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Epistasis between mutations in two genes is thought to reflect an interdependence of their functions.

While sometimes epistasis is predictable using mechanistic models, its roots seem, in general, hidden

in the complex architecture of biological networks. Here, we ask how epistasis can be quantified based

on the mathematical dependence of a system-level trait (e.g. fitness) on lower-level traits (e.g. molecular

or cellular properties). We first focus on a model in which fitness is the difference between a benefit and a

cost trait, both pleiotropically affected by mutations. We show that despite its simplicity, this model can be

used to analytically predict certain properties of the ensuing distribution of epistasis, such as a global

negative bias, resulting in antagonism between beneficial mutations, and synergism between deleterious

ones. We next extend these ideas to derive a general expression for epistasis given an arbitrary functional

dependence of fitness on other traits. This expression demonstrates how epistasis relative to fitness can

emerge despite the absence of epistasis relative to lower level traits, leading to a formalization of the con-

cept of independence between biological processes. Our results suggest that epistasis may be largely

shaped by the pervasiveness of pleiotropic effects and modular organization in biological networks.
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1. INTRODUCTION
Epistasis describes a fundamental nonlinearity in biological

systems, capturing the fact that the phenotypic effect of a

genetic mutation or allele variant could depend on another

mutation. Epistasis is suggested to play an important role

in evolutionary dynamics, e.g. by shaping the fitness land-

scape [1,2], maintaining sexual reproduction [3,4] and

affecting the speed of adaptation [5–8]. Large-scale sys-

tematic studies of single and double gene deletions have

also revealed that epistasis is useful in understanding the

organization of living systems into modules, as genes

belonging to the same biological process tend to share

similar profiles of epistatic interactions with other genes

[9,10]. Given the influence of epistasis on evolutionary

processes, and given the modular structure of epistatic

interaction networks, one may wonder whether deeper

insights can be obtained on how the modular organization

of biological networks affects (and is affected by) epistasis

and adaptation. The connection between modularity and

evolution has been addressed from multiple independent

standpoints [11–16]. Yet few concepts seem to be more

appropriate than epistasis for trying to relate the architec-

ture of biological networks with the evolutionary forces

that gave rise to such networks. This is ultimately due to

the fact that epistasis captures in an elementary way the

complexity of the genotype–phenotype map.
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For quantitative traits, epistasis can be analysed math-

ematically. Upon a double mutation, a given quantitative

trait could turn out to be higher or lower than expected

based on individual mutations, leading to a quantifiable

positive or a negative epistasis, respectively. Special caution

should be used in comparing the definitions of epistasis

across different research areas, as multiple, sometime con-

flicting, terminologies have been adopted. A commonly

used classification is the one between synergistic and

antagonistic epistasis. Synergistic (antagonistic) epistasis

occurs when the joint effect of two alleles is more (less)

severe than expected. Note that, based on the terminology

adopted here, negative epistasis between deleterious

mutations corresponds to synergism, while negative epista-

sis between beneficial mutations is classified as antagonism

(table 1). In addition, the very definition of the baseline

expectation relative to which epistasis is quantified is still

the subject of active debate [17–20]. In this work, we

assume that mutational effects combine multiplicatively

in the absence of epistasis (see also §2).

The role of epistasis in evolution constitutes a particu-

larly important and debated question [21], which involves

understanding the sources and the consequences of the

average and variance of the distribution of epistatic effects

[22]. Therefore, considerable effort has been put into

elucidating the distribution of epistasis, both from a theor-

etical and from an experimental perspective [23,24]. Some

early experimental studies, partially motivated by the pos-

sible relevance of synergistic effects between deleterious

mutations in the evolution of sex [3,4], had found nearly

symmetric distributions of epistasis [25–28]. Subsequent

large-scale studies under different proportions of beneficial

versus deleterious mutations have reported both negative
This journal is q 2012 The Royal Society
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Table 1. Definitions and conventions for epistasis in the

current work. We quantify the degree of epistasis (1) as the
deviation of the joint effect of mutations from the
expectation in multiplicative scale (see equation (2.1)).
Synergistic epistasis occurs when the joint effect of two
alleles is reinforced (e.g. more severe than the multiplicative

expectation), while antagonistic epistasis happens when the
joint effect is buffered (less severe than the multiplicative
expectation) by the interaction between alleles. As
illustrated in the table, negative epistasis (1 , 0) may point
to synergistic or antagonistic behaviour based on whether

the mutations are both beneficial or both deleterious.

type of mutations

deleterious beneficial

synergistic 1 , 0 1 . 0
antagonistic 1 . 0 1 , 0
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[10] and positive [29] epistasis trends, leaving the problem

fundamentally unsettled. From a theoretical perspective,

models of fitness landscapes have been used for providing

potential explanations for observed epistasis trends. Antag-

onism between beneficial mutations, for example, can be

predicted by a fitness landscape model that assumes

ubiquity of stabilizing selection [30]. In addition, stoichio-

metric models of metabolic networks have been useful in

exploring the distribution and network organization of

gene–gene interactions in metabolism [9,31], and in

providing mechanistic explanations for measured distri-

butions [29,32]. However, none of these prior theoretical

works seems to have explicitly addressed the question of

how epistasis quantitatively depends on the modular organ-

ization of the genotype–phenotype mapping, and on the

degree of pleiotropy.

