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Abstract

Motivation: Biomolecular data stored in public databases is increasingly specialized

to organisms, context/pathology and tissue type, potentially resulting in significant

overhead for analyses. These networks are often specializations of generic interaction

sets, presenting opportunities for reducing storage and computational cost. Therefore, it

is desirable to develop effective compression and storage techniques, along with efficient

algorithms and a flexible query interface capable of operating on compressed data struc-

tures. Current graph databases offer varying levels of support for network integration.

However, these solutions do not provide efficient methods for the storage and querying

of versioned networks. Results: We present VerTIoN, a framework consisting of novel

data structures and associated query mechanisms for integrated querying of versioned

context-specific biological networks. As a use case for our framework, we study network

proximity queries in which the user can select and compose a combination of tissue-

specific and generic networks. Using our compressed version tree data structure, in con-

junction with state-of-the-art numerical techniques, we demonstrate real-time querying

of large network databases. Conclusion: Our results show that it is possible to support

flexible queries defined on heterogeneous networks composed at query time while dras-

tically reducing response time for multiple simultaneous queries. The flexibility offered

by VerTIoN in composing integrated network versions opens significant new avenues for

the utilization of ever increasing volume of context-specific network data in a broad range

of biomedical applications. Availability and Implementation: VerTIoN is implemented

as a C++ library and is available at http://compbio.case.edu/omics/software/vertion and

https://github.com/tjcowman/vertion Contact: tyler.cowman@case.edu

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://compbio.case.edu/omics/software/vertion
https://github.com/tjcowman/vertion
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Introduction

Networks are commonly used abstractions in computa-
tional and systems biology [1]. Biological networks include:
(i) experimentally identified physical and functional inter-
actions such as protein–protein interactions (PPIs) [31, 34],
protein–DNA interactions, synthetic lethality and kinase-
substrate associations; (ii) statistically and computationally
inferred associations, such as expression quantitative trait
loci (eQTL), co-expression networks, regulatory networks
and gene-disease associations [3]; (iii) evolutionary rela-
tionships based on protein co-evolution, sequence homol-
ogy, protein and domain families; and (iv) ontologies and
functional associations that represent curated knowledge of
metabolic and signaling pathways [35], Gene Ontology and
phenotype ontologies.

Biological network databases. Due to the wide variety of
available biological network data, many specialized public
databases have been developed to organize and serve data to
researchers. Available query interfaces range from retrieval
of neighbors of a given vertex (e.g. interacting partners
of a given protein) to identification of sub-networks that
are enriched in a given set of molecules, or identifying the
interactions that are involved in a specific pathway. These
queries are often supplemented by a front-end that supports
visual exploration of these networks.

Integration of biological networks. For more sophisti-
cated queries that involve integration of multiple networks,
researchers typically download network data in bulk, often
in the form of plain-text edge-lists and process the networks
in-house to identify patterns and make computational infer-
ences. This process requires computational expertise and
presents several hurdles to the user. For example, the names
or identifiers of semantically identical vertices may not be
consistent across databases and likely need to be mapped
before proceeding. In addition, the integrated network may
prohibitively large and contain data that is not relevant
to the research question. Thus the input edge-lists are
usually filtered based on what the researcher is interested
in, e.g. specific tissue, evidence type, a subset of vertices,
etc. Once the integrated network(s) are ready for analy-
sis, they are either processed using dedicated algorithms
developed by the researcher(s) or loaded into network
analysis and visualization software such as Cytoscape [36],
a network database like Neo4j [17], or used with the-
general purpose network libraries such as SNAP [24] or
igraph [8].

Many studies implementing such pipelines have repeat-
edly demonstrated the value of network integration in
extracting knowledge from diverse biological data sets. For
example, in the context of prioritizing candidate disease
genes, known gene-disease associations are integrated with

networks of functional and physical association among pro-
teins and clinically informed disease ontologies, enabling
a transfer of knowledge between different domains [10,
38]. In the context of cancer, molecular data ranging from
mutations and methylation to gene expression and post-
translational modifications are integrated with network
data to identify driver genes and altered pathways, char-
acterize subtypes [42] and predict drug response [37].

To enable organization and mapping of data from multi-
ple databases, several platforms have been developed. These
platforms include UniProt [5], which is protein-centric,
and NDeX [33], which focuses specifically on network
integration. While these projects enable organization and
exploration of networks, they do not provide services for
running complex queries on integrated networks.

