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Prognostic analysis and
validation of diagnostic
marker genes in patients
with osteoporosis

Xing Wang1†, Zhiwei Pei2†, Ting Hao3, Jirigala Ariben1,
Siqin Li1, Wanxiong He2, Xiangyu Kong2, Jiale Chang2,
Zhenqun Zhao3*‡ and Baoxin Zhang3*‡

1Bayannur Hospital, Bayannur City, China, 2Inner Mongolia Medical University, Hohhot, China, 3The
Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
Backgrounds: As a systemic skeletal dysfunction, osteoporosis (OP) is

characterized by low bone mass and bone microarchitectural damage. The

global incidences of OP are high.

Methods: Data were retrieved from databases like Gene Expression Omnibus

(GEO), GeneCards, Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING), Gene Expression Profiling Interactive Analysis (GEPIA2), and other

databases. R software (version 4.1.1) was used to identify differentially

expressed genes (DEGs) and perform functional analysis. The Least Absolute

Shrinkage and Selection Operator (LASSO) logistic regression and random

forest algorithm were combined and used for screening diagnostic markers

for OP. The diagnostic value was assessed by the receiver operating

characteristic (ROC) curve. Molecular signature subtypes were identified

using a consensus clustering approach, and prognostic analysis was

performed. The level of immune cell infiltration was assessed by the Cell-

type Identification by Estimating Relative Subsets of RNA Transcripts

(CIBERSORT) algorithm. The hub gene was identified using the CytoHubba

algorithm. Real-time fluorescence quantitative PCR (RT-qPCR) was performed

on the plasma of osteoporosis patients and control samples. The interaction

network was constructed between the hub genes and miRNAs, transcription

factors, RNA binding proteins, and drugs.

Results: A total of 40 DEGs, eight OP-related differential genes, six OP

diagnostic marker genes, four OP key diagnostic marker genes, and ten hub

genes (TNF, RARRES2, FLNA, STXBP2, EGR2, MAP4K2, NFKBIA, JUNB, SPI1,

CTSD) were identified. RT-qPCR results revealed a total of eight genes had

significant differential expression between osteoporosis patients and control

samples. Enrichment analysis showed these genes were mainly related to

MAPK signaling pathways, TNF signaling pathway, apoptosis, and Salmonella

infection. RT-qPCR also revealed that theMAPK signaling pathway (p38, TRAF6)

and NF-kappa B signaling pathway (c-FLIP, MIP1b) were significantly different
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between osteoporosis patients and control samples. The analysis of immune

cell infiltration revealed that monocytes, activated CD4 memory T cells, and

memory and naïve B cells may be related to the occurrence and development

of OP.

Conclusions: We identified six novel OP diagnostic marker genes and ten OP-

hub genes. These genes can be used to improve the prognostic of OP and to

identify potential relationships between the immune microenvironment and

OP. Our research will provide insights into the potential therapeutic targets and

pathogenesis of osteoporosis.
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Introduction

Osteoporosis (OP) is a systemic bone disease characterized

by low bone mass and destruction of bone microarchitecture (1),

which increases the fragility of the bone and fracture risk (2, 3).

OP is the fourth leading chronic disease after heart disease,

dementia, and lung cancer (4). Bone homeostasis depends on

osteoclast resorption and osteoblast formation, and an

imbalance in this tightly coupled process can lead to the

development of osteoporosis (5). Hip and vertebral fractures

are two common osteoporotic fractures (6). Elderly patients with

osteoporotic fractures often require hospitalization, resulting in

poor quality of life, long-term medical care, disability, and even

death (7). This creates a substantial economic and social burden

worldwide and is a global public health challenge (8, 9). Due to

its asymptomatic nature, patients with OP are often not

diagnosed until the first osteoporotic fracture occurs.

Therefore, it is very important to find biomarkers that enable

early diagnosis.

In recent years, it has been established that bone and immune

cells share the same progenitor cells and are affected by the same

cytokines (3). They are functionally linked, and the infiltration of

immune cells plays a vital role in the occurrence and development

of OP (10). Factors such as the balance between Th1/Th2/Treg

cells (3), inflammatory T cells (Th17) (4, 10), regulatory B cells

(Bregs) (4), and macrophages (11) play an important role in

regulating osteoblasts and osteoclast homeostasis, which in turn

affects osteoporosis (12). Regarding the immune system, assessing

the varying degrees of immune cell infiltration and identifying the

compositional differences in the infiltrating immune cells can help

elucidate the molecular pathological mechanism of OP and

develop new immunotherapeutic targets.

