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This paper considers the problem in aggregate data meta-analysis of studies

reporting multiple competing binary outcomes and of studies using different sum-

mary formats for those outcomes. For example, some may report numbers of

patients with at least one of each outcome while others may report the total number

of such outcomes. We develop a shared parameter model on hazard ratio scale

accounting for different data summaries and competing risks. We adapt theoretical

arguments from the literature to demonstrate that the models are equivalent if

events are rare. We use constructed data examples and a simulation study to find an

event rate threshold of approximately 0.2 above which competing risks and differ-

ent data summaries may bias results if no adjustments are made. Below this thresh-

old, simpler models may be sufficient. We recommend analysts to consider the

absolute event rates and only use a simple model ignoring data types and compet-

ing risks if all of underlying events are rare (below our threshold of approximately

0.2). If one or more of the absolute event rates approaches or exceeds our informal

threshold, it may be necessary to account for data types and competing risks

through a shared parameter model in order to avoid biased estimates.
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1 | INTRODUCTION

Aggregate data meta-analysis synthesizes the results on out-
comes that have been reported by studies such as random-
ized controlled trials (RCTs). In meta-analysis of binary
outcomes, a common complication is that RCTs report more
than one outcome and that these outcomes are correlated or
indeed competing; for instance, an RCT may censor patients
who experience a stroke, and thus, a later myocardial infarc-
tion will not be reported.1,2 A further complication is that
some studies may report different aggregate summary format

of the outcomes of interest; for example, some may report
numbers of patients with at least one of each outcome, while
others report the total number of each outcome, counting
patients more than once. These issues of competing risks
and differently reported data are also present in network
meta-analysis (NMA) that aims to compare multiple inter-
ventions via connected networks of evidence.3

It is known from the statistical literature that competing
risks have limited impact if events are rare, and scenarios
have been identified where it is not necessary to account for
competing risks in meta-analysis.4,5 However, if events are
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not rare, then not accounting for these complications can
affect treatment comparisons.6 Differences in conclusions of
meta-analyses and NMA are important as they are the rec-
ommended approach for treatment effect estimation and
indirect comparison by health care authorities (eg, National
Institute of Healthcare and Decision Making in the United
Kingdom) and international medical decision-making socie-
ties (eg, International Society for Pharmacoeconomics and
Outcomes Research and Society for Medical Decision
Making).7,8 Despite the importance, meta-analysis and
NMA on outcomes that are not rare commonly use simple
analyses that may be biased. Examples can be found in
depression,9,10 relapsing remitting multiple sclerosis,11 and
5-year survival and mortality rates in a range of cancers.12

Furthermore, health economic decision models may require
treatment effects on multiple outcomes, requiring that the
interdependence be explicitly modelled.13 The bias in results
from ignoring outcome interdependence can be magnified if
used in such decision models.14

Several approaches have been proposed to account for
competing risks in meta-analysis and NMA, including
modelling functional relationships between outcomes,1 lin-
ear regression of outcomes of interest on surrogate
outcomes,15,16 and normal approximations.17 If individual
patient data are available from the RCTs, within-study corre-
lation between outcomes in a meta-analysis can be explicitly
modelled,18 but it is rare for such individual patient data to
be available for all RCTs. Meta-analysis of the cumulative
incidence function, the expected proportion of cause-specific
events over time, has also been considered.19

There has been less work developing methods to combine
differently summarized data in (network) meta-analysis with
event outcomes. Models with different treatment effects for
each data summary but related by a common random effect
have been proposed.20 Due to its greater flexibility and
explicit modelling of underlying relationships, we adopt the
approach of shared parameter models.3,21,22 These have been
used to combine binomial data with estimated log odds
ratios or mean survival.23 Illustrating their flexibility, shared
parameter models have also been used to combine continu-
ous, categorical, and binary data.24

In this paper, we develop a novel shared parameter com-
peting risk model to simultaneously account for all these
complications in a NMA. This extends earlier work on com-
peting risks and modelling of functions of shared parame-
ters.1,25 Our work is motivated by a NMA comparing
anticoagulants for the prevention of stroke in atrial fibrilla-
tion. We investigate theoretical reasons why the adjustments
are not necessary when events are rare and use constructed
data to identify scenarios where results can be substantially
biased if an unadjusted model is used. We also present
results from a simple simulation study exploring the

conditions under which adjusted and unadjusted analyses
can give biased results.

2 | MOTIVATING EXAMPLE:
DIRECTLY ACTING ORAL
ANTICOAGULANTS FOR STROKE
PREVENTION IN ATRIAL
FIBRILLATION

The objective of our case study was to compare first-line
treatments for the prevention of stroke, myocardial infarction
(MI), bleed, and death in atrial fibrillation. Our case study is
based on a systematic literature review and Bayesian NMA
comparing treatments for the prevention of stroke in atrial
fibrillation (AF), which has been described previously in the
literature.26,27 AF is the most common cardiac arrhythmia
and substantially increases the risk of thromboembolic stroke
due to blood pooling in the left atrium and systemic emboli-
zation to the brain.28 Treatments for prevention of stroke in
AF include the anticoagulant warfarin as well as the more
recently developed directly acting (or nonvitamin K antago-
nist) oral anticoagulants (DOACs).29,30 However, all antico-
agulants carry the risk of internal bleeding.31 Our NMA
compared warfarin (international normalized ratio (INR) tar-
get range 2-3) with the DOACs apixaban (twice daily 5 mg),
dabigatran (twice daily 150 mg), edoxaban (once daily 60
mg), and rivaroxaban (once daily 20 mg).

The four outcomes of interest were ischaemic stroke, MI,
clinically relevant bleeding, and death. The systematic litera-
ture review identified 20 RCTs comparing DOACs to warfa-
rin and reporting on these outcomes.26,27 However, an
additional thirteen outcomes were reported by these studies:
bleeding (distinct from clinically relevant bleeding), minor
bleeding, fatal bleeding, transient ischaemic attack (TIA),
fatal stroke, composite clinically relevant bleeding (again
distinct from clinically relevant bleeding), hospital admis-
sion, death (cardiovascular specific), arterial event, pulmo-
nary embolism, extracranial minor bleeding, systemic
embolism (SE), and intracranial bleeding (ICH) (to which
we added haemorrhagic stroke, under clinical advice).