Context-specific networks. Although biomolecular inter-
actions occur in specific biological contexts (e.g. in a specific
tissue, under a given set of conditions or as a function of
temporal changes), interactions reported in most network
databases are generic [13]. To address this limitation of
interaction data, many computational methods have been
developed to infer tissue-specific networks based on expres-
sion of genes across different tissues [30, 40]. Networks
that represent statistical associations, such as eQTL are also
tissue-specific since the variant may only affect gene expres-
sion in a subset of tissues [26]. Similarly, co-expression
networks and regulatory networks are context-specific, rep-
resenting different processes, perturbations or diseases [12].
It has been shown that incorporation of context-specificity
enhances the performance of network algorithms in various
tasks, including disease gene prioritization [27] and identi-
fication of disease-specific regulatory modules [28]. Thus
it is essential to take context-specificity into account while
integrating biological network data.

Integration and querying of versioned networks.
Context-specific networks can be abstracted as versions
of a generic network, in that these networks are distinct,
but related with moderate to large overlaps in their topol-
ogy (e.g. tissue-specific PPI networks or disease-specific
pathways). We call these ‘base versions’. Combinations
of these base versions, which we refer to as ‘composite
versions’ (e.g. a network that represents a subset of related
tissues or a group of clinically similar diseases) enables
flexible representation of the relationship between different
contexts. Integration of base and/or composite versions of
different types of networks (e.g. eQTLs and PPI networks
representing a set of tissues) gives rise to ‘versioned
heterogeneous networks’. In the current state-of-the-art,
when a researcher wishes to use a versioned heterogeneous
network, for example, to utilize a different set of tissues and
data types or query across versions, the integration process
needs to be repeated and a new network data-structure
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must be created for every version. This is a rather inefficient
procedure, both in terms of memory use and compute time,
when querying across many integrated network versions.

Contributions of this study. Here we develop a frame-
work to enable efficient integrated querying of versioned
biological networks. When storing and indexing versioned
networks, a desirable property is efficient access to arbitrary
versions and a seamless interface for obtaining composite
versions (e.g a network representing a set of related tissues).
A straightforward method for providing such functional-
ity is to generate and store all relevant combinations of
versions. However, the number of possible composites is
exponential in the number of explicitly stored versions.
Thus pre-computing and storing the desired combinations
may not be feasible in most cases.

Motivated by these considerations, we develop Ver-
TIoN, a version-tree-based data structure that enables
efficient storage, composition and querying of ver-
sioned biological networks. Leveraging significant overlap
between different versions of biological networks (e.g.
a giant component of the generic human PPI network
that represents processes that are common to all human
tissues), VerTIoN enables compressed storage, efficient
composition and querying of integrated networks. To
demonstrate the utility of VerTIoN, we specifically focus
on network proximity queries in tissue-specific protein
interaction and eQTL networks, since the utility of these
algorithms in tissue-specific networks has been well
established [27].

To enable flexible processing of proximity queries on
versioned networks, VerTIoN offers the following func-
tionalities:

• A novel data structure for efficient storage, composi-
tion and access of multiple networks with the capabil-
ity of use in a multi-user context.

• Composition of networks that represent specified com-
binations of different versions (networks that repre-
sent multiple tissues) and different types of networks
(tissue-specific PPI networks, tissue-specific eQTL net-
works and generic gene–disease associations).

• Capability to process concurrent network proximity
queries on these integrated networks in real-time.

We benchmark VerTIoN on tissue-specific collections
of networks representing different data types obtained
from disparate databases. We also compare VerTIoN’s
performance to that of Neo4j, the most commonly utilized
graph database solution for storing and querying very
large graphs. Our results show that VerTIoN outperforms
alternate options in terms of version extraction and
composition and consistently processes proximity queries
on different combinations of networks in real time.

Methods

In this section, we first present the sample application of
integrating context-specific biological networks. We then
describe random walk-based network proximity as an
example query on these networks and identify the opera-
tions that are required to efficiently compute it for composi-
tions of network versions. Finally, we describe the proposed
data structure for efficiently performing these operations.