In this study, to explore the potential diagnostic marker

genes for OP, six OP diagnostic marker genes were screened for

prognosis of OP, which can predict the prevalence of OP. First,
02
the two OP immune signature subgroups were divided using a

consensus clustering method, and differential expression

analysis was performed to obtain 40 differentially expressed

genes (DEGs). Secondly, eight OP-related differential genes

were screened using Weighted gene co-expression network

analysis (WGCNA), Gene Ontology (GO) functional

annotation, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment, and Gene Set Enrichment

(GSEA) analysis disease ontology (DO) disease annotation,

and Gene Set Variation Analysis (GSVA) were performed on

eight DEG. To conduct network analysis, we identified 10 hub

genes using the cytoHubba function of Cytoscape software. RT-

qPCR was performed on the plasma of osteoporosis patients and

control samples. The results revealed a total of eight genes that

had significantly different expression levels, and the following

signaling pathways such asMAPK signaling pathway (p38,

TRAF6) and NF-kappa B signaling pathway (c-FLIP, MIP1b),
had significant different expressions. Out of the eight OP-related

DEGs, six diagnostic marker genes were tested using Least

Absolute Shrinkage and Selection Operator (lasso) regression

and random forest using the new dataset. The Cell-type

Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) algorithm was used to evaluate the

level of immune cell infiltration in the two clusters, and the

results showed that there were significant differences in

proportions of monocytes, CD4 memory activated T cells,

memory, and naïve B cells. Based on six OP-related diagnostic

marker genes, two distinct molecular subtypes were identified

using a consensus clustering approach. Prognostic analysis was

carried out, and four key diagnostic marker genes were

identified. Finally, the interaction network with miRNA,

transcription factors (TF), RNA binding protein (RBP), and

the drugs were constructed for key genes. Our study suggests

that targeting these six diagnostic marker genes and ten hub

genes may enhance the diagnosis and treatment of OP.
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Materials and methods

Data downloaded

Download GSE56815 (13), GSE7158 (14) and GSE56116

(15) datasets from GEO database, In which GSE56815 contains

40 osteoporosis samples (OP) and 40 control samples from

GPL96 sequencing platform, GSE7158 contains 12 osteoporosis

samples Osteoporosis samples (OP) and 14 control samples were

obtained from the GPL570 sequencing platform, and GSE56116

included 10 osteoporosis samples (OP) and 3 control samples

from the GPL1433 sequencing platform, all of which were

human peripheral blood sample. The above data were

integrated for downstream analysis, the R package sva (16)

was used to correct for batch effects between different datasets

and log2 normalization was performed, and then the batch-

corrected expression distribution was visualized using boxplots,

where 62 osteoporosis samples and 57 control samples

were included.

In order to analyze the expression of osteoporosis-related

genes in all samples, we first obtained osteoporosis-related genes

from the GeneCards database (17) through the keyword

“Osteoporosis”, a total of 4657 genes, and intersected with the

existing expression profiles. All 4657 genes were retained.
Unsupervised clustering of samples

The R package factoextra (18) was used to determine the

optimal number of clusters. The k-means clustering method was

used for unsupervised clustering of all patients based on the

optimal number of clusters, and the samples were divided into

two categories. Finally, the R package was used to see the final

clustering effect. Heatmap was used to visualize the gene

expression profile of the two groups. The R package ggpubr

(19) was used to construct the grouping histogram based on the

sample clustering label. The Wilcoxon rank-sum test method

was used to study the statistically significant differences between

the groups. P<0.05 was considered to be statistically significant.
Immune infiltration analysis

CIBERSORT is a deconvolution algorithm based on the

principle of linear support vector regression to study the

expression matrix of immune cell subtypes. It uses RNA-Seq

data to estimate the abundance of immune cells in a sample (20).

CIBERSORT: R package was used to estimate the quantity of 22

immune cells between disease and control samples in the

datasets. The immune cell composition was visualized using

boxplots. Differences in immune cell proportions were
Frontiers in Immunology 03
calculated using the Wilcoxon test, and P< 0.05 was

considered statistically significant.

Pearson correlation was used to investigate the correlation

between the immune cell expression in all patients. The two

genes were correlated if the absolute value of the correlation

coefficient > 0.3 and the P< 0.05. Correlations between matching

gene pairs were plotted using the R package ggplot2 (21).
Osteoporosis-related DEGs

In order to analyze the effect of different gene expression

levels on patients with different subtypes of osteoporosis, the R

package limma (22) was used to perform differential gene

analysis between the two groups of patient samples in the

integrated dataset. The significant differential genes (DEGs)

were screened. Log2 (fold change) (log2FC) > 1.5 and Padj <

0.05 was set as the thresholds of DEGs. Genes with log2FC> 1.5

and Padj < 0.05 were up-regulated DEG, and genes with log 2FC

<-1.5 and Padj < 0.05 were down-regulated DEG. The volcano

plot shows the up-regulated DEG, and the R package pheatmap

(23) shows the expression heat map of these DEG in all the

samples. The R package ggpubr (19) was used to analyze the

expression of osteoporosis-related genes in the two groups and

construct grouped box plots based on the two subtype samples.

Wilcoxon rank sum test method was used to test the statistically

significant difference between the groups. P< 0.05 was

considered statistically significant.
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA) is

a systems biology method used to describe gene association

patterns between different samples, and can be used to identify

gene sets with highly coordinated changes. And identify

candidate biomarker genes or therapeutic targets based on the

interconnectivity of gene sets and the association between gene

sets and phenotypes. We used the R package WGCNA (24) to

calculate the key gene sets associated with the disease and

normal two groups of samples and used them for

subsequent analysis.
Functional enrichment analysis

To investigate the biological differences between sample

groups, gene set enrichment analysis (GSEA) was performed

on DEG. Gene Ontology (GO) enrichment analysis is

commonly used for large-scale functional enrichment

analysis of genes at different dimensions and levels, mainly:
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biological process (BP), molecular function (MF), and cellular

component (CC) (25). Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis is widely

used for storing information about genomes, biological

pathways, diseases, and drugs (26). Disease Ontology (DO)

is the annotation of genes in the context of the disease. All the

significantly DEG were subjected to GO, KEGG pathway

enrichment, and disease annotation using the R package

clusterProfiler (27) and the DOSE: R Package (28) to

identify significantly enriched biological processes. The

enrichment results were represented as bubble graphs for

visualization. The significance threshold for the enrichment

analysis was set at a corrected p-value < 0.05.