A further complication was that the data from the RCTs
were summarized in three different formats, which are
described in Table 1. Data format 1 summarizes only the first
event for each individual, after which they were assumed
censored; this data format involves competing risks as
patients reporting one outcome are censored and cannot
report further outcomes. Data format 2 summarizes only the
total number of individuals experiencing at least one of each
outcome. In this second form of summary, each individual
may count towards more than one outcome, but only once
for each outcome. Data format 3 gives the total number of
events of each outcome across all patients. Data formats 2
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and 3 do not involve competing risks. Five studies reported
data format 1, 13 reported format 2, and two reported format
3. Although our interest is only on the four key outcomes of
ischaemic stroke, MI, clinically relevant bleeding, and death,
as these are competing risks, the additional 13 outcomes
must also be modelled. Further details on the data are
included in the Supporting Information.

3 | METHODS

We first denote the number of studies in our analysis Ns and

number of arms Ki in trial i = 1,…,Ns. Let r
jð Þ
ikm be the num-

ber of events in study i, arm k = 1,…,Ki (with data format
j = 1,2,3), and outcome m (m = 1,…,M). In our application,
the final event M represents mortality. The treatment tik and
number randomized nik are independent of outcome m. The
total patient years at risk or exposure time, which is also the
same for every outcome, is denoted Eik, while mean patient
follow-up time is �Tik = Eik

nik
. Not every study necessarily

reports each outcome.

3.1 | Simple odds ratio model: separate NMA
models for each outcome, ignoring data type

The simplest approach is to model each outcome separately
(ignoring the competing risk nature of the outcomes), to treat
all the studies as estimating the same probability of outcome
(regardless of data format), and to ignore the follow-up time
or exposure. In this case, a binomial likelihood is given inde-
pendently for each outcome, with the number randomized,
nik, as the denominator.

The likelihood for each outcome m reported in arm k of
study i is

r jð Þ
ikmeBin pikm,nikð Þ, for each data format type j=1,2,3:

This is the number of events r jð Þ
ikm of outcome m which

occurred in the nik patients in arm k of trial i. We then use a

fixed-effect NMA model assuming consistency of effects on
the log odds scale, so that the relative treatment effects are
log odds ratios3

logit pikmð Þ= μim + dtikm−dti1m

where the baseline log odds μim of outcome m are treated as
nuisance parameters and vague priors are placed on them

μimeN 0,0:0001ð Þ

and vague priors are also placed on the log odds ratios
dtm for all outcomes m and treatments t

dtmeN 0,0:0001ð Þ for t 6¼ 1

d1m =0

Vague priors may introduce numerical issues with con-
vergence; if this occurs, less diffuse priors can be explored.

Preliminary investigations found that a fixed rather than
random treatment effect model was adequate for the AF
application. The key implicit assumption of this model for
our purposes is that rikm is the number of patients who have
at least one event of outcome m and that patients who have
multiple such events are only counted once. The interpreta-
tion of dtm is therefore of a log odds ratio of the event regard-
less of whether it is the first or a subsequent event. We now
describe alternative models that do not make this
assumption.

3.2 | Shared parameter model on hazard
ratios accounting for competing risks and
different data summaries

The first modification is to put the model on the log hazard
ratio rather than log odds ratio scale, in order to estimate a
single model incorporating all the different data types. In our
shared parameter models, λikm is the hazard of outcome m in
arm k of study i. Although the interpretation of the number

TABLE 1 Different data formats and models included in the network meta-analysis

Data Format
Index in Model Data Format

Competing
risksRisks?

Number of
studiesStudies

Likelihood and Link Function in
Shared Parameter Model

j = 1 Reports only first event for each
patient, after which they are
censored

Yes 5 Poisson for total number of events,
multinomial for each outcome with
log link

j = 2 Total number with at least one of each
outcome

No 13 Binomial likelihood with
complementary log log link. Poisson
with log for death

j = 3 Total number of events across patients No 2 Poisson for total number of events
with log link
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of events r jð Þ
ikm is different for each of the data type j, the inter-

pretation of the λikm is always the same. The NMA model is
put on the log hazard scale

log λikmð Þ=ωim + htikm−hti1m ð1Þ

where the baseline log hazards ωim are treated as nui-
sance parameters and priors are placed on them

ωimeN 0,0:5ð Þ

with the precision 0.5 corresponding to a standard devia-
tion of approximately 1.41. The log hazard ratios, htm, for
treatment t relative to treatment 1 for outcome m are given
the same priors

htmeN 0,0:5ð Þ for t 6¼ 1

h1m =0

More vague priors did not converge with our atrial fibril-
lation example but are explored in simulation below. We rec-
ommend exploring more diffuse priors in other applications
of the model.

A different likelihood and link function is used for each
of the three data formats j, but all contribute evidence to the
λikm and thus to the treatment effects htm.

3.2.1 | Studies reporting number of patients
whose first event is of a given type: data type
j = 1

In studies of this type, only the first event is recorded for
each individual, and they are assumed censored from the
time at which that first event occurs. The outcomes are there-
fore competing risks and must be modelled jointly. This type

of data are labelled j = 1, and the r 1ð Þ
ikm are the number of indi-

viduals with first event of type m. We label Rik =
PM
m=1

r 1ð Þ
ikm

the total number of patients having an event of any type in
arm k of study i. Recalling that Eik is the observed person
years at risk, our model for this data uses a Poisson and mul-
tinomial likelihood

RikePoisson Eik

XM
m=1

λikm

 !

r 1ð Þ
ik1,r

1ð Þ
ik2,…,r 1ð Þ

ikM

� �eMultinomial λik1PM
m= 1λikm

,…,
λikMPM
m=1λikm

 !
;Rik

 !

The hazards λikm are then modelled on the log scale via
Equation (1).

3.2.2 | Studies reporting number of patients
experiencing at least one event for each type:
data type j = 2

In this type of study, each patient may count towards more
than one event type, but only once for each event type. There
are therefore no competing risks to consider. This data are

labelled j = 2, and r 2ð Þ
ikm are here the number of patients with

at least one event of type m. As mortality can only occur

once, the number of mortalities r 2ð Þ
ikM must be modelled differ-

ently to other events. Assuming an average follow-up time
�Tik for each patient, the likelihood for nonmortality events is

r 2ð Þ
ikmebinomial pikm,nikð Þ

This is the same as in the simple model, but pikm is now
the probability that an individual has one or more events of
type i over the mean follow-up �Tik. The appropriate link
function is therefore the complementary log-log

cloglog pikmð Þ= log �Tikð Þ+ log λikmð Þ

The likelihood for the number of mortalities is

r 2ð Þ
ikMePoisson EikλikMð Þ

The hazards λikm are again linked to the log hazard ratios
via Equation (1).