A hint to how modularity and epistasis relate to each

other was recently offered by an experimental evolution

study that identified a diminishing returns trend among

pairs of beneficial alleles [7] (see also recent studies

[8,33]). This study reported antagonistic epistasis between

beneficial alleles that arose during 600 generations of evol-

ution of an engineered strain of Methylobacterium

extorquens. It was found that the observed beneficial alleles

improve fitness either by enhancing metabolic capacity or

by alleviating protein expression-related costs. This obser-

vation suggested that microbial fitness could very coarsely

be treated as a modularly structured function of two separ-

ate phenotypic traits, a metabolic benefit and a protein

expression cost. In fact, a simple benefit–cost model was

sufficient to quantitatively predict fitness values for multi-

allele strains, and to quantitatively recapitulate the antag-

onistic trend for epistasis between genes in different loci

of the genome [7]. Benefit–cost models had been used

to describe fitness in previous studies of evolutionary adap-

tation, ranging from rapid adaptation of protein expression

in new environments [14], to optimal regulatory design

upon biochemical noise [34] and optimal transcriptional

regulation of metabolism [35].

Here, inspired by the previously demonstrated rel-

evance of benefit–cost models in evolutionary research,

we use a benefit–cost model as a starting point for quan-

tifying epistasis based on the dependence of fitness on

multiple traits. In particular, we first extend the
Proc. R. Soc. B (2012)
benefit–cost model from a way to explain an observed

case of antagonism between beneficial mutations [7], to

a general statistical analysis of expected epistasis distri-

butions among mutations with a given chance of being

beneficial or deleterious. In the second part of our

work, we generalize these results to show that the

degree of epistasis can be estimated analytically for an

arbitrary dependence of fitness on simpler quantitative

traits, providing a new mathematical link between epista-

sis, pleiotropy and modularity. Note that our analysis is

mostly focused on analysing the interactions between

two mutations, without delving into the problem of how

multiple perturbations accumulate. In addition, we

restrict our calculations almost entirely to a fitness func-

tion that depends on two traits (also previously called

two-dimensional epistasis [36]), leaving possible exten-

sions to multidimensional epistasis [36] as a topic for

potential follow-up research.
2. BACKGROUND AND DEFINITIONS
The main premise of the current work is that a high-level

trait, or phenotype, such as fitness ( f ) can be phenomen-

ologically expressed as a function F of two basic

observable traits, X and Y: f ¼ F(X,Y ). For example,

the growth rate of a bacterium may be expressed as a

function of its respiratory and fermenting capacities

[37]. In addition to a wild-type organism (e.g. a bacterial

strain), we consider two mutant strains with genetic

modifications at loci i and j, respectively, and a double

mutant strain which has both i and j alleles modified.

For each of these four strains, we hypothesize that it is

possible to independently measure the overall fitness ( f0
for the wild-type, fi and fj for the single mutants, and fij
for the double mutant), as well as each of the two basic

traits X and Y (x0 for the wild-type, xi and xj for the

single mutants, and xij for the double mutant, etc.). The

general question we are concerned with is whether we

can estimate epistasis with regard to fitness between per-

turbations i and j given some assumptions on how these

mutations affect phenotypes X and Y, and given the

functional dependence of F on X and Y (figure 1).

In the absence of epistasis, it is often assumed that

mutational effects should combine multiplicatively, i.e.

fij /f0 ¼ ( fi /f0)( fj /f0) ([7–10,25,31,38], see also discussion

on alternative definitions [39]). In other words, under

this assumption, absence of epistasis means that pertur-

bations will tend to affect fitness in a way that is

proportional to the fitness itself, and independent of the

genetic background (as easily seen by rewriting the pre-

vious expression as fij /fj ¼ fi /f0). Epistasis can be

therefore seen as a deviation from this null multiplicative

expression and quantified as

1 ¼ fij

f0
� fi

f0
� fj

f0
: ð2:1Þ

This equation has been used previously

[7–10,25,31,38] for assessing the degree of epistasis,

given experimentally measured or computationally pre-

dicted fitness values for the wild-type and mutant

strains. It is through this equation that one can determine

whether epistasis is positive (1 . 0) or negative (1 , 0). In

this work, we will use this equation to determine how an

analytical expression for fitness as a function of other
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Figure 1. Schematic depiction of how we quantify epistasis
relative to a fitness function that depends on two quantitative
traits, or phenotypes. (a) Two alleles or genetic perturbations i
and j are assumed to potentially affect multiple traits, here X
and Y (‘low-level traits’). The phenomenon in which a genetic