Integration of versioned biological networks

The framework we propose for integrated querying of
tissue-specific networks is shown in Figure 1. Consider a
network consisting of disease vertices and edges represent-
ing an ontology of clinically defined relationships (i.e. a dis-
ease network) and a separate network consisting of proteins
and their interactions (i.e. a generic PPI network). As seen
in the figure, these two networks can be integrated using a
bipartite network of established gene–disease associations
[15, 32]. Integration of each tissue-specific PPI network
with the generic disease networks results in a different
version of the integrated network. Tissue-specific networks
are further augmented by adding edges between protein
vertices and genomic loci by utilizing eQTL interactions,
which are inherently tissue specific.

The objective of the proposed framework is to enable
an end-user to construct integrated networks that corre-
spond to any plausible combination (as we define below)
of these networks and run complex queries on the resulting
integrated network. Formally, the framework illustrated in
Figure 1 utilizes the following networks as inputs:

• A ‘generic’ disease ontology network GD(VD, ED),
where VD is a set of diseases and ED is a set of edges
describing the clinical classification of these diseases.

• Tissue-specific PPI networks G(i)
P = (V(i)

P , E(i)
P ) for 1 ≤

i ≤ k, where V(i)
P is a set of proteins that are expressed

in tissue i, and E(i)
P is the set of interactions between

these proteins that occur in tissue i. We refer to each of
these networks as ‘base versions’.

• A ‘generic’ bipartite gene–disease association network
GA(VA, EA), where VA = VP ∪ VD, VP = ∪k

i=1VP
(i),

VD is the set of diseases, and EA is the set of edges
denoting association between a gene in VP and a
disease in VD.

• Tissue-specific bipartite eQTL networks G(i)
L (V(i)

L , E(i)
L )

for 1 ≤ i ≤ k, where V(i)
L = (V(i)

S ∪V(i)
P ), VS is the set of

genomic loci, VP is the set of genes, and E(i)
L is the set

of edges denoting a statistically significant association
between the genotype of a genomic locus in VS and the
expression of a gene in VP in tissue i.

We integrate these input networks using a ‘version tree’
as shown in Figure 1b. The version tree first integrates
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Fig. 1. Versioned heterogeneous network. (a) An example of a versioned network that is used to model the relationship between genomic loci,

proteins and diseases. The vertices consist of genomic loci, proteins and disease phenotypes, edges represent tissue-specific eQTL interactions,

tissue-specific PPIs, gene–disease associations and relationships between diseases in the context of a disease ontology. Different versions represent

interactions that occur within specific tissues. The interactions that occur in different versions are shown using different colors, where black edges

represent generic interactions/associations. A proximity query on this network can be formulated using any subset of loci, proteins, diseases or any

combination of these. As an example, vertex Q visualizes a sample query that aims to retrieve the diseases most closely associated with one or more

genomic loci or a genomic region. (b) The version tree used to represent the integrated heterogeneous network in (a). The root node represents

the generic disease ontology network. Version GA contains the generic gene–disease association network. GP represents the generic PPI network,

consisting of the edges that are shared by the tissue-specific PPIs. The next level of the tree splits off into the different tissue-specific PPI networks,

as shown using different colors. At the final level, the corresponding tissue-specific eQTL networks are added.

generic networks and subsequently adds different types
of networks and tissue-specific versions. The generic PPI
network (GP) in this version tree is obtained by taking
the intersection of interactions in all tissue-specific PPI
networks, i.e. GP = (VP, EP), where EP = ∩k

i=1EP
(i). The

nodes that correspond to tissue-specific versions contain the
tissue-specific edges that are not contained in the generic PPI
network, i.e. Ḡ(i)

P = (V(i)
P , Ē(i)

P ), where Ē(i)
P = E(i)

P \ EP for
1 ≤ i ≤ k. In Figure 1a, generic edges (ED, EA) are shown in
black, tissue-specific edges (E(i)

P , E(i)
L ) are shown in different

colors, and PPIs that are common to all tissues (EP) are
shown in black. It is possible that a PPI that is not common
to all tissue-specific networks may occur in more than one
tissue. Such edges are contained in multiple branches of the
version tree.

Observe that, in the version tree, there is an edge between
any pair of networks that can be integrated through a
shared (sub)set of vertices. Using this property, VerTIoN
performs network integration using a combination of the
following two integration schemes:

• ‘Vertical integration’ is performed by integrating ver-
sions alongside a path in the version tree. Vertical
integration is always performed by taking a union of
the vertices and edges of the networks that are being
integrated. This results in permanently stored network
versions.