3.2.3 | Studies reporting the total number of
events of each type: data type j = 3

In this final type of study, data are labelled j = 3, and r 3ð Þ
ikm

are the total number of events of type m, including repeat
events with patients, for given person years at risk Eik. The
likelihood is simply

r 3ð Þ
ikmePoisson Eikλikmð Þ

with λikm modelled by Equation (1). This completes our
specification of a shared parameter model accounting for the
three types of study data and for competing risks when they
are present.

3.3 | Equivalence of simple and shared
parameter models if events are rare:
asymptotic arguments

We have so far developed two models. Section 3.1 developed
a simple odds ratio model that assumes all outcomes are
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independent and models the three data summary types in the
same way. Section 3.2 developed a shared parameter hazard
ratio model that uses different models for the three data types
j = 1,2,3. In the present section, we give theoretical demon-
strations that if events are rare, the models for these three
data summaries are equivalent. As odds and hazard ratio
models are equivalent if events are rare, the hazard ratio
model for studies reporting number of patients with at least
one of each event type described in Section 3.2.2 (data type
j = 2) is equivalent to the simple odds ratio model of Section
3.1.32 The demonstrations below therefore establish that the
simple and shared parameter models give equivalent results
if events are rare. Note that the equivalence of competing
and noncompeting risk NMA is further established in the
Supporting Information, but our argument below does not
rely on this result.

3.3.1 | Equivalence of models for types 1 and
3 under rare events

Recall that data of type 1 were number of patients whose
first event was of a given type. Total number of events

Rik =
PM
m=1

r 1ð Þ
ikm was modelled using a Poisson distribution

with parameter Eik
PM
i=1

λikk while the number of first events of

each type r 1ð Þ
ik1,r

1ð Þ
ik2,…,r 1ð Þ

ikM

� �
followed a multinomial distri-

bution. Dropping the indices for arm k and study i the likeli-
hood is proportional to

L1 r 1ð Þ
1 ,…, r 1ð Þ

M

� �
/
YM

m=1

λmP
λl

� �r 1ð Þ
m

ERe−E
P

λl

Noting R=
PM
m=1

r 1ð Þ
m gives

L1 r 1ð Þ
1 ,…, r 1ð Þ

M

� �
/
YM

m=1
λr

1ð Þ
m
m

� � 1P
λl

� �R

ERe−E
P

λl

Data of type 3 are the total number of each event, so the
likelihood is a product of M Poisson distributions with
parameters Eλm. Removing constants, this becomes

L3 r 3ð Þ
1 ,…, r 3ð Þ

M

� �
/
YM

m=1
λr

1ð Þ
m
m

� �
e−E
P

λl

L1 and L3 are always different by a, parameter dependent

and therefore nonconstant, factor of 1P
λl

� �R

, but this will

be minimized when R (the total number of events) is small,
which is when events are rare.

3.3.2 | Equivalence of models for types 2 and
3 under rare events

In this case, we only need to consider nonmortality events as
the numbers of mortalities for type 2 and 3 data are both
modelled as Poisson likelihoods with parameter EikλikM. As
events are assumed independent under both models, we con-
sider only one event m. Recall the type 2 likelihood

r 2ð Þ
ikmebinomial pikm,nikð Þ

cloglog pikmð Þ= log �Tikð Þ+ log λikmð Þ ð2Þ

Following the law of rare events,33 this binomial distribu-
tion can be approximated by a Poisson if nik is large and pikm
is small (ie, rare events)

r 2ð Þ
ikmePoisson pikmnikð Þ ð3Þ

Noting the relation between mean follow-up and expo-
sure time �Tik = Eik

nik
, Equation (2) gives a further expression

for the event probability

pikm = 1−e
λikmEik=nik

If the rate λikm is low, the exponential can be approxi-
mated using lim

x!0
ex =1−x, and substituting for pikm in the

Poisson likelihood of Equation (3) gives

r 2ð Þ
ikmePoisson Eikλikmð Þ

This is exactly the likelihood for data of type 3.
This completes our demonstration that the models for the

three data types are equivalent and therefore that the shared
parameter hazard ratio model is equivalent to the simple
odds ratio model, if events are rare.

3.4 | The impact on results if events are more
common: constructed data

We explored the conditions under which the simple and
shared parameter models will give different results. This was
done by constructing AF datasets with increased rates of
events. We increased the number of events of each outcome,
while keeping the number of patients constant, in each RCT
by factors of 1 (base case), 2, 5, 10, and 20. We capped the
number of events of each type at the number of patients.
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These five constructed datasets were then analyzed using
both the simple odds ratio model and the shared parameter
hazard ratio model.

3.5 | Simulation study

As the AF example was a single replicate, we conducted a
simulation study to compare the NMA results of the simple
odds ratio and shared parameter models on a variety of simu-
lated sets of trial results. Best practice guidelines for simula-
tion studies were followed.34 We simulated datasets from the
parametric shared parameter model to (1) explore the perfor-
mance of estimating a shared parameter model and (2) iden-
tify conditions where the simple odds ratio approach
performed adequately.

All our scenarios assume that there are three treatments
being studied on two outcomes over 10 RCTs. We do not
specify if outcomes 1 or 2 are positive (eg, recovery) or neg-
ative (eg, stroke), but for simplicity, we specify neither are
death to avoid issues of censoring. Simulated studies were
all two-arm RCTs with 100 patients on each arm and a
follow-up of 1 year. Simulated results of the RCTs were
modelled to be in one of the three formats of the AF exam-
ple. Full details of the data formats and included treatments
are in Table 2. Treatment 1 was modelled as the reference
treatment. Log hazard ratios of treatment 2 relative to treat-
ment 1 were −0.25 and 0.25 on outcomes 1 and 2, respec-
tively (in Equation (1), these are denoted h2m for m = 1,2).
Log hazard ratios of treatment 3 relative to treatment 1 were
0.25 and −0.25 on outcomes 1 and 2, respectively (h3m for
m = 1,2). The log hazards on treatment 1 in each trial (den-
oted ωim for i = 1,…,10) were set such that the average event

rate for each outcome (λikm for trial i, treatment k = 1,2,3,
outcome m) was 0.05, 0.1, 0.2, 0.3, and 0.4. This set of five
event rates for each outcome gives 25 scenarios in total.
Numbers of events of each outcome on each arm were simu-
lated randomly, and the results fed into the simple odds ratio
and shared parameter models.

