
REVIEW
published: 24 January 2019

doi: 10.3389/fendo.2019.00007

Frontiers in Endocrinology | www.frontiersin.org 1 January 2019 | Volume 10 | Article 7

Edited by:

Adam Mamelak,

Cedars-Sinai Medical Center,

United States

Reviewed by:

Manuel Dos Santos Faria,

Universidade Federal do Maranhão,

Brazil

Murat Aydin Sav,

Yeditepe University, Turkey

*Correspondence:

Xuejun Li

lxjneuro@csu.edu.cn

Specialty section:

This article was submitted to

Pituitary Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 28 August 2018

Accepted: 09 January 2019

Published: 24 January 2019

Citation:

Yang Q and Li X (2019) Molecular

Network Basis of Invasive Pituitary

Adenoma: A Review.

Front. Endocrinol. 10:7.

doi: 10.3389/fendo.2019.00007

Molecular Network Basis of Invasive
Pituitary Adenoma: A Review
Qi Yang and Xuejun Li*

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China

Cases with pituitary adenoma comprise 10–25% of intracranial neoplasm, being the

third most common intracranial tumor, most of the adenomas are considered to

be benign. About 35% of pituitary adenomas are invasive. This review summarized

the known molecular basis of the invasiveness of pituitary adenomas. The study

pointed out that hypoxia-inducible factor-1α, pituitary tumor transforming gene, vascular

endothelial growth factor, fibroblast growth factor-2, and matrix metalloproteinases

(MMPs, mainly MMP-2, and MMP-9) are core molecules responsible for the invasiveness

of pituitary adenomas. The reason is that these molecules have the ability to directly

or indirectly induce cell proliferation, epithelial-to-mesenchymal transition, angiogenesis,

degradation, and remodeling of extracellular matrix. HIF-1α induced by hypoxia or

apoplexy inside the adenoma might be the initiating factor of invasive transformation,

followed with angiogenesis for overexpressed VEGF, EMT for overexpressed PTTG,

degradation of ECM for overexpressed MMPs, creating a suitable microenvironment

within the tumor. Together, they form a complex interactive network. More investigations

are required to further elucidate the mechanisms underlying the invasiveness of pituitary

adenomas.
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INTRODUCTION

Cases with pituitary adenoma comprise 10–25% of intracranial neoplasm (1) and has a prevalence
rate of about 17% in the general population (2). Most of the adenomas are considered to be benign.
The symptoms of pituitary adenomas contain two major aspects, endocrine related and tumor
occupying symptoms, the former differs according to the various hormones that get involved, the
later one includes vision loss and headache. Some adenomas found accidentally on an MRI scan
also show no clinical symptoms at all. The diagnosis of pituitary adenoma requires both imaging
evidence and serum hormone level. About 35% of pituitary adenomas are invasive (3), which are
defined and graded by the extent of tumor invading the adjacent sphenoid sinus and cavernous
sinus. Invasive pituitary adenomas not only are more difficult to achieve total resection, but also
have a higher recurrent rate after standard surgery compared to benign ones.