• ‘Horizontal integration’ is performed by integrating
two or more sibling networks in the version tree.
Horizontal integration can be performed by taking
either the union, intersection or some other function

of the edges in the corresponding versions (as specified
by the user). Horizontal integration can be (and usually
is) performed in conjunction with vertical integration.
For example, to integrate PPI and eQTL networks rep-
resenting a set of tissues, VerTIoN first implicitly verti-
cally integrates PPI and eQTL networks for each tissue,
then horizontally integrates the resulting PPI+eQTL
networks across tissues. Note that vertical integration
is generally a query time procedure that generates
temporary versions. However, the result of a vertical
integration can be saved back to the version tree as a
child of any appropriate node for permanent storage.

It is important to note that this version tree structure
integrates networks of different types additively, thus rep-
resenting versions as a sequence of edge additions along a
path in the tree. Networks that represent different contexts
with the same semantics, on the other hand, are repre-
sented by different branches of the tree. This representation
enables efficient construction of integrated networks at
query time by computing intersections or unions of edge
lists. As we discuss below, the data structure implemented
in VerTIoN exploits this additive property during vertical
integration and is optimized for edge additions. For this
reason, although VerTIoN supports vertically integrated
deletions as well, it performs additions more efficiently.

Querying integrated heterogeneous networks

We consider a flexible query framework for network prox-
imity queries on integrated tissue-specific networks. A user
can formulate their query as follows:
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• Network type: select the types of networks to be
included in the computation from the set {GD, GP, GA,
GL}, such that the selected networks induce a path in
the version tree.

• Set of tissues: select a subset T of tissues to be included
in the computation.

• Query type: select whether the integrated network
should contain an interaction if it is present in all
tissues in T (intersection query) or in at least one tissue
in T (union query).

• Seed vertices: select a set of query vertices Q ⊂ (VD ∪
VP∪VS). The query can be a disease vertex, an internal
vertex in the disease ontology that spans multiple
diseases, a set of proteins/genes, a set of genomic
loci or a genomic region spanning multiple loci or a
combination of these.

A query formulated with these selections defines an inte-
grated network GC(VC, EC), which is composed during
query time and used to process the query on-the-fly. Here,
VC is a union of the vertex sets of the network types
specified by the user. EC, on the other hand is obtained
by a series of union and intersection operations. Namely,
a union of edges is computed for (i) vertical integration and
(ii) horizontal integration when the query type is union. An
intersection of edges is computed for horizonal integration
when the query type is intersection. Once GC is constructed,
network proximity computation is performed to rank the
vertices in the integrated network in terms of their prox-
imity to the seed vertex(s) in the integrated network (as we
describe in Section 2.5).

Observe that the number of possible networks that
can be composed by a user-defined query is exponential
in k, thus it may not feasible to compose each of these
networks offline and store them. VerTIoN enables online
composition of these integrated networks using the version
tree described in the previous section and the associated
data structure we describe in the next section.

Data structure for storing versioned network

topology

In VerTIoN, we develop a novel data structure to store
and retrieve the topology of versioned networks. At this
level, the data structure is agnostic to any vertex seman-
tics and only refers to vertices using indexes. The pro-
posed data structure is an extension of the compressed
sparse row (CSR) data structure, which enables the storage
and retrieval of distinct networks [9]. To this end, an
instance of the proposed data structure that does not con-
tain multiple versions is nearly identical to a standard CSR
matrix.

Standard CSR format. Let M denote the adjacency matrix for
undirected network G(V, E). The compressed sparse row
matrix format consists of three arrays: (i) 2|E|-dimensional
array A contains the non-zero elements of M in row major
order. (ii) 2|E|-dimensional array JA contains the indices of
the corresponding columns in M. (iii) (V+1)-dimensional
array IA stores the starting index for each row of M in the
previous two arrays. In other words, if we use adji to denote
the adjacency list of vertex i in G, then

adji = JA[IA[i] ... IA[i + 1] − 1]. (1)

In other words, the array IA stores the starting index in the
array JA of the list of neighbors for each vertex i.

An example network with its adjacency matrix and
corresponding CSR representation are shown in Figure 2a
and b.

