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Down syndrome (DS) is caused by constitutional trisomy of chromosome 21 and is associated with an
up to 30-fold increased risk of acute lymphoblastic leukemia (ALL)." While DS is associated with altera-
tions in epigenetic markers, including DNA methylation, and gene expression,® these mechanisms have
not been fully explored in relation to DS-ALL etiology.” Because the epigenome is sensitive to genetic
and environmental influences during fetal development and can be leveraged to characterize blood cell
proportions,® we sought to evaluate the role of the neonatal methylome in children with DS on subse-
quent ALL risk.

Our epigenome-wide association study (EWAS) included 126 DS-ALL cases and 198 DS control sub-
jects from the International Study of Down Syndrome Acute Leukemia”® in the Discovery dataset and
24 cases and 24 control subjects from the Michigan-based DS-ALL study” in the Replication group.
DNA was isolated from neonatal dried bloodspots, bisulfite-converted and assayed using lllumina EPIC
methylation arrays. Further details on study subjects, quality control and processing of methylation array
data, and statistical analyses are included in the supplemental Methods. The Institutional Review Boards
of each participating site approved the study, which was conducted according to the Declaration of
Helsinki.

Demographic and birth-related data are summarized in Table 1. Unsupervised hierarchical clustering did
not differentiate DS-ALL cases from DS control subjects but did demonstrate variation in blood cell pro-
portions, determined by reference-based deconvolution using the Identifying Optimal Libraries algo-
rithm,’® and identified a subset of DS newborns with high nucleated red blood cell proportions, as
previously shown® (supplemental Figure 1).

Deconvolution of blood cell proportions in the Discovery study revealed a significant increase in B-cell
proportions at birth in DS-ALL cases (mean, 0.0128) compared with DS control subjects (mean,
0.00826; P = 858 X 10~ %), a difference which was also observed in the Replication study (P = .03)
and meta-analysis (effect sizémeta = 0.0056; Preta = 1.69 X 10 % Prg; = .15) (supplemental Figure 2
and Table 2). Among cell types, B cells showed the greatest proportional difference between cases and
control subjects in both Discovery (+55.567% in DS-ALL) and Replication (+22.23%) studies
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This study used biospecimens from the California Biobank Program. Any uploading of
genomic data (including genome-wide DNA methylation data) and/or sharing of these
biospecimens or individual data derived from these biospecimens have been deter-
mined to violate the statutory scheme of the California Health and Safety Code Sec-
tions 124980()), 124991 (b), (g), (h), and 103850 (a) and (d), which protect the
confidential nature of biospecimens and individual data derived from biospecimens.
The individual-level data derived from these biospecimens that support the findings of
this study are available from the corresponding author upon request (adam.desmith@
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med.usc.edu) and with permission from the California Biobank Program and Michigan
Newborn Screening Program. Data for deconvoluted blood cell proportions and
available covariates in the Discovery Study subjects are included in the supplemental
Dataset.

The full-text version of this article contains a data supplement.

© 2022 by The American Society of Hematology. Licensed under Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other
rights reserved.
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Table 1. Demographic and birth characteristics of DS-ALL cases and DS control subjects

DS-ALL Discovery Study

DS-ALL Replication Study

DS-ALL DS control subjects DS-ALL
DS control subjects (n = 126), (n = 24), (n = 24),
(n = 198), n (%) n (%) P value n (%) n (%) P value
Sex
Male 91 (46.0) 84 (66.7) = 14 (58.3) 13 (54.2) =
Female 107 (54.0) 42 (33.3) .00037* 10 (41.7) 11 (45.8) 771*
Race/ethnicity
Asian 10 (5.1) 2 (1.6) - 1(4.2) 1(4.2) -
Latino 96 (48.5) 86 (68.3) - 3 (12.5) 2 (8.3) -
Non-Latino White 54 (27.3) 32 (25.4) - 15 (62.5) 20 (83.3) -
Non-Latino Black 10 (5.1) 2 (1.6) - 5 (20.8) 1(4.2) -
Other 28 (14.1) 4 (3.2) .00037* 0 0 .287*
Missing 0 0 0 0
Age at DS-ALL diagnosis (y)
Median (range) - 4.0 (0-14.6) - - <4.0, n = 13;=4.0, -
n=11t
Blood collection age (d)
Mean (SD) 2.47 (2.03) 2.03 (2.14) .068 N/A N/A -
Median (range) 1.71 (0.17-15.25) 1.46 (0-18.96) - N/A N/A -
Missing 3 (1.5) 9 (7.1) - 24 (100.0) 24 (100.0) -
Gestational age (wk)
Mean (SD) 38.10 (2.33) 38.22 (2.83) .67+ N/A N/A =
Median (range) 38.29 (26.42-44.71) 38.43 (25.57-44.43) = N/A N/A =
Preterm (<37) 41 (22.7) 29 (24.0) .78* N/A N/A =
Missing 17 (8.6) 5 (4.0) = 24 (100.0) 24 (100.0) =
Birthweight (kg)
Mean (SD) 3.00 (0.74) 3.08 (0.60) 31% N/A N/A -
Median (range) 3.02 (0.81-8.65) 3.12 (0.94-4.58) - N/A N/A -
Missing 4 (2.0) 1(0.8) - 24 (100.0) 24 (100.0) -