A few classification systems are available for evaluating invasive pituitary adenomas to
aid surgical planning, including Hardy classification, Wilson–Hardy classification, and Knosp
classification. Invasive pituitary adenomas are more difficult to surgically remove, and most of
the time, they require surgical resection for the relatively more severe symptoms. An invasive
pituitary adenoma was considered synonymous with an aggressive adenoma in a number of
studies, moreover, aggressive ones are usually macroadenoma (4). However, some scholars (4, 5)
preferred to regard an aggressive adenoma as a separated type that displays more aggressive
clinical progression despite of the tumor size and should be diagnosed based on the elevated
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immunoreactivity of Ki-67 and P53 over more “benign” types of
pituitary adenoma using tissue immunohistochemistry. Ki-67 is
a biomarker widely used to evaluate cell proliferation. P53 is also
a biomarker that indicates malignancy and invasiveness when
found strongly positive on tumor tissue immunohistochemistry.
The 4th edition of WHO classification of pituitary tumors has
removed the term atypical pituitary adenoma (APA) for the
difficulty and inconsistency in determining proper cutoff of the
diagnostic criteria being used before (4, 6–9), in the previous
3rd version, APA is defined as tumors that display invasive
growth, Ki-67 index >3%, extensive nuclear staining for p53 and
elevated mitotic activity (10), which is vague. So the 4th edition
of WHO classification of pituitary tumors has also suggested that
the grading of aggressive pituitary adenoma should be evaluated
on an individual case basis with criteria mentioned above (7).
In some ways, aggressive, and invasive pituitary adenomas can
be different in clinical behavior, but they largely share the
same molecular basis in terms of malignancy and invasiveness.
P53 protein and Ki-67 protein are common biomarkers shared
between kinds of tumors, the difficulty (i.e., inconsistent criteria)
of using them in grading of pituitary adenoma means that we
need some more accurate biomarkers to better distinguish them
from benign pituitary adenomas.

Compared with non-invasive pituitary adenomas, those with
invasive behavior are difficult to tackle with. Therefore, it is
necessary to identify their causes. This review summarized the
known molecular basis of the invasiveness of invasive pituitary
adenomas, providing insights for further exploration in this field.

VASCULAR ENDOTHELIAL GROWTH
FACTOR AND RELATED FACTORS IN AN
INVASIVE PITUITARY ADENOMA

Increased angiogenesis is found to be essential for the
invasiveness and spread of many types of tumors including
invasive pituitary adenoma. Invasive macroprolactinomas and
non-functional adenomas were more vascular compared with
non-invasive ones (11) on surgically removed human pituitary
adenomas. As shown in Figure 1, angiogenesis in the tumor
is a complex and dynamic process involving the endothelial
matrix degradation, proliferation, and migration of endothelial
cells, and remodeling of the vascular basement membrane.
In general, whether pituitary adenomas are more vascular is
still controversial (12–14), but when it comes to invasive or
aggressive pituitary adenomas and carcinomas, it is safe to say
that angiogenesis is essential (15).

Vascular Endothelial Growth Factor
Vascular endothelial growth factor (VEGF) is proved to be
the key factor in angiogenesis in many human tumors.
Overexpression of VEGF in clinical samples of invasive pituitary
adenomas is observed by many scholars (16). Meaning that
VEGF could also be used as an independent prognosis-predicting
factor except for Ki-67 and P53. There is a significant relationship
between the expression of VEGF and apoplexy of pituitary
adenoma (17), which, from another point of view, is an indicator

of rapid tumor vascular growth. VEGF secreted by tumor
cells promotes neovascularization via downstream pathways
including the MAPK signaling pathway (18), FAK pathway (19),
PI3K/Akt pathway (20), and p38 MAP kinase pathway (21),
directly stimulating tumor cell proliferation (22). The function
and the role of IP3 signaling pathway, which is also a classic
downstream pathway of VEGF, in the invasiveness of pituitary
adenoma are not clear yet. This could be a new entry point for
the investigation of VEGF and its peripheral signaling pathways.
The activation of these pathways promotes angiogenesis in
many ways, including vascular endothelial cell proliferation,
migration, and increase in the permeability of newly formed
vessels. The controversial results on the microvascular density
of pituitary adenomas indicate that VEGF has a more direct and
pivotal role in tumorigenesis and invasiveness rather than just in
angiogenesis because VEGF-related pathways have been found
to directly promote tumor cell proliferation in other cancers
recently (23). The immune escape modulated by VEGF was
reported (24) and left untested in pituitary adenomas.