perturbation affects multiple traits is called pleiotropy. Here
we assume that there is no epistasis at the level of the individ-
ual traits X and Y. A ‘high-level trait’ (e.g. fitness f ) is defined
as a function F of the two traits X and Y. These assumptions
allow us to predict how the functional shape of F affects epis-

tasis between the two perturbations. Without any knowledge
of this internal structure (dashed box), the presence of epista-
sis could only be measured experimentally, but not inferred
mathematically. (b) The same model as described above, in
the absence of pleiotropy. In this case, perturbations i and j
affect each a single trait, i.e. X and Y respectively, and can
be thought of acting on different modules. Depending on
the function F, this may still lead to epistasis.
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measurable traits (and of the mutations that affect such

traits), translates into a prediction of epistasis. We will

restrict our analysis to the simplest case in which alleles

exhibit no direct epistasis with regard to either of the

two underlying traits X and Y (i.e. xij /x0 ¼ (xi /x0)(xj /x0)

and yij /y0 ¼ (yi /y0)(yj /y0)). Under this assumption, epis-

tasis relative to fitness emerges only as a consequence of

the functional dependence of F on X and Y (figure 1).

The benefit–cost model used to explain an antagon-

istic epistasis pattern that emerged during adaptation of

an M. extorquens strain [7] constitutes a special case of

the F function introduced earlier. In this case, in analogy

to Dekel & Alon [14], X ¼ b is the growth advantage

(benefit), and Y ¼ c is the burden (cost) associated

with the operation of the biological network, and F ¼

X 2 Y ¼ b – c. In this model, fitness of the wild-type

strain can be written as the difference between a basal

benefit and a basal cost term:

f0 ¼ b0 � c0 ¼ 1. ð2:2Þ

The quantities f0 and c0 can be experimentally

measured to operationally define the basal benefit b0 as

demonstrated in earlier studies [7,14]. A mutant allele i

is assumed to pleiotropically alter b0 or c0 with factors li

and ui respectively, yielding a fitness:

fi ¼ fðbi ; ciÞ ¼ lib0 � uic0: ð2:3Þ
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To avoid confusion, it is important to stress that li rep-

resents the effect of a single mutation (i) on the benefit

component of the fitness (if i has no effect on the benefit,

then li ¼ 1), and is not proportional to the number of

mutations accumulated in a longer-term evolutionary pro-

cess. Rather, multiple mutations are assumed to act by the

action of further multiplicative factors. For example, a suc-

cessive allele j, on the background of i, is assumed again to

act multiplicatively on the benefit and cost components,

giving rise to the fitness of the double mutant

fij ¼ fðbij ; cijÞ ¼ liljb0 � uiuj c0. ð2:4Þ

Note that the changes in each trait are not simply given

by the l and u factors, but rather also include a depen-

dence on the unperturbed trait, e.g. Db ¼ lib0 2 b0 ¼

(li 2 1)b0. In our previous work [7], experimentally deter-

mined values of b0, c0, and of li and ui for each allele, were

used in equation (2.4) (and its extension to more than two

mutations) to provide accurate predictions of the fitness of

multi-allele strains, and to explain the observed antagon-

istic epistasis among some beneficial alleles. Here

instead, we explore the space of possible pairs of

mutational effects to infer statistical properties of epistasis.
3. RESULTS
(a) An analytical expression of epistasis in the

benefit–cost model

Our first goal is to determine analytically the magnitude

and sign of epistasis relative to fitness under the assump-

tions of the benefit–cost model. As shown in detail in

electronic supplementary material, §B, this can be

achieved by substituting the expressions for the fitness of

single and double mutants (equations (2.3) and (2.4))

into the definition of epistasis (equation (2.1)), yielding:

1 ¼ �b0c0ðli � uiÞðlj � ujÞ: ð3:1Þ

This is a remarkably simple expression, in which epistasis

turns out to be computable as the product of a term that

depends only on the unperturbed state parameters (b0, c0),

and on a term that depends only on the phenotypic effects

of the mutations (the li, ui, lj and uj parameters). From

equation (3.1), one can see that no epistasis ensues in the

benefit–cost model if l ¼ u for one or both mutations (see

electronic supplementary material, figure S9 for additional

clarifications, including an extension to more than two

mutations). Importantly, given that the benefit and cost

terms are defined as positive (b0 . 1 and c0 . 0), the sign

of epistasis is entirely determined by the (li – ui)(lj – uj) pro-

duct. Hence, in this model, the sign of epistasis between two

mutations depends only on their mutational effects on the

benefit and the cost, but not on the initial unperturbed

values. In addition, from equation (3.1), one can see that

positive epistasis can be obtained only by combining

mutations that have (l – u) values of opposite sign.

Additional steps are required to determine how this

expression for epistasis (and especially its sign) depends on

whether individual mutations are beneficial or deleterious.