Tracking versions. As shown in Figure 1b, VerTIoN repre-
sents different versions of a network as a tree. In this
tree, the path from the root to each node represents a
different version of the network. Therefore, the version that
corresponds to a child vertex in the tree can be obtained
by adding edges to the version represented by its parent
node. In VerTIoN, the networks along each path in the
version tree are represented using a single set of A, JA and
IA arrays. For A and JA, the edges in ancestral versions
(i.e. those closer to the root) are reused and only additional
edges are appended for the descendant versions. In contrast,
the IA arrays are replicated for each version such that
different versions correspond to non-overlapping segments
on IA. This is illustrated in Figure 2c, which shows the A,
JA and IA arrays for the two versions of the network shown
Figure 2a. For ease of visualization, the segments of arrays
that correspond to different versions are separated by a
colon.

VerTIoN tracks versions on a path in the version tree
using an �-dimensional array D, where � denotes the num-
ber of nodes in the path from the root to a leaf of the version
tree. For 0 ≤ d ≤ �, the IA array of the dth version on a
path in the version tree is represented as:

IA(d) = IA[D[d] ... D[d + 1] − 1] (2)

where d = 0 for the root version. The D array for storing
the two versions of the network in Figure 2a is also shown
in Figure 2c.

Observe that the length of the A and JA is proportional
to the number of edges in a network, while the length of IA
is proportional to the number of vertices. For this reason,
replicating IA to effectively compress A and JA reduces
storage and makes effective use of cache locality. We further



Page 6 of 14 Cowman et al.

Fig. 2. Versioned compressed sparse row (CSR) format. (a) A sample two version network in which the first version consists of the black edges and

the second version includes an additional edge shown in red. (b) The adjacency matrix and three arrays used to represent the first version of the

network. (c) The adjacency matrix and arrays used to store both versions of the network in the proposed data structure and the memory layout for

the elements of the augmented IA array. For the adjacency matrix, the colons denote where the second version’s data has been appended. For the

memory layout, each IA element is comprised of four segments (e0..3). Note that the type flags (e4) are stored in the least significant bits of e3. The

subscripts o and s refer to a starting index and length respectively in the A and JA arrays. The last bits of e3 are used to store a set of flags denoting

the row status: normal, split or compressed. These are used to describe how the rest of the entries in IA should be interpreted. The meaning of each

(e0..3) value is color coded based on the flag. Note that only one interpretation is active for each entry of IA at a time.

compress IA using a similar idea, which we discuss later in
Section 2.3.5.

To facilitate effective compression of the A and JA arrays
and efficient retrieval of different versions, we ‘augment’ the
IA array with additional features that provide pointers to
edge lists of vertices in the parent and child versions.

Augmented IA array. The memory layout for an augmented IA
element is shown in Figure 2c. As seen in the figure, each ele-
ment of the augmented IA array is a 4-tuple {e0, e1, e2, e3}.
For a vertex i, the least significant two bits of IAi[e3]
specifies the ‘type’ of IAi. The possible values for the type of
a row are ‘normal row’ (N), ‘split row’ (S) and ‘compressed
row set’ (C).

Normal row (N). A normal row corresponds to a vertex
with no new edges in the child version. For a normal row,
IAi[e0] represents the starting index of JA the adjacency
list of the ith vertex, while IAi[e1] represents the number
of edges incident to vertex i. The e2 and e3 elements
are unused. Thus the adjacency list for normal row i is
retrieved as:

adji = JA[IAi[e0] ... IAi[e0] + IAi[e1]] (3)

Split row (S). A split row IAi defines two contiguous
segments of JA that contain the adjacency lists of vertex i.
Split rows are used to enable reuse of the edges that already
exist in the ancestral versions. IAi[e0] and IA[e1] represent

the starting index and length of the first segment, while
IAi[e2] and IAi[e3] represent a second segment of values in
JA. Thus the adjacency list for split row i is retrieved as:

Segment1 = JA[IAi[e0] ... IAi[e0] + IAi[e1]]
Segment2 = JA[IAi[e2] ... IAi[e2] + IAi[e3]]
adji = Merge(Segment1, Segment2).

(4)

Compressed row set (C). In addition to IA elements
that represent vertices in the network, additional entries
in IA are used to compress the IA array. When an entry
in IA is marked as a ‘compressed row set’, it represents a
contiguous segment of previously encountered elements in
the augmented IA array. We explain how IA is compressed
and reconstructed for compressed row sets in Section 2.3.5.

Adding A child version. When a new network is added to a
parent version, the parent version’s IA section is copied
and appended to the IA array. Next, the vertices that have
at least one edge added in the new version are updated,
appending their values to the JA and A arrays and updating
the corresponding entry in the IA array of the new version.
We call these vertices updated vertices. For each updated
vertex, the update procedure performs one of the following
operations: (i) split a normal row, (ii) split a split row or (iii)
join a split row.