Tumor Necrosis Factor α

Some other molecules involving angiogenesis have shown a
regulatory effect on the expression of VEGF. Tumor necrosis
factor- α (TNF-α) has been reported to upregulate the expression
of VEGF and matrix metalloproteinase-9 (MMP-9) in rodent
cell line MMQ. In human pituitary adenoma surgical specimens,
higher expression levels of TNF-α, VEGF, and MMP-9 were
found in hemorrhagic adenomas than in non-hemorrhagic ones.
Also, the expression levels of both VEGF and MMP-9 were
positively correlated with TNF-α (25). Pituitary apoplexy can
cause secondary hypoxia of the tumor tissue, so the elevation
of TNF-α and VEGF expression might just be the self-saving
struggle under extreme conditions.

Hypoxia-Inducible Factor-1α

Hypoxia-inducible factor-1α (HIF-1α) is able to regulate VEGF
in pituitary adenomas and other human tumors. More than
a decade ago, the apoptotic protective function of HIF-1α
in human pituitary adenoma cell line HP75 under hypoxic
conditions via a knockdown experiment was observed (26).
VEGF was then confirmed to be activated by HIF-1α (27), but
the HIF-1α overexpression model of rodent MMQ cell culture
showed a higher apoptotic rate compared with the control,
which contradicted the results of knockdown experiments in
the human cell line. RWD-containing sumoylation enhancer
(RSUME), a stabilizer of HIF-1α under hypoxia (28), is reported
to upregulate VEGF in vitro, substantiating the interaction
between HIF-1α and VEGF (29). There is overexpression of
RSUME, HIF-1α, and VEGF-A in invasive pituitary adenoma
surgical specimens comparedwith non-invasive ones, confirming
RSUME as an upstream regulator of expression after the HIF-
1α knockdown. Furthermore, the RSUME knockdown rodent
AtT-20 cell line demonstrated a more invasive behavior (30). All
these experiments displayed the whole picture of an invasiveness-
inducing pathway of RSUME–HIF-1α-VEGF.

Notably, the von Hippel-Lindau gene-related protein (pVHL)
is a known negative regulator of HIF-1α. Its low expression with
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FIGURE 1 | VEGF secreted by tumor cells promotes neovascularization via downstream pathways including the MAPK signaling pathway, FAK pathway, PI3K/Akt

pathway, and p38 MAP kinase pathway, it also directly promotes tumor cell proliferation. IP3 pathway and VEGF-induced immune escape might be involved in

invasiveness of the pituitary adenoma.

a high expression level of VEGF leads to a higher recurrence
rate and more aggressive behavior (31). A study reported an
aggressive GH-PRL pituitary adenoma in a young patient with a
VHL gene missense mutation (32). All these further confirm the
importance of VEGF-related pathways in the invasiveness and
aggressiveness of pituitary adenomas.

Fibroblast Growth Factor-2
It has been shown that fibroblast growth factor-2 (FGF-
2), a growth factor, also promotes vascular endothelial cell
proliferation and differentiation similar to VEGF. It is an
upstream upregulator of VEGF in human vascular endothelial
cells (33) and rodent GH3 pituitary cell line (34). However,
FGF-2 had no significant modulatory effect on VEGF at the
transcription level in human pituitary cell line HP75 (35). The
overexpression of fibroblast growth factor receptor 1 (FGFR1), a
receptor of FGF-2, is also closely related to the invasiveness of
pituitary adenomas (36). Additionally, FGF-2 had significantly
reduced expression levels in male and female prolactinoma
patients (37), together with the study showing that FGF-2 had
no regulatory effect on cell proliferation (38) and no significant
modulating effect on VEGF at the transcription level in human
gonadotrophic cell line HP75 (35), indicating FGF-2 might only
be effective only in early stages of the development of pituitary
adenoma, moreover, only in human prolactinoma.

Exploiting VEGF-Related Pathways in
Treating Pituitary Adenoma
Advances in molecular biology have provided a better
understanding of invasive pituitary adenomas, improving
clinical prognosis. Many successful attempts had been made to

exploit VEGF-related pathways in treating pituitary adenomas,
from directly targeting VEGF (39–42) to its upstream pathways
(43, 44), and to other related molecules (45).

