA Tesla V100 GPU (32 GB). Trainings and
Predictions were conducted using the TensorFlow library
(version 2.2.0) in Python.

RESULTS

Video Capture and Image Preprocessing
In a previous study, we recorded the behavior of BALB/c mouse
(12–16 weeks old; male and female sex; n = 9) and obtained 30 9-
min video files (Kobayashi et al., 2021, Supplementary Table 1).
Since these videos contained numerous grooming bouts, we
reused these videos to establish an automated grooming detection

method. For each video file, we obtained the frame images
and preprocessed them as follows in order to reduce data size
and remove background noise. First, differential images were
obtained between two continuous frames. Then, these images
were cropped and resized around the geometric center of the
mouse into a square shape (128 × 128 pixels). Finally, the images
were gray-scaled and binarized.

Dataset Preparation of Grooming
Behavior
We classified mouse grooming into two types, namely, “facial
grooming” and “body grooming” (Figure 1A). Facial grooming
was defined as washing face and head, while body grooming was
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TABLE 1A | Confusion matrix of convolutional recurrent neural network (CRNN)
prediction for the training dataset.

Training dataset Predicted label Sensitivity

Body Face Not grooming

Human observation Body 102038 1297 1653 97.2%

Face 171 14688 63 98.4%

Not 960 311 103717

Positive predictive rate 98.9% 90.1%

TABLE 1B | Confusion matrix of convolutional recurrent neural network (CRNN)
prediction for the validation dataset.

Validation dataset Predicted label Sensitivity

Body Face Not grooming

Human observation Body 5272 145 1004 82.1%

Face 147 707 136 71.4%

Not 815 129 59113

Positive predictive rate 84.6% 72.1%

defined as licking or washing of paws, body, tail, and genital.
Each preprocessed image was labeled as “not grooming”: 0, “facial
grooming”: 1, or “body grooming”: 2. Out of the 30 labeled videos,
23 (1–23) were used as the training dataset, two (24–25) were
used as the validation dataset, and five (26–30) were used as the
test dataset. In the training dataset, there were 659,797, 14,922,
and 104,988 grouped images labeled as 0, 1, and 2, respectively.
Because such an imbalanced dataset interferes with the efficient
training of neural networks, we randomly selected 104,988 0-
labeled images for training, which is identical to the number
of 2-labeled images. In this study, we aimed to solve multiple
classification problems (classifying each time point into 0, 1, or
2) using neural networks.

Grooming Detection With Convolutional
Recurrent Neural Network
First, we examined whether the CRNN-based algorithm, which
was used for scratching detection in our previous study,
could be applied to grooming detection. The architecture
and parameters were modified to solve multiple classification
problems (Figure 2A). We used t ± 10 grouped images for an
input and trained CRNN with them (Figure 1B and Material and
Methods).

During training, “loss,” an index of difference between
predictions and labels, gradually declined and reached almost
a plateau at 3,000 epochs (Figure 2C). We evaluated the
performance of the CRNN at 3,000 epochs by predicting the
labels in the training and validation datasets. For the training
dataset, the sensitivity and positive predictive rate (PPR) of body
grooming were 97.2% and 98.9%, respectively, and those of
facial grooming were 98.4% and 90.1%, respectively (Table 1A).
These results indicate that the CRNN was sufficiently trained.
In contrast, for the validation dataset, the sensitivity and PPR of
body grooming were 82.1% and 84.6%, respectively, and those of
facial grooming were 71.4% and 72.1%, respectively (Table 1B).

TABLE 2A | Confusion matrix of three-dimensional convolutional neural network
(3D-CNN) prediction for the training dataset.

Training dataset Predicted label Sensitivity

Body Face Not grooming

Human observation Body 100500 913 3575 95.7%

Face 732 13484 706 90.4%

Not 991 202 103795

Positive predictive rate 98.3% 92.4%

TABLE 2B | Confusion matrix of three-dimensional convolutional neural network
(3D-CNN) prediction for the validation dataset.