The targets of estimation by the models were the hkm for
treatments k = 2 and k = 3 on both outcomes, and the perfor-

mance of each model was assessed over estimates ĥkm lð Þ on
each simulation l = 1,…,nsim. We prespecified that the bias

( 1
nsim

P2
k=1

Pnsim
l=1ĥkm lð Þ−hkm) and coverage (probability that

ĥ
low
km lð Þ ≤ hkm ≤ ĥ

high
km lð Þ for all l and k) would be the performance

measures. Number of simulations nsim was calculated to be
2500 so that the mean squared error of the coverage was less
than 0.01 and for bias was 0.02.34

To explore the impact of priors in the shared parameter
model when events are rare, we repeated the simulation
study for event rates 0.05 and 0.1, and again with nsim = 2500,
but using baseline log hazard prior for outcome m of study i

ωimeN 0,0:05ð Þ

and log hazard ratio prior, for treatment t relative to treat-
ment 1

htm~N(0,0.05) for t 6¼ 1
These correspond to standard deviations of approxi-

mately 4.47. More vague priors were not found to reliably
converge for the simulation study data.

3.6 | Model implementation

The NMA models presented were implemented in
OpenBUGS version 3.2.3 rev 1012.35 We used two chains
with 60 000 iterations for burn-in and 30 000 iterations for
posterior sampling in the AF base case and constructed data
examples. The simulation study, due to greater computa-
tional resources required, used two chains but with 30 000
iterations for burn-in and 10 000 iterations for sampling.
Convergence was assessed using Brooks-Gelman-Rubin
(GBR) statistics and visual inspection of the history plots.36

Data were cleaned and saved in the appropriate BUGS for-
mat in the R programming language version 3.1.2.37 The
inflation of event rates, summarizing of results, and genera-
tion of figures necessary for the constructed data examples
were conducted in R, as was the simulation study. Code for
the novel shared parameter model is presented in the
Supporting Information while code for simulation study is
available on request.

TABLE 2 Studies included in simulation study

Study
Data
Format

Number of
Patients on
Treatment
1

Number of
Patients on
Treatment
2

Number of
Patients on
Treatment
3

1 1 100 100 0

2 1 100 0 100

3 1 100 100 0

4 1 0 100 100

5 2 100 100 0

6 2 100 0 100

7 2 100 0 100

8 3 0 100 100

9 3 100 0 100

10 3 100 100 0

Notes. All are two-arm RCTs with follow-up of 1 year.
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4 | RESULTS

4.1 | Comparison of model results

The results of the two models are presented in Table 3. The
“simple OR” results correspond to the simple model on odds
ratios while the “shared parameter HR” results correspond to
the hazard ratios estimated by the shared parameter model.
These odds and hazard ratios are relative to the reference of
warfarin (INR 2-3). Odds ratios or hazard ratios greater than
1 suggest worse outcomes (eg, higher odds or hazard of
stroke) on the DOAC compared with warfarin. If the 95%
credible intervals include 1, they suggests that we cannot
rule out no difference in treatment effect. Comparing across
DOACs, higher odds or hazard ratios again indicate worse
outcomes while overlapping 95% credible intervals suggest
uncertainty about which performs better. Comparison of
treatments has been described and interpreted in detail in an
earlier publication.26 Broadly, apixaban performs well (lower
odds and hazards) across all outcomes of stroke, MI, death,
and bleed. Dabigatran has the lowest odds and hazards on
stroke but elevated danger of MI and bleed. All DOACs have
lower odds/hazards of death and perform similarly to each
other.

The methodologically interesting finding is that the
results of the simple and shared parameter models are very
similar. The point estimates and the limits of the 95% credi-
ble intervals are either very similar or identical. The greatest
divergence between the models is in MI for dabigatran, per-
haps because this is the least rare event, but even in this case,
the difference in results is small.

4.2 | Results of constructed data examples

Mean and 95% credible intervals for the odds and hazard
ratios estimated by the two models under the increased event
rate scenarios are summarized for apixaban and dabigatran
in Tables 4 and 5, respectively. Results for rivaroxaban and
edoxaban are presented in the Supporting Information.
Under the base case, the event rates are sufficiently low that
the two models agree in their point and uncertainty esti-
mates. However, as the rates are gradually increased, the
point estimates and credible intervals become more different.
This divergence in results is illustrated in Figures 1 and 2. It
appears that as the event rate exceeds 0.2, the credible inter-
vals no longer overlap and conclusions change substantially.

4.3 | Simulation study results

The bias results on outcomes 1 and 2 are presented in
Tables 6 and 7, respectively, while coverage results on out-
comes 1 and 2 are presented in Tables 8 and 9, respectively. T
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In general, the shared parameter model has higher bias and
lower coverage on each outcome than the simple odds ratio
model when events are rare, but this reverses as event rates
of the outcome being studied increase. Limited data and
influence of the prior distributions are a likely explanation
for the superior performance of the simple model when
events are rare. The approximate crossover point on both
bias and coverage appears to be between 0.1 and 0.3.
Increasing the rate of outcome 2 has less impact on the bias
and coverage of outcome 1 (eg, rate of outcome 2 in the bias
for outcome 1 presented in Table 6) than increasing the rate
of outcome 1 itself, and vice versa. However, this impact of
increasing the rate of the other outcome increases with the
rate of the outcome being studied. Spot checks on BGR sta-
tistics and history plots for runs of the simulation suggested
good convergence of both models for all event rates.

Our simulation results comparing the simple and shared
parameter models, when vaguer priors are used in the latter,
are presented in Table 10. These were explored for only the
cases where data are weakest, namely, the cases where event

rates were the rare 0.05 and 0.1. We see that this does not
improve either the bias or coverage of the shared parameter
models for rare events.

5 | DISCUSSION

In this paper, we have considered the common situation
where studies report multiple, potentially competing out-
comes and where studies summarize outcomes in different
ways. We developed a novel shared parameter model for
NMA that accounts for the competing risks and different
summaries. We found that this complex model gave almost
identical results to a simple model that makes no adjustment.
We explored the theoretical reasons why rare events lead to
the models giving the same results and used constructed data
to identify situations in which the models would disagree,
and adjustments would be necessary. We also conducted a
simple simulation study to explore the impact of increasing
event rates on the bias and coverage of the simple and shared
parameter models, confirming that the latter performs better