Gene Set Enrichment Analysis (GSEA) is a computational

method used to determine whether a predefined gene set shows

statistical differences between the two biological states. It is

typically used to estimate expression in a dataset sample,

changes in biological process, pathways, and activity (29). To

investigate the differences in biological processes between the

two groups of samples, based on the gene expression profiling

dataset, the reference gene sets “c5.go.v7.5.1.entrez.gmt” and

“c2.cp. kegg.v7.5.1.entrez.gmt” were downloaded from the

Molecular Signatures Database MSigDB (30), for enrichment

analysis and visualization of the dataset using the GSEA method

included in the R package “clusterProfiler.” Adjusted p-values <

0.05 were considered statistically significant.

Gene Set Variation Analysis (GSVA) (31), is a non-

parametric unsupervised analysis method. It mainly converts

the gene expression matrix between different samples into the

gene expression sets between samples. Quantity matrices were

used to evaluate gene set enrichment results from microarray

transcriptome data. To evaluate whether different pathways are

enriched in different samples, the “c5.go.v7.5.1.entrez.gmt” and

“c2.cp.kegg.v7.5.1.entrez.gmt” gene sets were retrieved from

the MSigDB. Further, GSVA was performed at the gene

expression level to calculate the differences in functional

enrichment between groups (disease and control groups).
Validation of osteoporosis marker genes

The identified diagnostic marker genes were validated using

the osteoporosis dataset GSE7429 (32) retrieved from the GEO.

The sequencing platform used for this dataset was GPL96 for

humans. Data was first log-normalized and then divided into

disease and control groups based on gene expression data of each

marker. Lasso regression analysis was performed for univariate

and multivariate analysis. The receiver operating characteristic

(ROC) curve was used to evaluate the performance of marker

genes in predicting the groups. ROC curves were drawn using

the R package pROC (33).
Frontiers in Immunology 04
Network analysis

The Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) (34) database searches for interactions

between known and predicted proteins. The STRING database

was used to select genes with a combined score greater than 400

to construct a protein-protein interaction (PPI) network related

to DEG. Cytoscape (v3.7.2) (35) is used to visualize the PPI

network model. PPI network analysis was performed using the

CytoHubba (36) function in Cytoscape.
Estimation of key genes

Ridge regression was first used to screen for osteoporosis-

related genes. The analysis was performed using the R package

glmnet (37) and was used to select the best lambda value. Only

genes with coefficients other than zero were retained after

regression analysis. The genes were further screened using

logistic regression. The genes used to construct the model, and

their corresponding coefficients were displayed in the form of

forest plots using the R package forestplot (38).

To examine the multivariate influence of eigengenes in the

diagnostic model, a new logistic multivariate regression model

was constructed using the R package rms (39) on the genes with

significant absolute weights in the previous model. To verify the

predictive grouping efficacy of key genes, the ROC package

pROC (33) was used to draw the ROC curve of the model and

calculate the area under the curve (AUC).
Panorama of key genes

The R package RCircos (40) was used to map the location of

genes on the chromosomes. The chromosome data were

provided by the R package, and the information regarding the

location of genes on chromosomes was downloaded from the

ENSEMBL (41) database. Boxplot was constructed using R

package ggplot2 to analyze the differences in the expression of

key genes in all the patients. The Gene Expression Profiling

Interactive Analysis (GEPIA2, 42) explores the RNA-seq

expression data from tumor and normal tissues retrieved from

TCGA and GTEx databases. GEPIA2 was used to obtain the

expression of key genes in tumor and normal samples from

various human tissues.
Multidimensional network analysis of
key genes

TF controls gene expression by interacting with target genes

at the transcriptional stage. miRNet database (43) was used to
frontiersin.org
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construct the regulatory network of key genes, TFs, and

miRNAs. RBP is an important protein of the cells, which

interacts with RNA by recognizing certain RNA binding

domains. It is widely involved in RNA splicing, transport,

sequence editing, intracellular localization, translation control,

and post-transcriptional regulation. The regulatory network of

key genes-RBP was constructed using the RBP2GO database

(44). RNAactDrug database (45) was used to build a key gene-

drug regulatory network.
Real-time fluorescence quantitative PCR

Peripheral blood of four clinical osteoporosis patients and

three healthy adults were obtained from the Second Affiliated

Hospital of Inner Mongolia Medical University. (This study was

performed in line with the principles of the Declaration of

Helsinki. Approval was granted by the Ethics Committee of

Second Affiliated Hospital of Inner Mongolia Medical

University. The ethical review number: YKD202002055). 5ml

peripheral venous blood was collected with EDTA-K2

anticoagulant blood collection tube. After centrifugation at

1500 r/min for 15 minutes, the uppermost plasma was

obtained. Total RNA was extracted from plasma samples. The

genomic DNA was removed from the RNA sample, and RNA

was reverse transcribed using the PrimeScript™ RT reagent Kit

with gDNA Eraser (RR047A, Takara, Japan). Real-Time

quantitative PCR was performed using the SYBR® Premix Ex

Taq (Takara, Japan, RR820A) kit using a real-time PCR machine

(ABI-7500, Applied Biosystems, USA). The PCR amplification

was carried out for a total of 42 cycles. The mean + standard

error of three independent experiments were calculated, with

each experiment repeated three times. Relative mRNA

expression levels were calculated using GAPDH as an

internal reference.
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Statistical analysis