Validation dataset Predicted label Sensitivity

Body Face Not grooming

Human observation Body 5601 40 780 87.2%

Face 124 778 88 78.6%

Not 486 54 59517

Positive predictive rate 90.2% 89.2%

The accuracy, the ratio of correctly predicted frames, of CRNN
was 96.5%, and the macro F1 score, the average of harmonic
means of sensitivity and PPR for each class, was 0.844. Since
sensitivity and PPR of facial grooming were about 70%, we aimed
to improve the performance further.

Grooming Detection With
Three-Dimensional Convolutional Neural
Network
We examined whether 3D-CNN could improve the
discrimination ability of mouse grooming. We built an
architecture of 3D-CNN (Figure 2B), referring to the C3D
model (Tran et al., 2015). Here, t ± 40 grouped images were
used for training. Loss gradually declined during training and
reached a plateau at 3,000 epochs (Figure 2D). We evaluated
the performance at 3,000 epochs by predicting the labels in the
training and validation datasets. For the training dataset, the
sensitivity and PPR of body grooming were 95.7% and 98.3%,
respectively, and those of facial grooming were 90.4% and 92.4%,
respectively (Table 2A). For the validation dataset, the sensitivity
and PPR of body grooming were 87.2% and 90.2%, respectively,
and those of facial grooming were 78.6% and 89.2%, respectively
(Table 2B). The accuracy of 3D-CNN was 97.7%, and the macro
F1 score was 0.904. We confirmed the superiority of 3D-CNN
using the other five combinations of training/validation datasets
(Supplementary Table 2). According to these results, we
adopted 3D-CNN in the following experiments. We evaluated
the trained 3D-CNN performance for the validation dataset at
every 200 epochs and found that the accuracy and macro F1
scores also reached a plateau at 3,000 epochs (Supplementary
Figures 1A,B). We also trained 3D-CNN using t ± 10, 20, or
30 grouped images for input; however, it did not improve the
prediction performance (Supplementary Table 3). Based on
these observations, we hereafter used the trained 3D-CNN with
t ± 40 grouped images for 3,000 epochs.
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FIGURE 3 | Filter application. (A) Schematic figure of three-dimensional convolutional neural network (3D-CNN) prediction and post-filtered prediction. Arrows
indicate (i) sporadic prediction, (ii) unlikely interruption, or (iii) unlikely transition frames. The dotted box indicates the filtered frames. (B) The number of grooming
bouts after the application of filters.

TABLE 3 | Confusion matrix of post-filtered three-dimensional convolutional neural
network (3D-CNN) prediction for the test dataset.

Post-filtered prediction Predicted label Sensitivity

Body Face Not grooming

Human observation Body 21622 137 1757 91.9%

Face 493 3268 261 81.3%

Not 2328 507 139842

Positive predictive rate 88.5% 83.5%

Filter Application to the Predicted Labels
The prediction result of the 3D-CNN was carefully evaluated
in the validation dataset and found that there were improbable
predictions. We classified them into three patterns: (i) sporadic
misprediction, (ii) unlikely interruption, and (iii) unlikely
transition (Figure 3A). Sporadic mispredictions were defined
as too short (≤ 4 frames) predictions of grooming. Unlikely
interruptions were defined as overly short (≤ 6 frames)
interruption sandwiched grooming bouts. Unlikely transitions

were defined as too short (≤ 4 frames) grooming prediction
before or after the other type of grooming. To exclude these
predictions, we developed three filters corresponding to each
one. These improbable predictions were serially reversed using
filters (Figure 3A).

In the raw prediction data, the number of grooming
bouts was overestimated owing to these improbable predictions
(Figure 3B). Filter application remarkably decreased them and
improved the number of predicted bouts (Figure 3B), although it
did not affect PPR and sensitivity (Supplementary Table 4).