PITUITARY TUMOR TRANSFORMING
GENE

First cloned in 1997 (46), the pituitary tumor transforming gene
(PTTG) is a known oncogene and upregulator of VEGF (47). The
relationship between PTTG and VEGF was later elucidated with
the findings that the PTTG upregulate and co-locate with VEGF,
thus indirectly promoting angiogenesis in pituitary adenomas.

The PTTG1 is also called securin protein, which counters
the function of separin. The degradation of PTTG1 triggers
the anaphase of mitosis. Separin then promotes chromosome
segregation (48). In human pituitary surgical specimens, invasive
pituitary adenomas had the highest level of PTTG followed by
non-invasive ones. And the PTTG doesn’t express in a normal
pituitary tissue (36, 49). Other researchers also reported PTTG as
an indicator of both invasiveness and aggressiveness of pituitary
adenomas in clinical studies (50–52). A meta-analysis on 15
cohorts of a total 752 patients with a pituitary adenoma further
corroborated the relationship between PTTG and invasiveness in
pituitary adenomas (53). The elevated PTTG expression level is
expected to directly increase cell proliferation and chromosomal
instability (54), implying enhanced tumor invasiveness.

Apart from the relationship with VEGF, the PTTG has a
wide interaction spectrum with many genes and molecules
related to survival, mitogenesis, tumor growth, and invasion.
Estrogen receptor α (ERα), a nucleus-located receptor and the
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mediator of estrogen, is positively related to the invasiveness of
human pituitary adenomas (55, 56) and has a significantly higher
expression in male patients with prolactinoma than in normal
pituitary tissue (37). In the present study, male patients had
much higher serum PRL level and much larger tumor volume
compared with female patients. The expression of ERα was
also elevated in female patients, but not significantly. Estrogen
is the first discovered inducer of PTTG, the transcription and
translation levels of the PTTG both increased within 48 h after
estrogen administration in a “synced” fashion to the estrogen
administration in a study using prolactinoma rat model, and
under the administration of estrogen, PTTG, FGF-2, VEGF
showed the same expression pattern, showing that estrogen is an
inducer of PTTG. In the same study, microscopic observation of
the pituitary tumor showed progressive neovascularization and
remodeling of the extracellular matrix (ECM) (57). All these
findings elucidated that PTTG, FGF-2, and VEGF might act in
synergy from the early development to increase the invasiveness
and angiogenesis of pituitary adenomas, especially prolactinoma
(58) and growth hormone–secreting adenomas (59). Connexins
(Cx) is a protein family forming the gap connections of cells,
expression changes of which between tumor and normal tissue
have been reported in many types of cancers (60). Among them,
Cx43 is ubiquitously expressed in vertebrates and is considered a
tumor suppressor, in most cancer types like testis cancer (61, 62),
breast cancer (63, 64), and colorectal cancer (65) tumor cells
tend to have lower expression of it, but that is not the case
in prolactinoma. Experiments on rat prolactinoma model has
shown us that estrogen can induce increasing of gap junctions
and of course Cx43, and the silencing of Cx43 could attenuate
estrogen-induced up-regulation of PTTG (66). Cx43 might play
an import part in tumorigenesis of prolactinoma, the relationship
between Cx43 and VEGF, HIF-1α in pituitary adenomas requires
future investigation. It is worth mentioning that the PTTG can
upregulate the expression and secretion of MMP-2 in HEK293
cells (67), MMP-2 is capable of inducing invasiveness in pituitary
adenomas. It could be the same for the PTTG in pituitary
adenomas. The clarification of this would be worthwhile because
both PTTG and MMPs are potentially valuable therapeutic
targets.