(b) The benefit–cost model imposes a negative bias

in the distribution of epistasis

Equation (3.1) predicts the degree of epistasis for specific

combinations of two mutations. In this section, we show
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Figure 2. Estimating epistasis through a geometrical representation of perturbations in phenotype space. (a) The (l,u) plane, a

geometrical representation of possible mutant alleles in a benefit–cost model of fitness. Any allele (e.g. i) can be represented as
a point with coordinates (li,ui) corresponding to the multiplicative alterations of the benefit and cost, respectively. We assume
that both l and u can have values between zero and W. Throughout the paper, we assume W ¼ 2, so that beneficial and deleterious
mutations have equal chance of being chosen when sampling uniformly. The (l,u) plane is divided into four regions by the neu-
trality line (corresponding to mutants with fitness equal to the wild-type) and the isochange line (corresponding to mutations such

that li ¼ ui). The intersection between these two lines (i.e. the point (l,u) ¼ (1,1)) corresponds to the wild-type strain. Ba is the
area containing beneficial alleles above the isochange line; Bu is the area containing beneficial alleles under the isochange line. Da

and Du are similarly defined for deleterious alleles. The combination of two alleles both lying above the isochange line will give rise
to negative 1, as evident from equation (3.1). In general, the sign of 1 depends on the chance of selecting alleles from different
regions in the (l,u) plane. The maximum value of Bu ¼ (W 2 1)2/2 occurs when the slope of the neutrality line is zero (c0 ¼

0). The corresponding Ba in this situation is Buþ (W 2 1). When we increase the slope, Bu decreases (while Ba increases) mono-
tonically as c0 goes up, until Bu reaches its minimum value at zero when c0 ¼ b0 (slope of neutrality line ¼ 1). Thus, it is always
Ba . Bu. (b) Without imposing any constraint on whether mutations are beneficial or deleterious the regions above and under the
isochange line have equal chance to occur (inset), leading to an unbiased epistasis distribution. (c,d) Negative bias between strictly
beneficial alleles (c, region Ba . Bu shaded in inset) and between strictly deleterious alleles (d, region Du . Da shaded in inset) can

be demonstrated analytically, and is confirmed here by simulations (see the electronic supplementary material, §A).
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how this same equation can be also used to draw general

conclusions about the expected distribution of epistasis

between a pair of perturbations in the benefit–cost

model. The fact that the sign of epistasis is dictated by

the product of (l–u) terms suggests that a statistical

analysis of how these terms are distributed could provide

information about the distribution of epistasis itself.

To reason about this problem, one can visualize possible

choices of perturbations on the (l,u) plane (figure 2).

Each perturbation in the benefit–cost model can be rep-

resented as a point in this plane. The point of

coordinates (1,1) corresponds to the wild-type, i.e. the

unperturbed system. For simplicity, we assume here that

l and u cannot exceed a given value W. Two fundamental

lines can be drawn on this plane. One line, which we call

the isochange line, is defined by the equation l ¼ u, and cor-

responds to all individual perturbations that change both

the benefit and the cost by the same multiplicative factor.

Note that the isochange line does not have in itself an

immediate interpretation in terms of epistasis (e.g. it
Proc. R. Soc. B (2012)
does not represent a boundary between positive and nega-

tive epistasis); rather, as reasoned later, it is an abstract

geometrical construct that will help us to determine the

chance of observing a given sign of epistasis for two

mutations, through equation (3.1). If we think of

two mutations as two points with coordinates (li,ui) and

(lj,uj), the positions of these points relative to the isochange

line will determine the signs of the terms (li 2 ui) and

(lj 2 uj), and hence, based on equation (3.1), the sign of

epistasis between such mutations. If no other constraints

exist in the system, upon uniformly sampling pairs of

points in the (l,u) plane (with W ¼ 2), it is equally likely

to choose positive or negative (l 2 u) terms, giving rise

to no obvious bias in the distribution of 1 (figure 2b).

A second fundamental line in the (l,u) plane is the line

that partitions beneficial from deleterious mutations. This

line, which we call neutrality line (lib0 – uic0 ¼ 1), corre-

sponds to all possible choices of l and u whose

combined effect is to leave fitness equal to the wild-type

value of 1. All points above this line are associated with



Table 2. Contingency table for the phenotypic values of strictly beneficial alleles. The categories of 1 classified by the four

conditions are analogous to the possible outcomes of tossing a coin twice, and allow us to compute the overall probability of
negative and of positive 1, giving p(1 , 0)� p(1 . 0) ¼ (B2

a þ B2
u � 2BaBu)=B2

tot ¼ (Ba � Bu)2=B2
tot � 0, where Btot ¼ Ba þ Bu.