TABLE 4 Comparison of constructed data results for apixaban vs warfarin

Scenario Outcome
Adjusted HRa

Mean (95% CrI)
Simple ORb

Mean (95% CrI) Event Ratec

Base rate Ischaemic stroke 0.901 (0.729, 1.11) 0.913 (0.734, 1.13) 0.0101

MI 0.832 (0.655, 1.06) 0.874 (0.666, 1.14) 0.00584

Death (all causes) 0.887 (0.798, 0.986) 0.883 (0.792, 0.986) 0.0366

Clinically relevant bleeding 0.811 (0.693, 0.945) 0.812 (0.696, 0.95) 0.0207

Inflate by 2 Ischaemic stroke 0.909 (0.783, 1.06) 0.913 (0.784, 1.07) 0.0202

MI 0.864 (0.711, 1.05) 0.874 (0.72, 1.06) 0.0117

Death (all causes) 0.893 (0.827, 0.963) 0.876 (0.809, 0.949) 0.0732

Clinically relevant bleeding 0.807 (0.722, 0.901) 0.807 (0.721, 0.902) 0.0415

Inflate by 5 Ischaemic stroke 0.915 (0.832, 1.01) 0.909 (0.822, 1) 0.0505

MI 0.873 (0.771, 0.99) 0.87 (0.767, 0.986) 0.0292

Death (all causes) 0.896 (0.853, 0.941) 0.847 (0.798, 0.9) 0.183

Clinically relevant bleeding 0.804 (0.751, 0.862) 0.785 (0.728, 0.844) 0.104

Inflate by 10 Ischaemic stroke 0.915 (0.855, 0.979) 0.899 (0.834, 0.968) 0.101

MI 0.876 (0.802, 0.958) 0.864 (0.788, 0.946) 0.0584

Death (all causes) 0.897 (0.866, 0.928) 0.697 (0.654, 0.743) 0.366

Clinically relevant bleeding 0.801 (0.762, 0.842) 0.734 (0.692, 0.78) 0.207

Inflate by 20 Ischaemic stroke 0.917 (0.874, 0.961) 0.871 (0.821, 0.925) 0.202

MI 0.877 (0.823, 0.934) 0.848 (0.791, 0.91) 0.117

Death (all causes) 0.999 (0.97, 1.03) 0.0429 (4.33e-06, 106)d 0.581

Clinically relevant bleeding 0.801 (0.773, 0.83) 0.499 (0.469, 0.532) 0.415

Notes. Results are shaded if the 95% credible intervals do not overlap.
aAdjusted HR is the hazard ratio estimated by the model accounting for competing risks and differently reported data.
bSimple OR is the odds ratio estimated by the model that disregards competing risks and differently reported data.
cAveraged over all arms and all trials.
dAnomalous results due to high event rate.
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when events are more common and that the crossover point
for rates is between 0.1 and 0.3. Although our example
was in NMA, the conclusion is general to meta-analysis of
multiple outcomes or where different data summaries are
used.

Shared parameter and competing risk NMAs have been
previously published but not specifically for the data formats
used in our example.23,38,39 Woods et al presents a shared
parameter model but analyses only a single outcome and
combines studies that report mean or median survival with
studies that report total numbers of events.23 We instead ana-
lyze multiple outcomes accounting for competing risks and
combine studies that summarize the numbers of events dif-
ferently. Shared parameter models (such as ours) are specific
examples of a more general multiparameter evidence synthe-
sis (MPES) framework.38,39 Competing risk NMA has been
studied in the literature,1 but this earlier work assumes that
all studies report data in the same way. Our work can be con-
sidered an extension of previous developments in shared

parameter models and competing risks within the more gen-
eral MPES framework. However, there are several issues to
consider when drawing conclusions from our study.

Meta-analysis and NMA are the recommended approach
for treatment effect estimation and indirect comparison by
health care authorities and international medical decision-
making societies.7,8 It is therefore important to ensure that
unbiased methods are used. Meta-analysis and NMA results
may also be used as inputs to cost-effectiveness models.13

As treatment effects on multiple outcomes must be simulta-
neously estimated, it is important to account for competing
risks; this is relevant to our atrial fibrillation example as the
estimates were used in a cost-effectiveness model.26,27 Also,
although clinical conclusions may not be sensitive to adjust-
ment for competing risks or different data summaries, the
cost-effectiveness results may be impacted. This has been
the finding in work considering different synthesis models in
type 1 diabetes where clinical conclusions were unaffected
but cost-effectiveness conclusions changed.14 The

TABLE 5 Comparison of constructed data results for dabigatran vs warfarin

Scenario Outcome
Adjusted HRa

Mean (95% CrI)
Simple ORb

Mean (95% CrI) Event Ratec

Base rate Ischaemic stroke 0.751 (0.583, 0.969) 0.757 (0.583, 0.978) 0.00845

MI 1.25 (0.932, 1.68) 1.29 (0.949, 1.75) 0.00796

Death (all causes) 0.886 (0.78, 1.01) 0.882 (0.772, 1.01) 0.0359

Clinically relevant bleeding 1.07 (0.916, 1.24) 1.08 (0.925, 1.26) 0.0299

Inflate by 2 Ischaemic stroke 0.752 (0.627, 0.904) 0.754 (0.628, 0.907) 0.0169

MI 1.27 (1.03, 1.57) 1.29 (1.04, 1.61) 0.0159

Death (all causes) 0.882 (0.807, 0.968) 0.873 (0.79, 0.964) 0.0719

Clinically relevant bleeding 1.07 (0.966, 1.19) 1.09 (0.973, 1.22) 0.0597

Inflate by 5 Ischaemic stroke 0.753 (0.67, 0.846) 0.74 (0.655, 0.835) 0.0423

MI 1.29 (1.12, 1.48) 1.31 (1.14, 1.51) 0.0398

Death (all causes) 0.863 (0.814, 0.915) 0.831 (0.772, 0.893) 0.18

Clinically relevant bleeding 1.08 (1.01, 1.15) 1.11 (1.03, 1.2) 0.149

Inflate by 10 Ischaemic stroke 0.739 (0.68, 0.803) 0.713 (0.652, 0.78) 0.0845

MI 1.31 (1.19, 1.43) 1.34 (1.21, 1.48) 0.0796

Death (all causes) 0.771 (0.737, 0.806) 0.611 (0.561, 0.665) 0.359

Clinically relevant bleeding 1.08 (1.03, 1.13) 1.2 (1.11, 1.29) 0.299

Inflate by 20 Ischaemic stroke 0.703 (0.662, 0.745) 0.639 (0.594, 0.688) 0.169

MI 1.34 (1.26, 1.44) 1.41 (1.31, 1.53) 0.159

Death (all causes) 1.89 (0.285, 19.2) 86.1 (0.0001, 1.49e+09)d 0.499

Clinically relevant bleeding 1 (0.966, 1.04) 8.5 (0.00728, 8334)d 0.5

Notes. Results are shaded if the 95% credible intervals do not overlap.
aAdjusted HR is the hazard ratio estimated by the model accounting for competing risks and differently reported data.
bSimple OR is the odds ratio estimated by the model that disregards competing risks and differently reported data.
cAveraged over all arms and all trials.
dAnomalous results due to high event rate.
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FIGURE 1 Comparison of estimated
adjusted HR (dotted) and simple OR
(solid) for apixaban under constructed data
scenarios. Thin lines represent upper and
lower 95% credible interval limits

FIGURE 2 Comparison of estimated
adjusted HR (dotted) and simple OR
(solid) for dabigatran under constructed
data scenarios. Thin lines represent upper
and lower 95% credible interval limits
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correlation matrix between apixaban hazard ratios of events
is presented in Table 11, with other matrices in the
Supporting Information. This demonstrates that the hazard

ratio estimates were correlated. The simple model assumes
these correlations to be zero, and an economic model based
could be biased by omission of this correlation.