DEGRADATION AND REMODELING OF
ECM BY MATRIX METALLOPROTEINASES
FAMILY

Matrix metalloproteinases (MMPs) are a group of calcium-
dependent zinc-containing endopeptidases with the ability to
degrade basement membrane and ECM. Together with the tissue
inhibitor of metalloproteinases (TIMPs), they are the essential
elements in the stability and remodeling of ECM (11). A dynamic
balance is maintained between MMPs and TIMPs. The major
types of MMPs involved in pituitary adenoma invasion can be
classified into collagenases (MMP-1), gelatinases (MMP-2 and
MMP-9), stromelysins (MMP-3), and membrane type (MMP-14)
according to their function and location. TIMPs (TIMP-1,
TIMP-2, TIMP-3, and TIMP-4) and reversion-inducing cysteine-
rich protein with Kazal motifs (RECK) act as inhibitors, and

extracellular matrix metalloproteinase inducer (EMMPRIN) acts
as the inducer of MMPs.

MMP-9 is the first matrix metalloproteinase found to have
a significantly higher expression level in pituitary adenomas
invaded to cavernous sinus (68). However, TIMP-1 was
undetectable by immunochemistry staining in all samples
(69). The correlation between MMP-9 overexpression and
invasiveness of pituitary adenomas has been verified by many
researchers in human pituitary adenoma specimens (70–75) as
well as cell lines (76). Later studies showed that high expression
levels of EMMPRIN (77, 78), MMP-2 (71, 75, 79), and MMP-
14 (80, 81) and low expression levels of TIMP-2 (82, 83),
TIMP-3 (82, 84), and RECK (85) were also correlated with
invasiveness. There is a report that found TIMP-2 have higher
expression in more patients of invasive prolactinomas then non-
invasive ones (74), most of the aforementioned studies were
performed on patients with prolactinoma or mixed patients
of all secreting types, the contradicting results of TIMP-2
indicating that different types of pituitary adenoma might have
distinct signaling pathways regarding to invasiveness. However,
no statistical difference in the MMP-9 expression level between
invasive and non-invasive non-functioning pituitary adenomas
could be found (86).

MMP-9 plays an important role in promoting invasiveness in
many type of pituitary adenomas. A transcriptome analysis on
somatotroph pituitary adenomas (87) identified genes having a
differential expression pattern between the two groups depending
on the invasiveness. Hepatocellular carcinoma, downregulated
1 (HEPN1) was found to be less expressed in invasive
somatotroph pituitary adenoma. First found to be downregulated
in hepatocellular carcinoma. HEPN1 can induce apoptosis when
overexpressed in HepG2 (88). In rodent cell lines GH3 and GT1-
1, it inhibited the expression of MMP-2 and MMP-9, resulting
in reduced invasiveness (87). A transcriptome and proteome
analyses on pituitary null cell adenomas, a subtype of non-
functioning pituitary adenomas, by the same research team
(89), identified that upregulated IL-6R/JAK2/STAT3 promoted
invasiveness via MMP-9.

MMPs not only promote invasiveness by the degradation
of ECM and the consequential release of various ECM-
anchored growth factors (90, 91), other functions are also
observed. Interfering with the expression of MMP-14 using
shRNA could result in the reduced expression of PTTG, VEGF,
and TGFβ in rodent AtT-20 cells (80), implying that MMPs
would also directly promote tumor growth and angiogenesis.
IL-17 and IL-17 receptors were positively related to MMP-
19 in terms of expression levels. The levels were all elevated
in invasive pituitary adenomas compared with non-invasive
ones (92).

More recent studies have demonstrated the difference in
genotyping of patients with pituitary adenoma; polymorphisms
ofMMP-9 (93) and promoter ofMMP-1 (94) could affect invasive
phenotype. Other proteases were also demonstrated to promote
the invasiveness of human pituitary adenomas, including a
disintegrin and metalloproteinase 12 (ADAM12) (81) and serine
proteases urokinase-type plasminogen activator (uPA) (83).
Interestingly, the same research team reported the involvement
of ADAM12 in invasiveness. They later demonstrated that
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ADAM12 was also involved in epithelial-to-mesenchymal
transition (EMT) (95).