Splitting a normal row. This is the case when a vertex
that is represented by a normal row in the parent version
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Fig. 3. Joining/maintaining a split row. The structure of the JA array and associated augmented IA element, before (upper panel) and after (lower

panel) the addition of an edge to the adjacency list of a vertex. In each JA array, the green (orange) segment shows the part of the adjacency list

that is pointed by the e0 and e1 (e2 and e3) fields of the respective entry in the IA array. In the example on the left, the split row is maintained since

(e1 + 1) < e3), whereas on the right, the split row is joined since (e1 + 1) > e3).

gains edges in the child version. Therefore, in the parent
version, the e0 and e1 fields of respective IA entry point to
the adjacency list of the vertex on JA. The e2 and e3 fields
are unused. Thus after appending the new edges to JA and
A, the new range bounds are stored in the fields that are not
used by the parent. Consequently, in the child version, the
vertex is represented by split row.

Splitting a split row. To ensure constant-time access to
the adjacency list of a given row regardless of the number
of stored versions, VerTIoN maintains that a split row
can define at most two separate contiguous ranges. Thus,
once a row is split, it cannot be split again. Instead, we
merge the second segment of the adjacency list of the vertex
(JA[IA[e2], IA[e2]+ IA[e3])) in the parent network with the
edges that are added to the child version and append these
edges together to the JA array. We set the e2 and e3 fields
in the IA array accordingly. Note that this results in the
duplication of edge data for a vertex that gains edges in
more than two versions. To reduce the overhead caused by
these duplications, we define a third procedure that joins a
split row.

Joining a split row. As discussed above, splitting a split
row causes creation of multiple copies of adjacency lists. As
a worst case example, consider a chain of � versions with
repeated addition of r/� edges to an initially disconnected
vertex. If we repeatedly split rows for this vertex while
adding each version, we would use �(r�) space to store the
edges of a vertex that has r edges in the leaf version. This is
asymptotically equivalent to storing each version separately.
To alleviate this issue, when new edges are being added to
a vertex with a split row, we consider joining its split rows
before adding the new edges.

For a vertex, let the number of edges being added to a
new version be t. We first compare the length of the first
segment (e1) to the length of the prospective new segment
(e3 + t). If e3+ ≥ e1, we merge the edges of the vertex in
the parent version with its new edges in the child version
and append the entire adjacency list as a single segment to

the A and JA arrays. We then update the e0 and e1 fields
of the respective entry in IA, creating a normal row. When
applied to the above worst case scenario, this results in lg �

copies of r elements and lg � copies of
∑lg �

j=0
j(j−1)

2 elements
resulting in O(r lg �) space for storing all versions of the
adjacency list of such a vertex. Sample cases for maintaining
a split row and joining a split row following edge addition
are illustrated in Figure 3.

Compressing the IA array. Recall that, regardless of the extent
of the number of edges added, a new IA array is created
for each child version. Thus, for a branch of the version
tree that contains � versions, the size of the augmented
IA array is �(�V), where V denotes the set (number) of
vertices in the leaf version. If the number of vertices that
gain edges in a child version is � such that � � V, storing
an additional copy of IA introduces substantial overhead.
Motivated by this observation, we use ‘compressed row
sets’, which enable an additional level of compression on
the IA array. This process is illustrated in Figure 4.

While creating a child version, instead of copying the IA
array of the parent in its entirety, we use entries in IA to
point to contiguous segments on the IA array of an ancestor
(as directed by the parent). To distinguish compressed row
sets from other types of entries (normal row and split row,
both of which point to the adjacency lists of a vertex in the
JA array) in the IA array, we use the least significant two
bits of the e3 field. With this representation, the IA array
of a version needs to to be decompressed before the version
can be accessed. Letting IA(d) denote the decompressed IA
array for the dth version on a path from the root of version
tree, the compressed IA array is decompressed as:

IA(d) = Concatenate
D[d]≤i<D[d+1]

{IA[IA[i].e0 ... IA[i].e0 + IA[i].e1]}.
(5)

Here, the least significant two bits of IA[i].e3 are set to
C for D[d] ≤ i < D[d + 1]. Observe that, given the
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Fig. 4. Compression of augmented IA arrays. The values of IA corresponding to the second network version for the example in Figure 2. (a) The

range of unchanged IA elements is removed from the array and replaced with a C flag set element representing their range in the previous version.