All data processing and analysis were conducted using R

software (version 4.1.1). The student’s t-test was used to compare

the two continuous variables groups and evaluate the statistical

significance of normally distributed variables. The independent and

the differences among non-normally distributed variables were

analyzed using the Mann-Whitney U test (i.e., the Wilcoxon rank

sum test). Chi-squared test or Fisher’s exact test was used to

compare and analyze statistical significance between two groups

of categorical variables. Correlation coefficients between different

genes were calculated using Pearson correlation analysis. The t-test

was used to compare the mean values of two groups of samples, and

the analysis of variance (ANOVA) test was used to compare the

mean values of multiple groups of samples. All statistical P values

were two-sided. P < 0.05 considered statistically significant.
Results

Gene Expression Omnibus
data preprocessing

In order to clearly show the specific process of this study, the

bioinformatics analysis process is specially summarized as

shown in the figure (Figure 1). To construct a panorama of

osteoporosis-related genes in all samples, the expression profiles

of all three datasets were integrated. Datasets from different

sources generally have severe batch effects. Hence the raw data

was first analyzed and then corrected for batch effects and log

normalization. Boxplots were drawn using the data OP and

Normal groups retrieved from datasets GSE56815, GSE7158,

and GSE56116 (Figures 2A, B). The results show that after batch

correction and log normalization, the distribution of expression

profiles of all the samples tends to be overall consistent., which
FIGURE 1

Flowchart.
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was more conducive to improving the accuracy and robustness

of the downstream analysis (Figure 2). The batch effect was

removed to obtain an integrated dataset, which included 62

osteoporosis and 57 control samples.
Overall immune level analysis and
differential analysis of immune signature
subtypes in osteoporosis

The immune microenvironment is a complex integrated

system composed mainly of immune cells, inflammatory cells,

fibroblasts, interstitial cells, various cytokines, and chemokines.

The analysis of infiltrated immune cells in samples plays an

important role in understanding the pathology, prognosis, and

treatment of the disease. To analyze the differences in immune

levels between normal and disease states, we analyzed the overall

immune profile of normal (NO) and osteoporotic (OP) patient

samples (Figures 3A–D). CIBESORT analysis of immune

infiltration analysis (Figure 3A) reveals that the content of

monocytes was high in OP and normal samples. Compared to

normal samples, the OP patient samples only showed significant

differences in the expression levels of M0, M1 Macrophages, and

activated dendritic cells (Figure 3B). Further, the correlation of

immune cell content in normal and OP patient samples was
Frontiers in Immunology 06
analyzed. The results revealed a significant correlation between

the memory B cells and monocyte content in normal samples

and various immune cells (Figure 3C). In OP patient samples, a

significant correlation between the content of the activated mast

cells and M0 macrophages, and various other immune

cells (Figure 3D).

Here, a consensus clustering method commonly used in

tumor typing is used. We wanted to use this method to divide

the 62 OP patient samples from the 3 datasets into an

appropriate number of subgroups. Furthermore, differential

expression analysis was performed on its different subgroups.

The obtained differential expression results can not only

represent the difference between OP and normal samples, but

also reflect the differential genes between different types (or

grades) of OP. Different expression patterns were identified in 62

osteoporosis patient samples using a consensus clustering

method (ConsensusClusterPlus package in the R software).

Figures 3E, F show the matrix heatmaps for k=2 and k=6, and

the clustering results are better separated when k=2. Secondly,

considering the consistent Cumulative Distribution Function

(CDF) plot and the Delta Area Plot, the CDF at k=2 had a lower

slope of decline and a lower change in the AUC (Figures 3G, H).

Two osteoporosis subtypes (cluster1 and cluster2) were finally

identified (Figures 3E–H), with cluster 1 containing 34 samples

and cluster 2 containing 28 samples. (Figure 3E).
B

C D

A

FIGURE 2

Gene Expression Omnibus (GEO) data preprocessing. (A, B) are the differences in data distribution before and after data set processing.
(C, D) results from PCA dimensionality reduction before and after data set processing.
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To understand the biological differences between the two

patient subgroups, the DEG analysis was first performed on the

two patients’ subgroups. The threshold was set as padj<0.05 and

foldchange>1.5 or foldchange<-1.5. and a total of 40 DEGs were

identified during the analysis. There were 36 up-regulated genes

and four down-regulated genes (Figures 3I, K). The OP-related

genes retrieved from GeneCards were intersected, and a total of

17 genes that were significantly different between the two groups

of patients and related to OP were retained (Figures 3J, L).
Functional enrichment analysis
between samples

To explore the relationship between the differentially

expressed OP-related genes, WGCNA analysis was performed

on the DEG between the two groups of patients (Figure S1A). A

co-expression module was identified (Figure S1B), and the gene

set with the highest correlation was identified and subjected to

subsequent analysis (Figures S1C, D) 1198 key genes were

obtained. After intersecting with differentially expressed OP-

related genes, eight genes were obtained for subsequent analysis

(Table S1).
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To explore the influence of the differential genes on the

biological functions of different patient subtypes, GO

enrichment analysis was performed on the differential genes.