Enhancer of zeste homolog 2 (EZH2) is widely involved in
many cancers. It is a key catalytic component in polycomb
repressive complex 2 (PRC2), which is responsible for
the methylation modification of many development- and
differentiation-related genes. It is therefore important in
tumorigenesis of many human cancers (96). The overexpression
of EZH2 in pituitary tumors was found to be related to
invasiveness possibly via the upregulation of MMP-14 (97).

Potentials of MMP Inhibitors in Treating
Pituitary Adenoma
Efforts were made to evaluate the potential of MMP inhibitor
in treating invasive and chemotherapy-refractory pituitary
adenomas. Batimastat showed inhibitory effect on the rat
prolactinoma model (98) by reducing the cell proliferation rate
and promoting the apoptosis.

EMT AND INVASIVE PITUITARY ADENOMA

EMT is a process that increases the invasiveness of tumor
characterized by the loss of epithelial-cadherin (E-cadherin) and
the enhanced expression of transcription factor snail family
transcriptional repressor 1 (SNAI1) gene (also referred to as
Snail), transcription factor snail family transcriptional repressor
2 (SNAI2) gene (also referred to as Slug), forkhead box C1
(FOXC1), twist-related protein 1(TWIST1), neural cadherin (N-
cadherin), and Vimentin.

In an early study employing immunohistochemistry on 30
pituitary adenomas, the semi-quantified immunoreactivity of E-
cadherin level was not correlated with cavernous sinus invasion
(99). A follow-up study with larger sample size and better
methodology, using quantitative real-time polymerase chain
reaction on cadherin 13 (CDH13) and immunohistochemistry
on E-cadherin and β-catenin, demonstrated the expected
significantly lower expression levels of E-cadherin (100–102),
CHD13 (101), and β-catenin (100, 102) in invasive pituitary
adenomas, resulting from a more frequently methylated CDH13
and E-cadherin genes (101). Also, a study reported the nuclear
accumulation and translocation of E-cadherin (103), suggesting
another possible mechanism for the less expressed E-cadherin in
invasive pituitary adenomas.

In a microarray analysis of human somatotroph adenomas,
epithelial splicing regulatory protein 1(ESRP1) was differentially
expressed in two groups with relatively low or high transcription
levels of E-cadherin; the results were validated with RT-PCR
and in vivo experiment in GH3 cells. A gene set comprising
ESRP1, PKP2, TP53, PERP, IRF6, ROBO1, BICC1, SPINT1,
and of course, CDH1 (E-cadherin) was also found to have
reduced expression levels (104). With the same sample set, they
demonstrated that it was possible to accurately discriminate
invasive pituitary adenomas from non-invasive ones using the
binary tree analysis on a group of genes including ESRP1,
CDH1, and CTNNb1. Therefore, the potential EMT and
invasiveness promoting function of genes in this set makes
them valuable targets worth further investigation. Among them,

the expression level of ESRP1 was confirmed related to the
invasiveness of prolactinoma and GH-secreting adenoma later
(105).

A number of miRNAs were reported to regulate EMT.
The overexpressed miR-133 could upregulate the expression
of E-cadherin and downregulate the expression of N-cadherin
and Snail (106). The overexpression of miR-132, miR-15a,
and miR-16 could downregulate the expression of N-cadherin
and TWIST1 genes (107). The expression of Slug was
positively correlated with ERα and invasiveness in clinical
pituitary adenoma specimens (56), showing that the ERα-
Slug–E-cadherin pathway was vital in the invasiveness of
pituitary adenomas. The overexpression of miR-133 suppressed
invasion by downregulating the expression of transcription factor
forkhead box C1 (FOXC1) in HP75 cells (106), implying the
involvement of miR-133 in EMT; FOXC1 is a known promoter
of EMT (108).

PTTG-induced EMT is an important mechanism of tumor
invasiveness and metastasis in lung cancer (109) and ovarian
cancer (110). However, its involvement in pituitary adenomas has
not been elucidated yet.