Evaluation of the Trained
Three-Dimensional Convolutional Neural
Network and Filters
We then evaluated the performance of 3D-CNN and posterior
filters for the test dataset, which has not been used up to here.
After all filters were applied, the sensitivity and PPR of mouse
body grooming were 91.9% and 88.5%, respectively, and those of
facial grooming were 81.3% and 83.5%, respectively (Table 3).
We also compared the number of facial and body bouts of
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FIGURE 4 | Prediction of the test dataset. (A,B) The comparison of the number of facial (A) and body (B) grooming bouts between human observation and
post-filtered prediction. The lines indicate the regression line. R: correlation coefficient. (C) Details of discrepant frames between human observation and post-filtered
prediction. (D) Details of oversight frames. (E) Details of false detection frames.

post-filtered predictions with those of human observations. We
found that the number of bouts of post-filtered predictions was
comparable to that observed in humans (Figures 4A,B, face:
r = 0.93; body: r = 0.98).

Evaluation of Errors in Post-filtered
Predictions
We investigated the frame-by-frame differences between post-
filtered predictions and human observations. Discrepant frames
between them (false-positive and false-negative frames) were
classified into three mutually exclusive error types: (i) boundary
errors, (ii) oversights, and (iii) false detections. Boundary
errors were defined as differences in the start and/or end

of each grooming bout. Oversights were defined as bouts
that were labeled as grooming by humans, although they
were predicted as not grooming. False detections were defined
as bouts that were incorrectly predicted as grooming. We
found that boundary errors, oversights, and false detections
accounted for 58.6%, 12.1%, and 29.3% of all discrepant frames,
respectively (Figure 4C).

We also evaluated the types of behavior mice exhibited in
oversights and false detection frames. We revealed that fine
movements around the face were often overlooked (Figure 4D;
forepaw licking: 45.8%, nose scratching: 23.5%). Additionally,
subtle head or forepaw movements (29.9%), looking down
(8.0%), and sniffing at the cage floor or wall (7.4%) accounted for
a large portion of false detection frames (Figure 4E).
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DISCUSSION

Since it is impossible to directly determine the mental and
physical conditions of experimental animals, many researchers
have paid attention to their behavior. We focused on grooming
and successfully established a method to detect facial and
body grooming in mice using 3D-CNN. Detailed evaluation of
grooming has been focused on because various factors, including
stressors, drug treatment, and genetic mutation, affect grooming
frequency and pattern (Welch et al., 2007; Kalueff et al., 2016;
Tartaglione et al., 2016). In particular, the regional distribution of
grooming of rodents has been discovered to be worth analyzing.
For example, rostral grooming has been reported to increase
more than caudal grooming under stressed conditions (Kalueff
and Tuohimaa, 2005). We classified grooming into facial and
body grooming. In our datasets, mice spent more time body
grooming than facial grooming. This grooming distribution was
similar to that of rats splashed with water, which spent more time
body grooming than facial grooming (van Erp et al., 1994; Shiota
et al., 2016). Here, we established a novel method to classify
facial and body grooming, which enabled us to analyze grooming
microstructure in an objective, high-throughput manner.

An automated grooming detection system is required as
human observation is labor-intensive and has low throughput.
An automated system is essential to be convenient and to
have sufficient performance compared with human observations.
In this study, we developed a novel automated grooming
classifier composed of a commercially available hand camera,
normal home cage, and GPU-mounted computer. This simplicity
is superior to existing methods, which often require special
equipment. More importantly, our system achieved sufficient
performance in distinguishing facial and body grooming after
the application of filters (Table 3). Analysis of differences
between human observation and post-filtered prediction showed
that more than half of the discrepant frames were boundary
errors, which are differences regarding the start and/or end
of each grooming bout. This error can occur among human
observations, which is a non-specific problem in our system.
Although the left errors were indeed faults of our system,
such error frames were few enough compared with those of
accurately detected frames. Therefore, our system has sufficient
discrimination ability for facial and body grooming with only
top-view images. These results highlight the superiority of the
proposed method.