TABLE 6 Simulation study bias results on outcome 1

Average Event Rate Outcome 1 Average Event Rate Outcome 2 0.05 0.1 0.2 0.3 0.4

0.05 Simple 0.0058 0.0057 0.0061 0.0060 0.0062

Complex 0.0073 0.0067 0.0066 0.0064 0.0064

0.1 Simple 0.0040 0.0042 0.0043 0.0046 0.0047

Complex 0.0045 0.0045 0.0043 0.0045 0.0043

0.2 Simple 0.0031 0.0032 0.0036 0.0038 0.0039

Complex 0.0031 0.0031 0.0030 0.0030 0.0030

0.3 Simple 0.0031 0.0033 0.0037 0.0041 0.0043

Complex 0.0026 0.0026 0.0025 0.0025 0.0025

0.4 Simple 0.0037 0.0041 0.0046 0.0051 0.0056

Complex 0.0022 0.0023 0.0022 0.0022 0.0022

Notes. Greater values indicate worse performance. Simple is simple odds ratio NMAwhile complex is shared parameter NMA.

TABLE 7 Simulation study bias results on outcome 2

Average Event Rate Outcome 1 Average Event Rate Outcome 2 0.05 0.1 0.2 0.3 0.4

0.05 Simple 0.0061 0.0042 0.0031 0.0029 0.0029

Complex 0.0079 0.0047 0.0030 0.0025 0.0021

0.1 Simple 0.0061 0.0044 0.0033 0.0030 0.0034

Complex 0.0076 0.0046 0.0031 0.0024 0.0022

0.2 Simple 0.0063 0.0045 0.0036 0.0035 0.0038

Complex 0.0076 0.0047 0.0031 0.0025 0.0021

0.3 Simple 0.0064 0.0047 0.0038 0.0039 0.0042

Complex 0.0074 0.0047 0.0031 0.0025 0.0021

0.4 Simple 0.0065 0.0048 0.0039 0.0040 0.0045

Complex 0.0074 0.0047 0.0032 0.0025 0.0021

Notes. Greater values indicate worse performance. Simple is simple odds ratio NMAwhile complex is shared parameter NMA.

TABLE 8 Simulation study mean coverage probability results on outcome 1

Average Event Rate Outcome 1 Average Event Rate Outcome 2 0.05 0.1 0.2 0.3 0.4

0.05 Simple 0.952 0.958 0.940 0.945 0.932

Complex 0.851 0.874 0.870 0.868 0.856

0.1 Simple 0.956 0.948 0.947 0.928 0.925

Complex 0.924 0.924 0.927 0.913 0.924

0.2 Simple 0.958 0.947 0.919 0.907 0.888

Complex 0.945 0.950 0.948 0.948 0.947

0.3 Simple 0.924 0.900 0.853 0.826 0.790

Complex 0.948 0.942 0.951 0.955 0.952

0.4 Simple 0.844 0.796 0.724 0.663 0.589

Complex 0.944 0.951 0.952 0.952 0.957

Notes. Greater values indicate better performance. Simple is simple odds ratio NMAwhile complex is shared parameter NMA.
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Our finding from both the constructed data and simula-
tion study was that event rates above 0.2 might warrant con-
sideration of different data summaries and competing risks.

Below this level, however, our simulation study suggests that
the simple odds ratio model may be preferred. A possible
explanation for the superior performance on rare event data
of the simple model is influence of the prior distributions,
which have greater impact due to the larger number of
parameters in the shared parameter model. However, our
simulation study for vague priors in the shared parameter
model indicates that bias and coverage are not improved
when vaguer priors are used. In addition, convergence can
become an issue when vague priors are assumed for the
shared parameter model.

The sensitivity to competing risks has been identified in
NMA examples,4 and our approximate threshold 0.2 is in
line with a previous informal assessment to the sensitivity of
using odds and hazard ratios.32 Although event rates in our
atrial fibrillation example were below the 0.2 threshold, rates
above this level are common in other fields, including
response and remission in depression,9 annualized relapse

TABLE 10 Vague priors for complex model simulation study results

Outcome 1 Results Outcome 2 Results

Model

Outcome 2 Average Rate 0.05 0.1 0.05 0.1

Outcome 1 Average Rate

Bias Simple 0.05 0.0060 0.0062 0.0056 0.0040

Complex 0.0078 0.0077 0.0071 0.0044

Simple 0.1 0.0042 0.0044 0.0060 0.0043

Complex 0.0047 0.0047 0.0070 0.0046

Coverage Simple 0.05 0.959 0.946 0.957 0.958

Complex 0.860 0.862 0.863 0.932

Simple 0.1 0.961 0.946 0.947 0.948

Complex 0.930 0.930 0.863 0.913

Notes. Mean bias and mean coverage for both outcome 1 and outcome 2. Greater coverage and lower bias indicate better performance. Results can be compared with
upper left corners of Tables 7 to 10.

TABLE 9 Simulation study mean coverage probability results on outcome 2

Average Event Rate Outcome 1 Average Event Rate Outcome 2 0.05 0.1 0.2 0.3 0.4

0.05 Simple 0.945 0.954 0.962 0.949 0.926

Complex 0.851 0.926 0.961 0.964 0.967

0.1 Simple 0.954 0.951 0.950 0.930 0.888

Complex 0.867 0.938 0.953 0.959 0.957

0.2 Simple 0.944 0.939 0.925 0.896 0.831

Complex 0.854 0.928 0.950 0.961 0.970

0.3 Simple 0.932 0.933 0.901 0.852 0.786

Complex 0.862 0.919 0.953 0.956 0.970

0.4 Simple 0.937 0.927 0.892 0.846 0.744

Complex 0.847 0.912 0.942 0.952 0.964

Notes. Greater values indicate better performance. Simple is simple odds ratio NMAwhile complex is shared parameter NMA.