MiRNAs AND INVASIVE PITUITARY
ADENOMA

Available evidence shows that the levels of miR-24, miR-
34a, miR-93 (111), miR-148-3p, miR-152 (112), miR-132, miR-
15a, and miR-16 (107) are significantly lower in invasive
pituitary adenomas (111) compared with non-invasive ones. The
overexpression of miR-148-3p and miR-152 suppressed invasion
by downregulating activated leukocyte cell adhesion molecule
(ALCAM) in rodent GH3 cells (112). Also, the overexpression
of miR-132, miR-15a, and miR-16 suppressed invasion by
downregulating sex-determining region Y-box protein 5 (Sox5)
gene in rodent GH3 cells (107). Some miRNAs are reported to
have elevated expression levels in invasive pituitary adenomas.
MiR-93-5p was overexpressed in invasive (113) corticotroph
pituitary adenomas. The expression of miR-106b-5p, miR-93-
5p, miR-93-3p, and miR-25-3p, as a cluster, is also positively
correlated with invasiveness. The enhanced expression of miR-
106b can induce invasiveness via PI3K/PTEN/Akt pathway and
sequential overexpression of MMP-9 in HP75 cells (114). Using
a miRNA microarray, many differentially expressed miRNAs in
non-functioning pituitary adenomas was identified in a single
study. The expression levels of miR-181b-5p, miR-181d, miR-
191-3p, and miR-598 were upregulated, and the expression
levels of miR-3676-5p and miR-383 were downregulated (115).
Caveolin-1 (Cav-1) was reported to promote invasiveness via
the EGR1/KLF5 pathway in GH3 cells. Its knockdown resulted
in a cytoplasmic enrichment of EGR1, which then induced
miR-145, miR-124, and miR-183 targeting FSCN1, PTTG1IP,
and EZR, respectively (116). MiRNAs are critical in prompting
invasiveness in pituitary adenoma,manymolecules and pathways
are involved, miRNA sequencing would be a proper method
comprehensively identifying differentiatly expressed miRNAs,
after which targets of these miRNAs can be predicted with
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bioinformatics tools, functions of them would then be validated
with pertinence.

OTHER GENES INVOLVED IN THE
INVASIVENESS OF PITUITARY ADENOMA

In a prospective study on 94 patients with prolactinoma,
A Disintegrin And Metalloproteinase With Thrombospondin
Motifs 6 (ADAMTS6) and Collapsin Response Mediator
Protein 1 (CRMP1) were found to be positively related
to invasiveness, while the overexpression of PTTG, Cyclin
B1(CCNB1), Aurora Kinase B(AURKB), and Centromere
Protein E(CENPE) indicated both invasive and aggressive
behavior (51), these genes are all mitosis or development related,
they might be the key biological processes that transduce
invasiveness transformation. A causative CDH23 gene mutation
was identified in a family of familial pituitary adenoma
and sporadic patients with this mutation have non-invasive
phenotype (117). Secreted frizzled-related protein 1(sFRP1) and
Wnt inhibitory factor 1(WIF-1) genes were found to be less
expressed in invasive non-functioning pituitary adenomas (118).
Also, transforming growth factor, beta receptor II(TGFβII), is less
expressed in invasive non-functioning pituitary adenomas (119).

Epidermal growth factor-like domain multiple 7(EGFL7) has
a higher level of cytoplasmic expression in invasive growth
hormone–secreting pituitary adenomas (120), and is positively
correlated with Notch2 and Dll3 in knockdown experiments on
GH3 cells. Later the invasiveness reduction phenomenon was
reported after the knockdown of EGFL7 in GH3 and GT1-1 cells
in vitro (121), confirming EGFL7 as a valuable therapeutic target.

Recent reports implied that long non-coding RNAs (lncRNAs)
were involved in invasiveness. The expression of lncRNA
C5orf66-AS1 was downregulated and inversely related to
invasiveness in pituitary null cell adenoma compared with
normal pituitary and non-invasive ones (122). However, lncRNA
H19 was upregulated in invasive growth hormone–secreting
pituitary adenomas (123).