The biological processes enriched by these differential genes

were myeloid cell differentiation, regulation of stress-activated

MAPK cascade (Figure 4A), and cell groups such as vesicle

lumen and tertiary granule (Figure 4B). The molecular functions

enriched by these differential genes were ubiquitin protein ligase

binding and ubiquitin-like protein ligase binding (Figure 4C).

KEGG pathway enrichment analysis revealed these differential

genes significantly enriched pathways such as Salmonella

infection and MAPK signaling pathway (Figure 4D). In

addition, Disease ontology analysis (DOSE) was performed on

the differential genes. The results revealed that the DEG between

different patient subtypes was significantly enriched in heart

valve disease (Figures 4E, F).

GSEA analysis was performed on the differential genes, and

the results revealed significant differences in the following

biological processes between the two groups of patient

samples. In cluster 1 patient samples, the regulation of

response to stimulus, negative regulation of the cellular

process, and negative regulation of biological and other

biological processes were activated (Figures 4G, H).
B

C D

E F

G H

I J

K L

A

FIGURE 3

Overall immune level analysis and differential analysis of immune signature subtypes in osteoporosis. (A) The content of immune cells between
the osteoporosis (OP) and the control group. Different colors represent different immune cells, and the horizontal axis represents the patient id.
(B) Histogram of immune cell content, the horizontal axis represents immune cells, the vertical axis represents cell content, red represents the
control group samples, and blue represents the disease group samples. 3C-D: Correlation of immune cell content in the normal group (C) and
disease group samples (D); red indicates a negative correlation, and blue indicates a positive correlation. (E, F) Consistent clustering result graph,
different colors represented different groups. (G) Cumulative Distribution Function (CDF) plot of consensus clustering, showing the curve of the
CDF as the number of clusters changes. (H) Delta Area plot, calculating the relative change in the area under the curve (AUC) of the CDF as the
number of clusters increases. (I, J) Heatmaps of differentially expressed genes (DEG), where red is for cluster 1 and blue is for cluster 2.
(K, L) the volcano plot for DEG, the abscissa is log2FoldChange, the ordinate is -log10 (adjust P-value), red nodes indicate up-regulated DEG,
gray nodes indicate genes that are not significantly differentially expressed, and blue nodes indicate down-regulated genes DEG.
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Simultaneously, among the seven related pathways annotated by

DOSE, the disease pathway was significantly annotated

(Figures 4I, J).

The results of GSVA analysis showed that go_chloride_transprt

was activated in the cluster 2 patient samples, and in the cluster 1

patient samples, kegg_ubiquitin_mediated_proteolysis was

inhibited (Figures 4K, L).
Validation of diagnostic marker genes in
a new dataset

To evaluate if the key identified genes could serve as

diagnostic marker genes for osteoporosis and to test the

robustness of the predicted diagnostic marker genes, new

datasets (GSE7429, GPL96) were retrieved from GEO. The

data were preprocessed consistently, and the association of

genes with OP was first tested using lasso regression and

random forest. Univariate analysis (Figures 5A–C) revealed

that none of the eight key genes were significant associated

(EGR2, RARRES2, ZYX, SLC4A2, MAP4K2, MAT1A,

PPP1R15A, SPI1). Hence, the performance of key genes in

predicting disease samples was evaluated by plotting the ROC

curves of the key genes. There were eight key genes related to OP

differences. ROC curves of each of the eight key genes associated

with OP in normal and OP tissue samples were constructed. The
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results revealed six key genes with predicted AUC > 0.6, namely

RARRES2, ZYX, SLC4A2, EGR2, MAT1A, and SPI1

(Figure 5D). The results show that these six genes could

successfully distinguish between OP and normal samples.
Verification of Hub genes and signaling
pathway molecules in clinical samples

To understand the relationship between the DEG-related to

OP in the biological network, eight OP-related differential genes

were analyzed using WGCNA, and 11 PPI regulatory networks

were downloaded from the STRING database (Figure S2A). The

regulatory relationship was imported into Cytoscape for network

analysis, and the top ten hub genes were identified (Figure S2B).

Hub genes were TNF, RARRES2, FLNA, STXBP2, EGR2,

MAP4K2, NFKBIA, JUNB, SPI1, CTSD. Figure S2C shows the

diagnostic genes that distinguish OP samples from control

samples scattered in the PPI network, further reiterating that

the research focus was still on validating the diagnostic genes.