Two-dimensional (2D)-CNN has become the de facto
standard method of image recognition in many research fields,
including animal ethology. Recently, to treat time-series data
effectively, we and others combined 2D-CNN and RNN and
succeeded in detecting animal behavior, including scratching in
mice (Kobayashi et al., 2021) and daily behavior in cows (Wu
et al., 2021). We also attempted CRNN to detect grooming;
however, its performance was not sufficient in this study
(Table 1B). Here, we applied another architecture, 3D-CNN,
which can deal with a series of planar images as the cubic object.
This architecture exhibits excellent performance in detecting
facial and body grooming. Recently, Geuther et al. (2021)
also proposed a 3D-CNN-based grooming detection system
(grooming vs. not grooming). Our results were consistent with

their results and also highlighted the effectiveness of 3D-CNN for
facial and body grooming discrimination.

This study has the following limitations. First, our 3D-CNN
was not suitable for detecting fine movements (Figures 4D,E).
It is sometimes difficult even for human observers to distinguish
grooming from unrelated behavior as we have only top-view
images that have blind spots. For example, forepaw licking
and unrelated subtle movements of the head or forepaws
are ambiguous. We assumed that multi-angle recording may
improve accuracy in both human annotation and prediction.
Second, whether our 3D-CNN can be used in other datasets has
not been validated. Since we used binarized differential images
between consecutive frames for the input of neural networks, our
method does not depend on the colors of mouse fur in theory.
However, it is possible that mouse size or light conditions in
the recording environment affect the performance. Third, hyper-
parameters such as data downsizing ratio and class ratio were
not fully optimized. Their further optimization would improve
the performance. Finally, our architecture, simple 3D-CNN, was
not the state-of-the-art method. As deep learning methods have
been rapidly evolved, many architectures have been continuously
proposed (Qiu et al., 2017; Feichtenhofer et al., 2019; Fan et al.,
2021). Additionally, there are often cases that pre-trained models
were disclosed. Further application of these technologies can
improve the discrimination ability.

In conclusion, we developed a 3D-CNN-based grooming
detection method that can automatically distinguish facial
and body grooming.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will
be made available by the corresponding author, without undue
reservation.

ETHICS STATEMENT

All experiments were reviewed and approved by the institutional
Animal Care and Use Committee at the University of Tokyo
(P19–079). Animal care and treatments were performed in
accordance with the guidelines outlined within the Guide to
Animal Use and Care of the University of Tokyo.

AUTHOR CONTRIBUTIONS

NS, KK, MY, and TM contributed to the conception and design
of the study. NS, KK, TY, and SM performed the experiments.
NS and KK analyzed the data. NS wrote the first draft of the
manuscript. NS, KK, and TM revised the manuscript. All authors
read and approved the submitted version.

FUNDING

This work was supported by a Grant-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science
(19K15975 to KK and 20H05678 and 17H06252 to TM), the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 February 2022 | Volume 16 | Article 797860

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-797860 January 28, 2022 Time: 15:15 # 9

Sakamoto et al. Automated Detection of Mouse Grooming

University of Tokyo Gap Fund Program (to TM), and by
the Kobayashi Science Foundation and Shimadzu Science
Foundation (to TM).

ACKNOWLEDGMENTS

This work was partly achieved through the use
of the AI-COMPLIANT ADVANCED COMPUTER

SYSTEM at the Information Initiative Center, Hokkaido
University, Sapporo, Japan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2022.797860/full#supplementary-material

REFERENCES
Almeida, M. C., Vizin, R. C. L., and Carrettiero, D. C. (2015). Current

understanding on the neurophysiology of behavioral thermoregulation.
Temperature 2, 483–490. doi: 10.1080/23328940.2015.1095270

Berridge, K. C., Aldridge, J. W., Houchard, K. R., and Zhuang, X. (2005). Sequential
super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic
mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC
Biol. 3:4. doi: 10.1186/1741-7007-3-4

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., et al. (2021).
Multiscale Vision Transformers. Available Online at: http://arxiv.org/abs/2104.
11227 (accessed April 22, 2021).

Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2019). “Slowfast networks for video
recognition,” in Proceedings of the IEEE International Conference Computer
Vision, (Piscataway, NJ: IEEE). doi: 10.3390/s20082381

Geuther, B. Q., Peer, A., He, H., Sabnis, G., Philip, V. M., and Kumar, V. (2021).
Action detection using a neural network elucidates the genetics of mouse
grooming behavior. Elife 10:e63207. doi: 10.7554/eLife.63207

Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., and Branson, K. (2013).
JAABA: Interactive machine learning for automatic annotation of animal
behavior. Nat. Methods 10, 64–67. doi: 10.1038/nmeth.2281

Kalueff, A. V., and Tuohimaa, P. (2004). Grooming analysis algorithm for
neurobehavioural stress research. Brain Res. Protoc. 13, 151–158.

Kalueff, A. V., and Tuohimaa, P. (2005). The grooming analysis algorithm
discriminates between different levels of anxiety in rats: potential utility for
neurobehavioural stress research. J. Neurosci. Methods 143, 169–177. doi: 10.
1016/j.jneumeth.2004.10.001

Kalueff, A. V., Stewart, A. M., Song, C., Berridge, K. C., Graybiel, A. M., and
Fentress, J. C. (2016). Neurobiology of rodent self-grooming and its value for
translational neuroscience. Nat. Rev. Neurosci. 17, 45–59. doi: 10.1038/nrn.
2015.8

Kalueff, A. V., Wayne Aldridge, J., Laporte, J. L., Murphy, D. L., and Tuohimaa, P.
(2007). Analyzing grooming microstructure in neurobehavioral experiments.
Nat. Protoc. 2, 2538–2544. doi: 10.1038/nprot.2007.367

Kobayashi, K., Matsushita, S., Shimizu, N., Masuko, S., Yamamoto, M., and
Murata, T. (2021). Automated detection of mouse scratching behaviour using
convolutional recurrent neural network. Sci. Rep. 11:658. doi: 10.1038/s41598-
020-79965-w

Kobayashi, K., Shimizu, N., Matsushita, S., and Murata, T. (2020). The assessment
of mouse spontaneous locomotor activity using motion picture. J. Pharmacol.
Sci. 143, 83–88. doi: 10.1016/j.jphs.2020.02.003

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems NIPS’12,
Vol. 1, 1097–1105.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281–1289. doi: 10.1038/s41593-
018-0209-y

Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S. S. H., Murthy,
M., et al. (2019). Fast animal pose estimation using deep neural networks. Nat.
Methods 16, 117–125. doi: 10.1038/s41592-018-0234-5

Qiu, Z., Yao, T., and Mei, T. (2017). “Learning spatio-temporal representation
with pseudo-3D residual networks,” in Proceedings of the IEEE International
Conference Computer Vision, (Piscataway, NJ: IEEE).

Reeves, S. L., Fleming, K. E., Zhang, L., and Scimemi, A. (2016). M-Track: a
new software for automated detection of grooming trajectories in mice. PLoS
Comput. Biol. 12:1005115. doi: 10.1371/journal.pcbi.1005115

Shiota, N., Narikiyo, K., Masuda, A., and Aou, S. (2016). Water spray-induced
grooming is negatively correlated with depressive behavior in the forced
swimming test in rats. J. Physiol. Sci. 66, 265–273. doi: 10.1007/s12576-015-
0424-1

Tartaglione, A. M., Armida, M., Potenza, R. L., Pezzola, A., Popoli, P., and
Calamandrei, G. (2016). Aberrant self-grooming as early marker of motor
dysfunction in a rat model of Huntington’s disease. Behav. Brain Res. 313,
53–57. doi: 10.1016/j.bbr.2016.06.058