Epigenetic modification of certain genes has been proved to
induce invasiveness in pituitary adenomas including P16, DAPK,
and Rb1 (124–129), these genes could be new targets of therapy
(130). High throughput sequencing of methylation status (i.e.,
ChIP-sequencing) in the future will hopefully provide us with the
global view of the epigenome of pituitary adenomas.

Next-generation sequencing (NGS) is a powerful tool
discovering new disease-related genes at a relatively low cost,
especially RNA sequencing and whole-exome sequencing. Using
NGS on invasive pituitary adenomas and 6 non-invasive
pituitary adenomas, 15 genes with pathogenic mutations were
identified (131), including EGFL7, LRP1B, MGAM, MAST4,
DSPP, PRDM2, PRDM8, ZNF717, LRRC50, TRIOBP, MX2,
DPCR1, PRB3, SPANXN2, and KIAA0226. They also reported
that CAT, CLU, CHGA, EZR, KRT8, LIMA1, SH3GLB2,
and SLC2A1 were invasion-related genes in non-functioning
pituitary adenomas (132). And data mining on existing pituitary
adenoma RNA sequencing data from the National Center for
Biotechnology Information Gene Expression Omnibus identified

invasion-associated genes (133), including CLDN7, CNTNAP2,
ITGA6, JAM3, PTPRC, and CTNNA1. All these genes could
be the critical cause for invasiveness, which needs further
exploration.

CONCLUSIONS AND PERSPECTIVE

Efforts were made to elucidate the molecular mechanisms of
the invasiveness in pituitary adenomas, from the observation of
possible biomarkers on tumor specimens to function verification
experiments in vitro, and to recent application of multi-omics
analysis. Yet, the whole picture is unclear because the molecular
basis of invasiveness is highly complex involving multiple genes,
proteins, and pathways. What makes it even more difficult is the
fact that subtypes of pituitary adenomas are different in many
ways rather than just the hormone they secrete.

Luckily, studies in the last two decades provide some clues
in this regard. The key nodes of the invasiveness molecular
network are easily spotted out in the review of literature. As
shown in Figure 2, HIF-1α, PTTG, VEGF, FGF-2, and MMPs
(mainly MMP-2 and MMP-9) are core molecules responsible
for invasiveness owing to their ability to directly or indirectly
induce cell proliferation, EMT, angiogenesis, degradation, and
remodeling of ECM. HIF-1α induced by hypoxia or apoplexy
inside the adenoma might be the initiating factor of invasive
transformation, followed with angiogenesis for overexpressed
VEGF, EMT for overexpressed PTTG, degradation of ECM
for overexpressed MMPs, creating a suitable microenvironment
within the tumor. Next generation sequencing could be the

FIGURE 2 | Interaction of core molecules with each other and their

relationship with EMT, angiogenesis, and ECM degradation. HIF-1α induced

by hypoxia or apoplexy inside the adenoma might be the initiating factor of

invasive transformation, followed with angiogenesis for overexpressed VEGF,

EMT for overexpressed PTTG, degradation of ECM for overexpressed MMPs.
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next point of breakthrough for the investigation of pituitary
adenomas, high throughput genomic data on methylation status,
expression, copy number variance $$et al. on bulk samples and
single cell level would push our understanding of the invasive
pituitary adenomas to a much higher level.

Many of the studies demonstrated interactions between these
molecules both in vivo and in vitro. Most of them focusing on
the invasiveness of pituitary adenomas finally came down to the
conclusion that a molecule or part of the network was involved.
This network is far from complete, and the factors inducing the
aforementioned changes are still not known.

More systemic investigations are required to fully understand
the mechanisms of the invasiveness of different subtypes of
pituitary adenomas. Attempts can still be made targeting one

or many molecules at a time, to the invention of new drugs or
testing existing chemicals on certain molecules.
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