TABLE 11 Correlation matrix for hazard ratios of events of
interest for apixaban

MI
Ischaemic
Stroke

Death
(All
Causes)

Clinically
Relevant
Bleeding

MI 1.000 0.028 −0.007 0.017

Ischaemic
stroke

0.028 1.000 0.012 −0.027

Death (all
causes)

−0.007 0.012 1.000 −0.022

Clinically
relevant
bleeding

0.017 −0.027 −0.022 1.000
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rates in relapsing remitting multiple sclerosis,11 and 5-year
survival and mortality rates in a range of cancers.12 Despite
this sensitivity, high profile NMAs continue not to adjust for
competing risks or consider different data summaries when
analyzing multiple outcomes.10

There are important limitations to our analysis. We did
not use theoretical analysis to estimate the event rate thresh-
old below which competing risks and different data summa-
ries can be ignored; our informal threshold came only from
constructed data analyses and a simple simulation study.
Estimating this threshold, or identifying conditions under
which competing risks and data summaries cannot be
ignored, by asymptotic arguments may be worthwhile future
research. Although our simulation study, unlike the con-
structed data example, explored differential event rates, we
did not formally assess correlation.

6 | CONCLUSIONS

In this paper, we have considered a NMA where the RCTs
report results on competing risks in different formats. We
developed a novel shared parameter model accounting for all
these complications. Applying this model to a synthesis of
interventions for atrial fibrillation however, results were
almost identical to a model without the necessary adjust-
ments. We used theoretical arguments to demonstrate that
this is due to the rareness of events. We further used con-
structed data examples and a simulation study to find situa-
tions in which the adjustments may become necessary. We
recommend analysts to consider the absolute event rates and
only use a simple model ignoring data types and competing
risks, if all of these underlying events are rare (below our
threshold of approximately 0.2). If one or more of the abso-
lute event rates approaches or exceeds our informal thresh-
old, it is necessary to account for data types and competing
risks through a shared parameter model in order to avoid
biased estimates. A more complete simulation study could
simulate different numbers of treatments or outcomes, multi-
armed trials, sample sizes, and more varied event rates. This
was outside the scope of the present study but could be a
useful piece of future research.

ACKNOWLEDGEMENTS

The UK Medical Research Council Collaboration and Inno-
vation in Difficult and Complex Randomized Controlled Tri-
als in Invasive procedures (ConDuCT-II) Hub for Trials
Methodology Research provided support to HT and NJW for
this research. HT and NJW were also supported by the
National Institute for Health Research (NIHR) Biomedical
Research Centre at University Hospitals Bristol NHS Foun-
dation Trust and the University of Bristol. Funding for the

stroke prevention in atrial fibrillation network meta-analysis
was provided by NIHR health technology assessment grant
11/92/17. The views expressed in this publication are those
of the authors and not necessarily those of the NHS, the
NIHR, or the Department of Health and Social Care.

CONFLICT OF INTEREST

The author reported no conflict of interest.

DATA AVAILABILITY STATEMENT

The data to produce the base case results of the DOAC
example, along with necessary OpenBUGS code and initial
values, are provided in the Supporting Information. We have
also provided OpenBUGS code, two sets of initial values,
and data from one of the simulated datasets so that interested
readers can adapt our analysis to their examples. The simu-
lated dataset is smaller and more efficient for adaptation.

ORCID

Howard Thom https://orcid.org/0000-0001-8576-5552
José A. López-López https://orcid.org/0000-0002-9655-
3616
Nicky J. Welton https://orcid.org/0000-0003-2198-3205

REFERENCES

1. Ades AE, Mavranezouli I, Dias S, Welton NJ, Whittington C,
Kendall T. Network meta-analysis with competing risk outcomes.
Value Health. 2010;13(8):976-983.

2. Austin PC, Lee DS, Fine JP. Introduction to the analysis of sur-
vival data in the presence of competing risks. Circulation. 2016;
133(6):601-609.

3. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for
decision making 2: a generalized linear modeling framework for
pairwise and network meta-analysis of randomized controlled tri-
als. Med Decis Making. 2013;33(5):607-617.

4. Achana FA, Cooper NJ, Bujkiewicz S, et al. Network meta-
analysis of multiple outcome measures accounting for borrowing
of information across outcomes. BMC Med Res Methodol. 2014;
14(1):92.

5. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure
Time Data. Wiley series in probability and statistics. 2nd ed.
Hoboken, N.J: J. Wiley. xiii; 2002:439.

6. Lopez-Lopez JA, van den Noortgate W, Tanner-Smith EE, Wilson
SJ, Lipsey MW. Assessing meta-regression methods for examining
moderator relationships with dependent effect sizes: a Monte Carlo
simulation. Res Synth Methods. 2017;8(4):435-450.

7. Dias S, Welton NJ, Sutton AJ, Ades AE, NICE DSU Technical
Support Document 2: A Generalised Linear Modelling Framework
for Pairwise and Network Meta-Analysis of Randomised Con-
trolled Trials. Report by the Decision Support Unit, 2011 (last
updated September 2016).

THOM ET AL. 103

https://orcid.org/0000-0001-8576-5552
https://orcid.org/0000-0001-8576-5552
https://orcid.org/0000-0002-9655-3616
https://orcid.org/0000-0002-9655-3616
https://orcid.org/0000-0002-9655-3616
https://orcid.org/0000-0003-2198-3205
https://orcid.org/0000-0003-2198-3205


8. Hoaglin DC, Hawkins N, Jansen JP, et al. Conducting indirect-
treatment-comparison and network-meta-analysis studies: report of
the ISPOR Task Force on Indirect Treatment Comparisons Good
Research Practices: part 2. Value Health. 2011;14(4):429-437.

9. Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ. Benefits
from antidepressants. Arch Gen Psychiatry. 2012;69(6):572-579.

10. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy
and acceptability of 21 antidepressant drugs for the acute treatment
of adults with major depressive disorder: a systematic review and
network meta-analysis. Lancet. 2018;391(10128):1357-1366.

11. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramus-
cular interferon for relapsing multiple sclerosis. N Engl J Med.
2010;362(5):402-415.

12. de Angelis R, Sant M, Coleman MP, et al. Cancer survival in
Europe 1999-2007 by country and age: results of EUROCARE--
5—a population-based study. Lancet Oncol. 2014;15(1):23-34.