The peripheral blood from clinical samples was collected to

explore the expression of hub genes. The mRNA expression of

TNF, RARRES2, FLNA, STXBP2, EGR2, MAP4K2, NFKBIA,

JUNB, SPI1, and CTSD in the plasma of the control group and

the OP group was detected (Figures 6A–J). The RT-qPCR results

showed that compared to the control group, the mRNA
B

C D

E F

G H
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K L

A

FIGURE 4

DEGs identification and functional enrichment analysis between samples. (A-C) GO enrichment analysis was performed on up-regulated, and
down-regulated genes, and biological process (BP), molecular function (MF), and cellular component (CC) were displayed. Node size indicates
the number of genes enriched in the pathway, and node color indicates -log10 (p-value). (D) Results of KEGG pathway analysis, the node size
represents the number of genes enriched in the pathway, and the node color represents the p-value. (E, F) DOSE enrichment results. (G) Overall
Gene Ontology enrichment analysis results. (H) gsea-go enrichment pathway analysis results. (I, J) The overall and partial gsea_dose enrichment
results are displayed. (K, L) GSVA enrichment results.
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expression levels of TNF, RARRES2, FLNA, MAP4K2, and SPI1

in the plasma of the OP group were significantly increased, the

mRNA expression levels of EGR2, JUNB, and CTSD were

significantly decreased in the OP group. There was no

significant difference in the mRNA expression levels of

STXBP2 and NFKBIA between the two groups.

To further explore the expression of MAPK and NF-kappa B

signaling pathway-related genes, the peripheral blood from

clinical samples was collected, and total RNA was extracted to

study the expression levels of c-FLIP, MIP1b, p38, and TRAF6 in
the plasma of the control group (Control) and the osteoporosis

group (OP) (Figures 6K–N). The results of RT-qPCR showed

that compared to the control group, a significant decrease in the

mRNA expression level of c-FLIP in the plasma of the OP group

was observed, and a significant increase in the mRNA expression

levels of MIP1b, p38, and TRAF6 was observed.
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Immune infiltration analysis and
molecular subtype construction
based on key OP-related diagnostic
marker genes

The CIBERSORT results showed (Figure 7A) that the

monocyte content was significantly high in the two groups of OP

patients. Compared to cluster 1, OP patients in cluster 2 had lower

levels of CD8 in Monocytes and T cells (Figure 7B). OP patients in

cluster 1 had a low content of activated dendritic cells, resting mast

cells, neutrophils, and activated CD4 memory T cells compared to

cluster 2 (Figure 7B). The correlation between differentially

expressed characteristic genes related to OP, the diagnostic

marker genes, and immune cell content was analyzed. The results

showed a significant positive correlation between the expression

levels of monocytes and various differentially expressed
B C

D

A

FIGURE 5

Validation of diagnostic marker genes in a new dataset. (A, C) lasso regression analysis results. (B) Univariate analysis results. (D) ROC curve,
indicating the diagnostic performance of the genes.
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FIGURE 6

RT-qPCR results of the expression level of Hub genes and signaling pathway molecules. Comparison of mRNA expression levels of 10 Hub
genes and 4 signaling pathway molecules in plasma of control group (n=3) and OP group (n=4). Among them, the mRNA expression levels of
TNF (A), RARRES2 (B), FLNA (C), MAP4K2 (F), SPI1 (I),MIP1b (L), p38 (M), and TRAF6 (N) in the plasma of the OP group were significantly
increased. the mRNA expression levels of EGR2 (E), JUNB (H), CTSD (J) and c-FLIP (K) were significantly decreased in the OP group. There was
no significant difference in the mRNA expression levels of STXBP2 (D) and NFKBIA (G) between the two groups. P-values were calculated using
a two-sided unpaired Student’s t-test. (*P < 0.05, **P < 0.01,***P < 0.001 vs. Control).
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characteristic genes related to OP (Figure 7C). Monocytes positively

correlated with multiple diagnostic marker genes, and a negative

correlation was observed between activated CD4 memory T cells

and multiple diagnostic marker genes (Figure 7D). Simultaneously,

the correlation between the immune cell content of samples from

patients in cluster 1 and samples from patients in cluster 2 was

calculated. The results showed a significant correlation between the

content of the memory B cells and various immune cells in samples

from cluster 1 (Figure 7E). The content of monocytes in the samples

significantly correlated with the content of various other immune

cells (Figure 7F).

Based on the six OP-related diagnostic key genes, two

different molecular subtypes and two patient subgroups

(cluster1 and cluster2) were identified (Figure 7G) using a

consensus clustering method (“ConsensusClusterPlus” package

in the R software). Cluster 1 contained 28 samples, and cluster 2

had 34 samples. The PCA clustering results showed significant

differences between the two clusters (Figure 7H).

The heatmaps and box plots were constructed based on the

expression to observe changes in isoforms and gene expression.

WGCNA analysis revealed a significant increase in the OP-

related DEG in cluster1 (Figures 7I, J). Simultaneously, the
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expression of diagnostic marker genes in cluster1 was

significantly higher compared to cluster2 (Figures 7K, L).
Key gene correlation analysis based on
osteoporosis subtypes

To analyze the influence of key diagnostic genes on patients

with different subtypes of OP, logistic univariate regression analysis

was used to identify six genes with poor influence on OP

(Figure 8C). Coefficients for six genes were calculated based on

LASSO analysis (Figures 8A, B). The correlation between the

expression of key genes was calculated, and the RARRES2 gene

showed a significant positive correlation with multiple other

genes (Figure 8D).