*P values calculated using a 2-tailed Fisher's exact test.

tAge-at-diagnosis only available in categories for DS-ALL cases in the Replication Study.

#P values were calculated using a 2-tailed t test.

(supplemental Table 1). An independent deconvolution method, Epi-
genetic Dissection of Intra-Sample-Heterogeneity (EpiDISH),"" con-
firmed the increased B-cell proportions in DS-ALL cases in both
studies (Preta = 1.67 X 10™%) (supplemental Table 2).

In analyses stratified by self-reported race and ethnicity in the Dis-
covery study, increased neonatal B-cell proportions showed a stron-
ger effect in Latinos (effect size = 0.0058; P = 6.15 X 10~ °) than
in non-Latino Whites (effect size = 0.0046; P = .098), although
this difference was not statistically significant (P, = .74) (supple-
mental Table 3).

We performed several sensitivity analyses in the Discovery study to
assess potential confounders of the increased B-cell proportions in
DS-ALL. First, in subjects with available birth-variable data, we
adjusted the regression model for gestational age, birth weight, and
bloodspot collection age, and the difference in B-cell propor-
tions between DS-ALL cases (n = 116) and DS control sub-
jects (n = 173) remained significant (effect size = 0.0059;
P=338x107%.
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Next, in Latino and non-Latino White subjects with single nucleotide
polymorphism (SNP) genotype data (117 cases, 130 control su-
bjects), we assessed whether SNPs associated with DS-ALL
risk in ARID5B (rs7089424), IKZF1 (rs11978267), CDKN2A
(rs3731249), or GATA3 (rs3824662)” may confound the associa-
tion with B-cell proportions, as these loci were previously associated
with variation in white blood cell traits."* We included the genotypes
of these 4 SNPs in the regression model one at a time and also all
together, and the significantly increased B-cell proportions in
DS-ALL cases remained, with similar effect sizes in Latinos and
non-Latino Whites (supplemental Table 4).

Finally, we removed GATA7 mutation-positive control subjects
(n = 30 of 184 tested, see supplemental Methods), and the differ-
ence in B-cell proportions remained significant (effect size =
0.0043; P = 9.02 X 1079).

In the Discovery study EWAS of DS-ALL (126 cases, 198 control
subjects), the genomic inflation factor was 1.11 after correction with
BACON, a Bayesian method to control bias and inflation in
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Table 2. Deconvoluted blood cell proportions in DS-ALL cases vs DS controls

Discovery Study

Replication Study

(126 cases, 198 control subjects)

(24 cases, 24 control subjects)

Meta-analysis

Effect Standard Effect Standard Effect Standard
Cell type estimate* error* P value* estimate* error* P value* estimatet error* Pmetat Phett Direction
CD4 T cell 0.0036 0.0055 .61 —0.0147 0.0136 .29 0.0011 0.0051 .83 .21 =dp
CD8 T cell 0.0071 0.0030 .016 0.0168 0.0102 11 0.0079 0.0028 .0055 .36 ++
B cell 0.0051 0.0015 8.58 x 10°* 0.0152 0.0069 .03 0.0056 0.0015 1.69 x 1074 .15 AFaF
NK cells 0.0028 0.0024 .24 0.0048 0.0079 .55 0.0030 0.0023 19 .81 ++
Granulocyte 0.0076 0.0178 .67 —0.0482 0.0376 .21 —0.0026 0.0161 .87 .18 =aF
Monocyte 0.0010 0.0040 .81 —0.0003 0.0107 .98 0.0008 0.0038 .83 91 -+
nRBC —0.0301 0.0228 .19 0.0163 0.0357 .65 —0.0166 0.0192 .39 .27 =

NK, natural killer; nRBC, nucleated red blood cells.
P < .05 highlighted in bold.