1 2 2 þ þ

condition li . ui li , ui li . ui li , ui

lj . uj li , uj lj , uj lj . uj

region (i , j) (Ba, Ba) (Bu, Bu) (Ba, Bu) (Bu, Ba)

p(condition) B2
a=B

2
tot B2

u=B
2
tot|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} BaBu=B

2
tot BuBa=B

2
tot|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pð1 , 0Þ ¼ B2
a þ B2

u

ðBa þ BuÞ2
pð1 . 0Þ ¼ 2BaBu

ðBa þ BuÞ2
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individual beneficial mutations; all points below this

line correspond to individual deleterious mutations. It is

now possible to ask whether any bias in the distribution

of 1 may be expected among strictly beneficial mutations.

In other words, we ask whether a repeated uniform

sampling of pairs of points from the region above the neu-

trality line will preferentially yield positive or negative

values of 1, based on equation (3.1). Note that the

sampling we are performing here is a sampling in pheno-

type space, and is not meant to provide insights into the

actual rates of beneficial/deleterious mutations in the

genome. What determines the sign of 1, for a given pair

of beneficial perturbations, is whether points selected

above the neutrality line fall above (area Ba) or under

(area Bu) the isochange line. Specifically, as explained in

table 2, it is easy to see that the difference in the chance

to obtain a negative versus a positive 1 is p(1 , 0) 2

p(1 . 0) ¼ (Ba 2 Bu)2/(Ba þ Bu)2. This expression is

always positive as long as Ba = Bu, a condition geometri-

cally confirmed by figure 2. Thus, under the benefit–cost

model, one should expect a bias towards negative 1 (antag-

onistic epistasis) among beneficial mutations (figure 2c),

consistent with the specific observations of [7]. As shown

in figure 2d, a similar result can be obtained for deleterious

mutations (points below the neutrality line). In this case,

again, one can infer a tendency towards negative 1, indicat-

ing a bias towards synergistic epistasis between deleterious

mutations. It is possible to further generalize the earlier-

mentioned results to perturbations with any given prob-

ability r of being beneficial (i.e. the fraction of beneficial

mutations r can be any value other than 0.5). It can be

shown (see the electronic supplementary material, §C)

that in this general case, one can analytically compute

the excess probability of negative epistasis (Dp1¼ p(1 , 0)

2 p(1 . 0)) as a function of r and c0. In particular, under

simplifying assumptions, one obtains Dp1 ¼ (2r 2 1)2 �
(2c0 þ 1)2/(2c0 þ 2)2 (see the electronic supplementary

material, figure S2b). Unless r ¼ 0.5, this expression is

expected to be always positive, demonstrating that the

negative bias in the distribution of epistasis is a general

property of the benefit–cost model. We further support

this analytical conclusion with sensitivity analyses against

choices of r and c0. This negative bias is consistently

obtained, with no substantial difference computationally

(see the electronic supplementary material, figure S2a) or

analytically (see the electronic supplementary material,

figure S2b). In addition, no significant deviations from

this trend are observed upon introducing an arbitrary

interdependence between l and u in the form of a rotated
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Gaussian bivariate distribution (see the electronic

supplementary material, figure S3).

While the geometrical arguments illustrated earlier

provide estimates of the bias in the distribution of 1 as a

function of the fraction, r, of beneficial mutations, they

do not allow us to predict the shape of distribution

itself. We used computer simulations (see the electronic

supplementary material, §A) to explore the full spectrum

of epistasis distribution as a function of r. Again, here r is

a phenotypic measure; we make no assumption on the

connection between random mutations and specific

values of r. The simulations confirm that negative 1 is

more likely to occur over the whole range of r values

(figure 3a). The bias (prevailing negative epistasis)

reaches a maximum in both extreme cases (strictly ben-

eficial or strictly deleterious; figure 2c,d) while it

becomes less and less pronounced as r approaches 0.5

(figure 3a,b). Note that for distributions derived from

combinations of beneficial and deleterious mutations, a

negative 1 cannot be easily associated with synergistic or

antagonistic trends, as different pairs contributing to the

distribution will have different effects (including sign epi-

stasis, an interesting case where an allele is beneficial on

some genetic backgrounds but deleterious on others; see

electronic supplementary material, figure S7 for more

details). Computer simulations also indicate that these

epistasis trends are robust over a broad range of values

for c0 (see the electronic supplementary material,

figure S2), and that they would equally ensue in a more

complex model involving multiple cost components

(e.g. f0 ¼ b0 2 c0 2 d0 2 e0, electronic supplementary

material, figure S1).