To analyze whether the key genes could better distinguish the

two molecular subtypes, the gene expression was multiplied by the

corresponding coefficient and added to establish the OP prediction

score. The final prediction score of each sample was calculated. The

results revealed that these four genes (RARRES2, SLC4A2, SPI1,

ZYX) could better predict different subtypes of OP patients

(Figures 8E–H).
B

C D

E F

G H

I J

K L

A

FIGURE 7

Immune infiltration analysis and molecular subtype construction based on key OP-related diagnostic marker genes. (A) The accumulation of
immune cells between cluster 1 and cluster 2, different colors represent different immune cells, and the horizontal axis represents the patient id.
(B) Histogram of immune cell content, the horizontal axis represents immune cells, the vertical axis represents cell content, red represents
cluster 1 samples, and blue represents cluster 2 samples. (C) Correlation diagram between OP differentially expressed genes and immune cells,
the horizontal axis represents immune cells, the vertical axis represents genes, the color of nodes represents the size of the correlation, and the
size of the nodes represents the level of significance. (D) Correlation diagram between key genes and immune cells, the horizontal axis
represents immune cells, the vertical axis represents key genes, the color of the nodes represents the size of the correlation, and the size of the
nodes represents the level of significance. (E, F) Correlation of immune cell content in cluster 1 (E) and cluster 2 samples (F); red indicates a
negative correlation, and blue shows a positive correlation. (G) Graph of Consistent clustering results. (H) PCA analysis of cluster1 and cluster2.
(I, J) Heat map (I) and box plot (J) shows the expression of OP-related differentially expressed genes between the two groups. (K, L) Heatmap
(K) and boxplot (L) show the expression levels of key genes between the two groups. Red represents cluster1, and blue represents cluster2.
(*P < 0.05, **P < 0.01, ***P < 0.001, ns P > 0.05 no significance vs. Control).
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Discussion

In recent years, due to the lack of reliable early diagnostic tools

andmethods, most OP patients have suffered pathological fractures,

which would require internal fixation and surgical interventions.

This causes causing severe physical, mental, and economic burdens

to the patients. Previous studies have shown that the immune

microenvironment may play an important role in the occurrence
Frontiers in Immunology 12
and development of OP (4, 11, 46). However, the specific targets

and therapeutic mechanisms of OP remain unclear and require

further investigation. Our study screened 40 DEGs, eight OP-

related differential genes, ten hub genes, six OP diagnostic marker

genes, and four OP diagnostic marker key genes. Furthermore, the

correlation between OP prognostic models and immune signatures

and immune cell infiltration profile revealed that the immune

microenvironment might be involved in the pathogenesis of OP.
B

C D

E F

G H

A

FIGURE 8

Key gene correlation analysis based on osteoporosis subtypes. (A, B) Lasso regression analysis results. (C) Univariate analysis results. (D) Similarity
between key genes, the size of the point represents significance; the larger the point, the more significant the color indicates the correlation,
and the redder the color, the more relevant. (E–H): ROC curve, indicating the diagnostic performance of the genes.
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WGCNA analysis screened eight OP-related differential

genes. GO, KEGG, GSEA, DOSE, and GSVA enrichment

analysis was also performed. The results showed that OP-

related genes mainly enriched the MAPK signaling pathway,

TNF signaling pathway, apoptosis, and Salmonella infection.

RT-qPCR results showed significant differences in the MAPK

signaling pathway (p38, TRAF6) and NF-kappaB signaling

pathway (c-FLIP, MIP1b). Previous studies have shown that

OPG/RANK/RANKL (9), IL-1b (47),TRAF6 (48), NFATc1,

OSCAR and NF-kB (49), and other genes related to apoptosis,

inflammation, and osteogenic differentiation (6). These genes

regulate bone metabolism via the MAPK signaling pathway and

TNF signaling pathway, which affects OP. Salmonella infection

can lead to mild intestinal inflammation, which releases

cytokines and other factors like interleukin-6 (IL-6), IL-8, IL-

12, LPS-induced tumor necrosis factor alpha (LITAF) and

interferon gamma (IFN-g). The increases in expression of

these pro-inflammatory cytokines affect bone metabolism,

leading to bone loss (50). The above findings further

corroborate the reliability of our analysis and prediction.

Further, the network analysis using the CytoHubba function in

Cytoscape software identified ten hub genes. RT-qPCR results

showed a significant increase in the mRNA expression levels of

TNF, RARRES2, FLNA, MAP4K2, and SPI1 in the plasma of the

OP patients group compared to the control group. Further, the

mRNA expression levels of EGR2, JUNB, and CTSD were

significantly decreased compared to the control sample group.

Lastly, the mRNA expression levels of STXBP2 and NFKBIA

were no significant difference. Previous studies have shown that

TNF-a can act as an osteoclast factor, and TNF-b acts as an anti-

osteoclast factor (4), which affects bone metabolism by regulating

RANKL expression (3). Han L et al. (51) showed that RARRES2

protein secreted by adipocytes (52) has an inhibitory effect on

osteoblast differentiation and proliferation by inhibiting Wnt/b-
catenin signaling and activating RANK signaling. Osteocyte

differentiation and proliferation are stimulatory. Therefore,

maintaining low RARRES2 levels could be a strategic approach

for OP prevention and treatment. Yang C et al. (53) showed that

FLNA accumulates in the osteoblasts, and the osteoclasts were

observed in the human OP samples. A report suggests that negative

regulation of FLNA in mice is age-related and postmenopausal

osteoporosis in vitro osteogenic differentiation in OP promotes

RANKL-induced osteoclast differentiation (54). Zhang X et al. (55)

showed an increase in MAP4K2 expression upstream of JNK in

aged osteoblasts. Yang C et al. (56) showed the involvement ofSPI1

in OP development by regulating autophagy. Previous studies have

shown that EGR2 is a zinc finger transcription factor, and EGFR

signaling activates the MAPK/ERK pathway to stimulate EGR2

expression (57). Further, mounting evidence indicates that IL-27

inhibits RANKL-mediated osteoclast differentiation (8) in an
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EGR2-dependent manner (10). A previous report suggests that