*P values, coefficients, and standard errors calculated using linear regression, testing each blood cell type separately as the dependent variable, with DS-ALL status as the independent
variable, and including sex, batch, and ancestry-related principal components from EPISTRUCTURE'? (n = 10 for Discovery study; n = 3 for Replication study) as covariates. P values

were not adjusted for multiple comparisons.
tMeta-analysis performed using METAL."®

EWAS."® There were 38 significant differentially methylated probes
(DMPs) after false discovery rate (FDR) correction and 10
epigenome-wide—-significant DMPs after Bonferroni correction (P <
7.95 X 108) (supplemental Figure 3; supplemental Table 5). Path-
way enrichment analysis of FDR-significant DMPs revealed signifi-
cant enrichment of 21 gene ontology pathways (supplemental Table
6). The top DS-ALL-associated CpG (cg27347265; P = 2.90 X
10" "?) was located in a putative regulatory region of the B-cell tran-
scription factor gene EBF1 (supplemental Figure 4; supplemental
Table 5). For all 10 Bonferroni-significant DMPs, the case-control
methylation B-value difference was <0.02, and none were signifi-
cant in the Replication study at P < .05, although 6 out of 10 had
consistent directions of effect.

We identified 31 significant differentially methylated regions (DMRs)
associated with DS-ALL in the Discovery study (supplemental
Table 7). Although none of the DMRs were statistically significant in
the Replication study, 4 of 31 contained significant (P < .05) differ-
entially methylated CpGs with the same direction of methylation
changes as the Discovery study (supplemental Table 7).

In summary, an increase in the neonatal proportion of B cells was
associated with DS-ALL risk, a finding that persisted after adjust-
ment for potential confounding factors and was consistent
between 2 independent case-control datasets. DS is associated
with reduced fetal B-cell production’®'” and reduced numbers
of B cells in fetal life'®'® and childhood."®?° We previously
observed lower B-cell proportions in newborns with DS than in
newborns without DS using reference-based cell-type deconvolu-
tion analysis.® Results from the current study support that, in the
context of DS, children with greater B-cell proportions at birth
have an increased risk of developing DS-ALL. A genetic predis-
position to overproducing lymphocytes was recently associated
with increased ALL risk in the non-DS population.'* Further stud-
ies are required to understand the mechanisms underlying the
association between increased B cells and ALL development in
children with and without DS, but these may involve effects on
the proliferation of preleukemic clones and generation of

4134 RESEARCH LETTER

leukemia-forming mutations, as well as potential impacts on
immune function and response to infections.'*2"

We did not find strong evidence for differences in DNA methylation
at birth that might predict subsequent DS-ALL risk, although the
Replication dataset was underpowered to reproduce significance
for the small differences found between cases and controls in the
Discovery study. The significant EBF1 DMP is intriguing given that
this gene is frequently deleted in ALL.?? Investigation of DNA meth-
ylation differences in sorted cell populations is required to determine
cell-specific epigenetic changes associated with DS-ALL risk.

A strength of our study was the use of newborn DBS, collected
before disease onset and, therefore, any case-control differences
should not be confounded by the presence of leukemia cells;
indeed, in the Discovery study, only 1 DS-ALL case was diagnosed
<1 year of age and the B-cell case-control difference was signifi-
cant both when restricted to cases with age-at-diagnosis =4 years
(n = 64; effect size = 0.0039; P = .034) or >4 years of age
(n = 62; effect size = 0.0061; Pvalue = 1.01 X 1079).

A study limitation includes the use of a blood cell proportion decon-
volution methodology developed in euploid individuals,'® although
the same approach confirmed known differences in blood cell pro-
portions associated with DS.® Nonetheless, the increased B-cell
proportion in DS-ALL cases requires confirmation using blood cell
count measures in newborns. Another limitation was that sequenc-
ing data for somatic GATA7 mutations, which cause transient
abnormal myelopoiesis,?® were only available for DS controls in the
Discovery study; however, removal of GATA1 mutation-positive con-
trol subjects had minimal effect on the B-cell association.

Future studies are needed to understand the role of blood cell trait
variation in DS-ALL etiology and examine increased neonatal B cells
as a potential risk factor for ALL in the non-DS population.
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