(c) Analytical estimate of epistasis for an arbitrary

function F

Most of our study so far has been focused on a specific

dependence of fitness on two traits, i.e. the difference

between a benefit and a cost trait. We next generalize our

analysis to ask whether it is possible to estimate epistasis

when fitness depends in an arbitrary way on two quantitat-

ive traits X and Y, e.g. it is the sum, the product or any

arbitrary function F of such traits. As performed for the

derivation of equation (3.1), we need to substitute the

expressions for fitness of single and double mutant strains

into equation (2.1) to compute 1 ¼ F(xij,yij)/F(x0,y0) 2

[F(xi,yi)/F(x0,y0)].[F(xj,yj)/F(x0,y0)]. In this case, however,

no further result can be obtained unless additional

simplifying assumptions are made about the system. One

possible such assumption is that mutations cause small
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Figure 3. Numerically computed epistasis distributions show a

generic negative trend for all possible proportions of beneficial
mutations. Each bell-shaped histogram corresponds to the dis-
tribution of epistasis at a given fraction of beneficial mutations
(r). For visual clarity, bars associated with negative 1 are
depicted in light grey, while bars for positive 1 are depicted

in dark grey. The front slice (r ¼ 0) is the same distribution
shown in figure 2d. (a) The concave shape for the negative 1

bars across different values of r indicates that the bias towards
negative 1 increases as the portion of beneficial allele moves
away from 0.5. (b) Negative epistasis is more likely to occur

when the single mutants are dominated by mostly beneficial
(r� 0.5) of mostly deleterious alleles (r� 0.5).
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perturbations to the traits (Dxi ¼ xi � x0 � x0;
Dxj ¼ xj � x0 � x0;Dxij ¼ xij � x0 � x0; and similarly

for Dy). Under this assumption, one can perform a

Taylor expansion of each term in the above expression

for 1, e.g. for F(xi,yi) ¼ F(x0 þ Dxi,y0 þ Dyi). Note that

because the product F(xi,yi) . F(xj,yj) will give rise to

second order terms (e.g. in Dx2), it is essential to perform

the Taylor expansion to the second order. In the derivation,

presented in detail in electronic supplementary material,

§D, we assumed (as for the benefit–cost model) that

there is no epistasis between perturbations relative to

each of the two traits X and Y. After some algebraic

rearrangements, we obtained for epistasis

1 ¼ DxiDxjð _FX=x0 þ €FXX � _F
2

X Þ

þ DyiDyjð _FY=y0 þ €FYY � _F
2

Y Þ

þ (DxiDyj þ DxjDyi) � (€FXY � _FX
_FY );

ð3:2Þ

where _FX ; _FY ; €FXY ; €FXX and €FYY are the partial deriva-

tives of F computed at x0, y0. The first two terms in (3.2)

quantify the contribution to epistasis through individual

traits X and Y, respectively, whereas the third term is
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associated with their functional coupling. As a generalized

form of equation (3.1), equation (3.2) provides a direct

quantitative link between the magnitude and direction of

epistasis and the magnitude of individual mutations. For a

function F¼X 2 Y, upon expressing the Dx and Dy par-

ameters in terms of l and u, it is easy to show that

equation (3.2) yields the benefit–cost result of equation

(3.1) (see electronic supplementary material, §D). One

can further use equation (3.2) to explore expected epistasis

under other possible functional dependencies. For example,

if F is a linear combination of the two phenotypes,

F(X,Y ) ¼ aXþ bY, then the degree of epistasis converges

to a generalized form of equation (3.1), where

1 ¼ abx0y0ðli � uiÞðlj � ujÞ. In this case, the relative signs

of a and b determine whether the expected distribution of

epistasis will display a positive or negative bias. In addition,

as expected, one can verify that, if F(X,Y )¼XY, then epis-

tasis is always zero, compatible with the idea that

multiplicative effects on individual traits will combine to

provide an overall multiplicative effect on fitness. Interest-

ingly, this is also true for functions of the form F(X,Y) ¼

XnYm, hinting to a broader view of the relationship between

epistasis and independence, as explored in detail later.

An important question one can ask using the

expression of equation (3.2) is what degree of epistasis

should be expected between two mutations each affecting

only one of the two traits (i.e. non-pleiotropic mutations;

figure 1b). Does our model support the general intuition

that mutations affecting independent modules in a bio-

logical system should have no epistasis? Equation (3.2)

allows us to ask this question in a formal way. In our fra-

mework, lack of pleiotropy is expressed by assuming, for

example, that allele i affects only trait X, and allele j affects

only Y (i.e. Dxj ¼ Dyi ¼ 0, equivalent to lj ¼ ui ¼ 1, in the

benefit–cost model; figure 1b). From equation (3.2), one

can see that under these conditions epistasis can be

expressed as

1 ¼ DxiDyjð€FXY � _FX
_FY Þ

¼ DxiDyj

x0y0

@2 log F

@X@Y

� �����
x0;y0

: ð3:3Þ

Equation (3.3) implies that, even if each mutation affects

only one of the two phenotypes (figure 1b), epistasis will

be zero only for the set of functions F that satisfy the

condition @2logF/@x@y ¼ 0. One can verify (see the elec-

tronic supplementary material, §D) that this condition

is satisfied by any function decomposable as

FðX ;Y Þ ¼ GðXÞHðYÞ ð3:4Þ

Note that, as opposed to functions such as F(X,Y) ¼

XnYm, which would always give zero epistasis (irrespective

of whether mutations are pleiotropic or not), one can

think of several other F functions that would satisfy

equation (3.4), but give zero epistasis only in the absence

of pleiotropy (e.g. F(X,Y) ¼ exp(X ) exp(Y ), see

electronic supplementary material, §D).