BMP-2-induced Smad1 protein activation leads to JUNB synthesis,

which is involved in the trans-differentiation of myoblasts to

osteoblasts and contributes to bone repair after OP (58). CTSD

deficiency can lead to lysosomal autophagy, which plays a protective

role in OP development (59). Previous studies show that

STXBP2regulates vascular homeostasis in endothelial cells (60),

along with various factors NFKBIA which significantly affect

osteoclastogenesis (7, 61). However, in our study, there was no

significant difference in the expression of STXBP2 and NFKBIA, as

shown by RT-qPCR. Therefore, in the future, increasing the sample

size would be a need for in-depth analysis. Taken together, it is

suggested that the above molecules may play an important role in

the diagnosis and treatment of OP.

In addition, for these eight OP-related differential genes, six

diagnostic marker genes were tested by lasso regression and

random forest using the new dataset. In recent years,

osteoporosis treatment has focused on modulating the local

immunity of the bone tissues. This provides a suitable

microenvironment for positive regulation of bone metabolism,

promotion of osteogenic differentiation, and inhibition of

osteoclast differentiation (12). A report suggests that bone cells

and the immune system share common progenitor cells,

cytokines, and growth factors that interact during normal

conditions and pathological states (3). However, the specific

role of the immune system in OP is not fully understood. In this

study, the CIBERSORT evaluated the immune cell infiltration in

the two clusters. The results showed significant differences in

monocytes, activated CD4 memory T cells, and memory and

naïve B cells. Liu P et al (62) showed that monocytes express

high levels of glucocorticoid receptors, which accumulate in the

bone marrow during GC-induced osteoporosis, and have

osteoclast differentiation potential. Gazzola L et al (63)

revealed that higher levels of activated CD4+/CD8+ T cells are

an independent predictor of osteopenia and osteoporosis. Titanji

K et al (64) showed that individuals with HIV infection had

significantly higher bone resorption and osteopenia, which were

associated with B cell dysfunction. It is likely that a significant

increase in RANKL-expressing B cells and a significant decrease

in OPG-expressing B cells could be related to the induction of B

cells naïve (46). Taken together, the immune microenvironment

is under the tight regulation of cell-associated factors, which may

play an important role in OP.

Moreover, two distinct molecular subtypes were identified

using a consensus clustering approach based on six OP-related

diagnostic marker genes. Prognostic analysis identified four key

diagnostic marker genes (RARRES2, SLC4A2, MAP4K2,

PPP1R15A). Among them, RARRES2, MAP4K2, and SPI1

could be used as hub genes, and significant difference in

expression in OP have been established. ZYX can repair the
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vascular endothelial injury by regulating endothelial cell

exocytosis to reorganize the local actin network (65). Previous

studies have shown that SLC4A2-mediated osteoclast anion

exchange affects bone resorption by regulating pHi (66, 67).

PPP1R15A promotes apoptosis, alleviating stress-induced

osteoblast damage (68, 69). Finally, interaction networks with

miRNAs, TFs, RBPs, and drugs for key genes were constructed.

The study’s results suggest that ten hub genes and six diagnostic

marker genes could be used as diagnostic markers for OP.

However, this study has some obvious limitations. First, this

study used bioinformatics analysis and proposed a theoretical

diagnostic model. We have conducted a preliminary

investigation to study the expression levels of Hub genes and

pathway-related genes. A specific regulatory relationship needs

to be further verified, for which a large sample size would be

required to validate and enhance the clinical translational value

of our diagnostic and prognostic model. Secondly, the immune

characterization and cellular infiltration analysis were based on

limited genetic data; thus, heterotypic cellular interactions and

disturbances caused by different diseases may lead to bias in the

immune analysis. Finally, further experimental validation using

RT-qPCR, western blotting, and immunohistochemical analysis

is required to fully understand the role of Hub genes and their

underlying regulatory mechanisms associated with OP.
Conclusion

In conclusion, we identified genes that may be differentially

expressed in the OP and performed functional enrichment

analysis on eight OP-related differential genes. CytoHubba

function of Cytoscape software was used to conduct network

analysis, and as a result, ten hub genes were identified. Further,

RT-qPCR results confirmed that eight genes were significantly

differential expressed, of which MAPK signaling pathway (p38,

TRAF6), NF-kappa B signaling pathway (c-FLIP, MIP1b) were
significantly differentially expressed between OP and control

samples. The molecular features of OP prognosis based on six

diagnostic marker genes were constructed. The immune

infiltration analysis showed significant differences in

monocytes, activated CD4 memory T cells, memory, and naïve

B cells. Two different molecular subtypes of OP were identified

using the consensus clustering method. Four key diagnostic

marker genes were obtained from the prognostic analysis.

Further, an interaction network with miRNA, TF, RBP, and

drug was constructed for this purpose. We have identified a more

accurate and reliable prognosis strategy for patients with early

OP, which has enhanced our understanding of OP pathogenesis.
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