13. Welton NJ, Sutton AJ, Cooper NJ, Abrams KR, Ades AE. Evi-
dence Synthesis for Decision Making in Healthcare. John Wiley
and Sons; 2012.

14. Keeney E, Dawoud D, Dias S. Different methods for modelling
severe hypoglycaemic events: implications for effectiveness, costs
and health utilities. Pharmacoeconomics. 2018;36(5):523-532.

15. Berkey CS, Hoaglin DC, Antczak-Bouckoms A, Mosteller F,
Colditz GA. Meta-analysis of multiple outcomes by regression
with random effects. Stat Med. 1998;17(22):2537-2550.

16. Gail MH, Pfeiffer R, van Houwelingen HC, Carroll RJ. On meta-
analytic assessment of surrogate outcomes. Biostatistics. 2000;
1(3):231-246.

17. Trikalinos TA, Olkin I. A method for the meta-analysis of mutually
exclusive binary outcomes. Stat Med. 2008;27(21):4279-4300.

18. Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis
using individual participant data. Res Synth Methods. 2015;6(2):
157-174.

19. Bonofiglio F, Beyersmann J, Schumacher M, Koller M, Schwarzer
G. Meta-analysis for aggregated survival data with competing
risks: a parametric approach using cumulative incidence functions.
Res Synth Methods. 2016;7(3):282-293.

20. Welton NJ, Cooper NJ, Ades AE, Lu G, Sutton AJ. Mixed treat-
ment comparison with multiple outcomes reported inconsistently
across trials: evaluation of antivirals for treatment of influenza A
and B. Stat Med. 2008;27(27):5620-5639.

21. Welton NJ, Willis SR, Ades AE. Synthesis of survival and disease
progression outcomes for health technology assessment of cancer
therapies. Res Synth Methods. 2010;1(3-4):239-257.

22. Govan L, Ades AE, Weir CJ, Welton NJ, Langhorne P. Controlling
ecological bias in evidence synthesis of trials reporting on col-
lapsed and overlapping covariate categories. Stat Med. 2010;
29(12):1340-1356.

23. Woods BS, Hawkins N, Scott DA. Network meta-analysis on the
log-hazard scale, combining count and hazard ratio statistics
accounting for multi-arm trials: a tutorial. BMC Med Res Met-
hodol. 2010;10:54.

24. Dominici F, Parmigiani G, Wolpert RL, Hasselblad V. Meta-
analysis of migraine headache treatments: combining information
from heterogeneous designs. J Am Stat Assoc. 1999;94(445):
16-17.

25. Nam IS, Mengersen K, Garthwaite P. Multivariate meta-analysis.
Stat Med. 2003;22(14):2309-2333.

26. Lopez-Lopez JA, Sterne JA, Thom HH, et al. Oral anticoagulants
for prevention of stroke in atrial fibrillation: systematic review, net-
work meta-analysis, and cost effectiveness analysis. BMJ. 2017;
359:J5058.

27. Sterne JA, Bodalia PN, Bryden PA, et al. Oral anticoagulants for
primary prevention, treatment and secondary prevention of venous
thromboembolic disease, and for prevention of stroke in atrial
fibrillation: systematic review, network meta-analysis and cost-
effectiveness analysis. Health Technol Assess. 2017;21(9):1-386.

28. National Collaborating Centre for Chronic Conditions. Atrial
fibrillation: national clinical guideline for management in primary
and secondary care. London: Royal College of Physicians; 2006.

29. Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic
therapy to prevent stroke in patients with atrial fibrillation: a meta-
analysis. Ann Intern Med. 1999;131(7):492-501.

30. Garcia D, Libby E, Crowther MA. The new oral anticoagulants.
Blood. 2010;115(1):15-20.

31. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions
as cause of admission to hospital: prospective analysis of 18 820
patients. BMJ. 2004;329(7456):15-19.

32. Cummings P. The relative merits of risk ratios and odds ratios.
Arch Pediatr Adolesc Med. 2009;163(5):438-445.

33. Cameron AC, Trivedi PK. Regression analysis of count data. In:
Econometric society monographs. Second ed. Cambridge; New
York, NY: Cambridge University Press. xxvii; 2013:566 pages.

34. Morris TP, White IR, Crowther MJ. Using simulation studies to
evaluate statistical methods. Stat Med. 2019;0(0).

35. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a
Bayesian modelling framework: concepts, structure, and extensi-
bility. Stat Comput. 2000;10(4):325-337.

36. Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D. The
BUGS book: a practical introduction to Bayesian analysis. In:
Texts in statistical science. Boca Raton; London: CRC Press. xvii;
2013:381 pages.

37. R Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Comput-
ing; 2015.

38. Ades A, Sutton A. Multiparameter evidence synthesis in epidemi-
ology and medical decision making: current approaches. J R Stat
Soc Ser A. 2006;169(1):5-35.

39. Ades AE. A chain of evidence with mixed comparisons: models
for multi-parameter synthesis and consistency of evidence. Stat
Med. 2003;22(19):2995-3016.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of this article.

How to cite this article: Thom H, López-López JA,
Welton NJ. Shared parameter model for competing
risks and different data summaries in meta-analysis:
Implications for common and rare outcomes. Res Syn
Meth. 2020;11:91–104. https://doi.org/10.1002/jrsm.1371

THOM ET AL.104

https://doi.org/10.1002/jrsm.1371

	Shared parameter model for competing risks and different data summaries in meta-analysis: Implications for common and rare ...
	1  INTRODUCTION
	2  MOTIVATING EXAMPLE: DIRECTLY ACTING ORAL ANTICOAGULANTS FOR STROKE PREVENTION IN ATRIAL FIBRILLATION
	3  METHODS
	3.1  Simple odds ratio model: separate NMA models for each outcome, ignoring data type
	3.2  Shared parameter model on hazard ratios accounting for competing risks and different data summaries
	3.2.1  Studies reporting number of patients whose first event is of a given type: data type j=1
	3.2.2  Studies reporting number of patients experiencing at least one event for each type: data type j=2
	3.2.3  Studies reporting the total number of events of each type: data type j=3

	3.3  Equivalence of simple and shared parameter models if events are rare: asymptotic arguments
	3.3.1  Equivalence of models for types 1 and 3 under rare events
	3.3.2  Equivalence of models for types 2 and 3 under rare events

	3.4  The impact on results if events are more common: constructed data
	3.5  Simulation study
	3.6  Model implementation

	4  RESULTS
	4.1  Comparison of model results
	4.2  Results of constructed data examples
	4.3  Simulation study results

	5  DISCUSSION
	6  CONCLUSIONS
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT
	REFERENCES