The consequences of equations (3.2)–(3.4) can be

summarized as follows: (i) in the general case (arbitrary

F), irrespective of whether mutations affect individual

or multiple traits, one cannot necessarily expect zero epi-

stasis relative to fitness, even if no epistasis is assumed

relative to each individual trait; (ii) when F can be



Table 3. The general expression of epistasis with and without pleiotropy. Equation (3.2) can be rewritten as 1 ¼ 1X þ 1Y þ 1XY

(first row), where 1X ¼ DxiDxjð _FX=x0 þ €FXX � _F
2

X Þ, 1Y ¼ DyiDyjð _FY=y0 þ €FYY � _F
2

Y Þ and 1XY ¼ (DxiDyj þ DxjDyi)�
(€FXY � _FX

_FY ). If each of the alleles i and j acts on a distinct trait with no pleiotropic effect (figure 1b; Dxj ¼ Dyi ¼ 0, or,
equivalently, Dxi ¼ Dyj ¼ 0), then one obtains 1X ¼ 1Y ¼ 0, and hence 1 ¼ 1XY. However, for any decomposable function
F(X,Y ) ¼ G(X ) . H(Y ) (second row), 1XY ¼ 0 because €FXY � _FX

_FY ¼ 0. Therefore, when F(X,Y ) ¼ G(X ) . H(Y ), epistasis is
non-zero only in the presence of pleiotropy, i.e. if 1X and/or 1Y are different from zero. For the particular case F(X,Y ) ¼ XnYm

(third row), epistasis is always zero, no matter whether or not there is pleiotropy.

pleiotropic case (figure 1a) non-pleiotropic case (figure 1b)

general F(X,Y ) 1 ¼ 1X þ 1Y þ 1XY 1 ¼ 1XY

F(X,Y ) ¼ G(X ).H(Y ) 1 ¼ 1X þ 1Y 1 ¼ 0
F(X,Y ) ¼ XnYm 1 ¼ 0 1 ¼ 0
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decomposed as in equation (3.4), epistasis can exist only

in the presence of pleiotropy, i.e. if each mutation affects

more than one trait. Hence, equation (3.4) can be viewed

as an operational definition of independence between two

traits; and (iii) in particular cases (e.g. if F is simply the

product of two traits), epistasis will be always zero,

irrespective of pleiotropy (table 3).
4. DISCUSSION
Genome-wide epistatic profiles of fitness have been used

to study the functional organization of biological systems

[10], suggesting the existence of functionally coherent

modules, characterized by specific epistatic interaction

network properties such as monochromaticity [9,40].

Yet the relationship between the modular organization

of the cell and epistasis remains poorly understood.

Inspired by the successful attempt to explain epistasis

data with a simple benefit–cost model of microbial fitness

[7], we sought to explore the broader implications of

expressing fitness as a function of two quantitative

traits. We found that epistasis, and specific biases in its

distribution, could be a natural outcome of the depen-

dence of fitness on multiple phenotypes. If we interpret

different phenotypes as metrics associated with different

subsystems, or modules, we can determine whether epi-

stasis exists at the system-level, and what might be the

bias in its distribution based on how two modules interact

with each other to produce fitness. Thus, we suggest that

our approach establishes a novel link between biological

modularity, pleiotropy and epistasis.

The benefit–cost model, originally employed to

explain a small number of interactions in a single evol-

utionary experiment, has been shown here to lead to a

global bias in the distribution of epistasis, under a broad

range of beneficial versus deleterious mutation frequen-

cies. In particular, upon deviating from symmetry in the

amount of beneficial and deleterious mutations, we pre-

dict an overall pattern of negative 1. A similar pattern

was previously suggested to be informative in identifying

physically interacting partners or gene pairs belonging

to redundant, but parallel functional pathways [10].

Besides its relevance to functional genomics, a trend

towards negative 1 also plays an important role in evol-

utionary theories seeking to interpret origin and

maintenance of sex and recombination [3,4]. On the

other hand, for adaptation, negative 1 indicates that ben-

eficial alleles combine antagonistically and suggests a

diminishing returns trend in the fitness improvements as
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more beneficial alleles are acquired, consistent with

some previous experimental results and theoretical ana-

lyses [7,8,41–43]. Thus, based on simple assumptions

about the functional dependence of fitness on multiple

phenotypes and genetic perturbations, a single ‘symmetry

breaking’ mechanism could provide a potential expla-

nation for both the deceleration of adaptation upon

accumulation of beneficial mutations, and the prevalence

of synergistic interactions between deleterious mutations.