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). “Learning
spatiotemporal features with 3D convolutional networks,” in Proceedings
of the IEEE International Conference Computer Vision, (Piscataway, NJ:
IEEE).

van den Boom, B. J. G., Pavlidi, P., Wolf, C. J. H., Mooij, A. H., and Willuhn, I.
(2017). Automated classification of self-grooming in mice using open-source
software. J. Neurosci. Methods 289, 48–56. doi: 10.1016/j.jneumeth.2017.05.
026

van Erp, A. M. M., Kruk, M. R., Meelis, W., and Willekens-Bramer, D. C. (1994).
Effect of environmental stressors on time course, variability and form of self-
grooming in the rat: handling, social contact, defeat, novelty, restraint and
fur moistening. Behav. Brain Res. 65, 47–55. doi: 10.1016/0166-4328(94)90
072-8

Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J. D., et al. (2007).
Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant
mice. Nature 448, 894–900. doi: 10.1038/nature06104

Wu, D., Wang, Y., Han, M., Song, L., Shang, Y., and Zhang, X. (2021). Using a
CNN-LSTM for basic behaviors detection of a single dairy cow in a complex
environment. Comput. Electron. Agric. 182:106016. doi: 10.1016/j.compag.2021.
106016

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Sakamoto, Kobayashi, Yamamoto, Masuko, Yamamoto and
Murata. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 797860

https://www.frontiersin.org/articles/10.3389/fnbeh.2022.797860/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.797860/full#supplementary-material
https://doi.org/10.1080/23328940.2015.1095270
https://doi.org/10.1186/1741-7007-3-4
http://arxiv.org/abs/2104.11227
http://arxiv.org/abs/2104.11227
https://doi.org/10.3390/s20082381
https://doi.org/10.7554/eLife.63207
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1016/j.jneumeth.2004.10.001
https://doi.org/10.1016/j.jneumeth.2004.10.001
https://doi.org/10.1038/nrn.2015.8
https://doi.org/10.1038/nrn.2015.8
https://doi.org/10.1038/nprot.2007.367
https://doi.org/10.1038/s41598-020-79965-w
https://doi.org/10.1038/s41598-020-79965-w
https://doi.org/10.1016/j.jphs.2020.02.003
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1371/journal.pcbi.1005115
https://doi.org/10.1007/s12576-015-0424-1
https://doi.org/10.1007/s12576-015-0424-1
https://doi.org/10.1016/j.bbr.2016.06.058
https://doi.org/10.1016/j.jneumeth.2017.05.026
https://doi.org/10.1016/j.jneumeth.2017.05.026
https://doi.org/10.1016/0166-4328(94)90072-8
https://doi.org/10.1016/0166-4328(94)90072-8
https://doi.org/10.1038/nature06104
https://doi.org/10.1016/j.compag.2021.106016
https://doi.org/10.1016/j.compag.2021.106016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Automated Grooming Detection of Mouse by Three-Dimensional Convolutional Neural Network
	Introduction
	Materials and Methods
	Mice Behavior Dataset
	Image Preprocessing and Integration
	Manual Grooming Annotation
	The Architecture of Convolutional Recurrent Neural Network
	The Architecture of Three-Dimensional Convolutional Neural Network
	Training of Neural Networks
	Prediction of Neural Networks
	Computer Hardware and Software

	Results
	Video Capture and Image Preprocessing
	Dataset Preparation of Grooming Behavior
	Grooming Detection With Convolutional Recurrent Neural Network
	Grooming Detection With Three-Dimensional Convolutional Neural Network
	Filter Application to the Predicted Labels
	Evaluation of the Trained Three-Dimensional Convolutional Neural Network and Filters
	Evaluation of Errors in Post-filtered Predictions

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