In pondering the general relevance of the above results to

biology, one cannot avoid asking whether and why a

simple benefit–cost model should truly underlie trends

of epistasis, potentially across different organisms and

biological scales. Indeed, we do not expect that a

benefit–cost model should be the common mechanism

behind all observed epistasis trends (see counter-example

in Chou et al. [44]). However, it is not inconceivable that

under some circumstances, fitness could be effectively

represented as the overall difference of two independently

measurable terms, for example, in cases where most

mutations are estimated to affect the abundance of differ-

ent proteins in the cell. While direct experimental testing

is beyond the scope of the current paper, it is worth men-

tioning that the quantitative prediction of negative

epistasis bias in our benefit–cost model does not deviate

much from the corresponding value observed for epistatic

interactions between yeast deletion mutants [10] upon

matching our model’s deleterious/beneficial allele ratio

to the 3 : 1 ratio present in the yeast data (see the elec-

tronic supplementary material, figure S8). Given that

our model is only remotely related to the yeast deletion

data, this result may be pure coincidence. However, it

exemplifies how the result we are presenting could be

tested against experimental data in the future.

Whether or not the negative bias we observe in our

model is directly relevant for the discussion on the evol-

ution of recombination remains to be seen. Experimental

data have provided conflicting results [23,29,32,45],

depending on the system used (yeast, bacteria, viruses),

the methods involved (classical versus high throughput),

the different criteria for selecting genes to be analysed

(highly deleterious only, YPD essential genes, etc.), and

the definition of epistasis employed. In addition, while

robust with respect to several parameters, the bias observed

in the benefit–cost model may still in principle change in

magnitude or sign, under different assumptions on the

underlying distribution of individual mutations (see also

electronic supplementary material, figures S2–S6). In

any case, similar to prior computational models [9], we
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believe that the framework we are proposing will be useful

in explaining, and potentially motivating experimental

measurements relevant for this question.

Beyond the benefit–cost model, we showed in

equation (3.2) that it is possible to estimate how epistasis

depends on the magnitude of individual mutations and on

the functional dependence of fitness on the two traits X

and Y. For simple functional dependencies, this equation

leads to direct insight into the type of epistasis to be

expected. For example, linear combinations of traits

lead to epistatic effects formally similar to the ones

obtained with the benefit–cost model, except that the

sign (and therefore the distribution biases) of epistasis is

heavily influenced by the signs of the coefficients of

such linear combinations. Future experiments (e.g.

measuring epistasis upon perturbations of metabolic

pathways that combine additively to produce fitness)

could directly test this prediction. Our analytical

expression is derived upon analysing the partial derivative

of fitness with respect to traits it depends on, similar to

the concept of ‘phenotype landscape’ proposed before

to address the evolution of canalization, phenotypic plas-

ticity and integration [46]. In our approach, however, we

explicitly take into account both the effects of different

mutations on distinct traits, and the functional depen-

dence of fitness on such traits. One of the most

interesting consequences of our general expression for

epistasis as a function of two quantitative traits is the

possibility to infer a general class of functional dependen-

cies that guarantee lack of epistasis in the absence of

pleiotropy. This finding echoes the viewpoint of a recent

review that pleiotropy is an important prerequisite for

epistasis [24]. Our result establishes a formal link between

epistasis and pleiotropy, and suggests a new way to think

about independence in biological networks.

Our method is simple and analytically solvable.

Future variants of our framework could address more

complex or alternative scenarios: first, given the multi-

plicity of traits that may be thought of as contributing

to fitness, one could extend the current approach to fit-

ness functions that depend upon more than two

phenotypes (as we preliminarily explored here through

computer simulations for the benefit–cost model).

Second, while we have assumed here that perturbations

correspond to genetic mutations, one could explore the

consequences of a similar model for environmental per-

turbations. Third, it may be interesting to generalize

our expression for epistasis to the case in which the

basic traits themselves do have some degree of epistasis.

In such case, one could seek an ‘epistasis propagation

law’, showing how epistasis at a low-level phenotype

affects epistasis at higher levels. Fourth, it has been

suggested that the purging of deleterious mutations

depends on the magnitude of mutational effects, in

addition to the bias in the distribution of epistasis

[23,47]. Future extension of our equation (3.2) in

regard to linkage disequilibrium could further address

this view point from another perspective to further eluci-

date this critical point about the evolution of sexual

reproduction. Fifth, as we show in electronic supplemen-

tary material, figure S7, our model can account for

instances of reciprocal sign epistasis between two alleles,

providing potential new avenues for studying the

ruggedness of evolutionary landscapes.
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Finally, while in the current work we have focused on

fitness and on its dependence on other traits, our formu-

lation is quite general, and should equally apply to the

functional dependence of any trait on any other set of

traits. Even if most genetic interaction data are obtained

relative to fitness, epistasis relative to multiple phenotypes

will probably become increasingly available [31,48],

offering opportunities to study how epistasis propa-

gates between different traits to ultimately shape the

genotype–phenotype mapping. We hope also that our

equation will help understand epistasis relative to traits

associated with genetic diseases, and provide insight on

the interplay between evolution and modular organization

of biological systems.
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