Thus the length of the augmented IA array is decreased. However, the compression performance using the first version as a keyframe is determined

to be too low. Thus the uncompressed IA segment is instead appended, and the key-frame for the new version is set to itself rather than its parent.

Note that the initial network version is its own key-frame. (b) Motivating example for key-framing IA array segments. The initial version, d0 is not

compressed as it does not have a reference version. Versions d1 and d2 retain ranges contained within the initial segment. However, by version d3

the new IA segment is unable to be compressed when basing on the initial version.

(compressed) IA array of the parent, the compressed IA
array for a child version can be computed in O(V) time
without explicitly constructing the decompressed IA array.
The decompression of the IA array is also performed in
O(V) time, which is asymptotically equivalent to the time
required to make a copy of the decompressed IA array.

The compression procedure maintains that (i) all com-
pressed indexes that are common among multiple versions
refer to the version that is closest to the root of the version
tree and (ii) a version segment that is referenced by another
version cannot contain any compressed elements. This
ensures that decompressing an IA index does not require
traversing across multiple versions. The root version’s
augmented IA segment trivially fulfills this requirement.

Key-framing the IA array Consider a chain of network versions
in which most of the indexes in last version’s IA segment
have changed at least once. Based on the previously asserted
constraints, IA compression is based on the initial version.
However, as most indexes have changed, there are few
repeated ranges between the two versions. Thus compres-
sion of the last IA array segment is not feasible. We use IA
key-framing to address this issue. The key-framing proce-
dure is illustrated with an example in Figure 4b. We define
key-frame versions as those that satisfy the constraint that
no compressed elements exist within their IA array segment.
Thus the initial network version also represents an IA key-
frame. We introduce the array K to store each network
version’s key-frame version. After appending a new version,
the compression ratio that is obtained by the new IA
segment when compressing based on its parent’s key-frame
version is checked. If the ratio between the compressed and
uncompressed IA segment is lower than a threshold h, then
the procedure works as previously described and the new
version’s key-frame version is set to its parent’s. However,

if the ratio is greater than h, then the uncompressed IA
segment is appended and the new version’s key-frame is set
to itself. Note that a network version’s parent does not need
to be the same as its IA key-frame and often is not.

Version extraction and composition

Data locality is important for many algorithms on graphs,
including network proximity queries that require repeated
matrix-array multiplications. In the general, for a set of ver-
sioned networks, locality is optimal when they are all stored
separately. However, since a set of versions has an expo-
nential number of possible compositions, it is not feasible
to pre-compute and store all of them. Therefore, VerTIoN
is designed to enable efficient optional extraction (vertical
integration) and composition (horizontal integration) of
any combination of versioned networks at query time.

Vertical integration. Here, the integrated network that
is queried corresponds to a single node in the version tree.
These versions are permanently stored within the tree struc-
ture and the following extraction procedure is not required
to query them. However, depending on the network size
and the query performed it may, though not necessarily, be
more efficient to do so in order to improve data locality. For
example, obtaining a vertex’s neighbors would not benefit
from extraction. Version extraction is performed by iterat-
ing over the edge and vertex data relevant to the queried
version and generating a network in the form of a standard
CSR representation. Thus any network algorithm designed
for use with a CSR network is compatible with VerTIoN.
Note that this procedure also removes parts of the network
that are not reachable from the query vertices. The time
required to extract a version via vertical integration is linear
in the number of edges in the extracted network.

Horizontal integration. Since the networks that are on
separate branches of the version tree represent the same
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Fig. 5. Composing versions. The uncompressed IA array segments

for the versions composed are compared. Colored indexes represent

elements that are changed from their parent version. The vertex indexes

are partitioned into two sets based on whether they are identical across

all composed versions Sp or not Sn. When collecting the edge weights

from each version, the indexes in Sp only need to be accessed from

one version while those in set Sn must be accessed for each version,

thus reducing the number of memory accesses to extract and compose

network versions.

semantics, two or more of these networks can be integrated
horizontally to compose versions that represent multiple
contexts. In the example we study here, horizontal integra-
tion can be performed as the union or intersection of dif-
ferent tissue-specific PPI and eQTL networks. For example,
the user can query a network composed of interactions that
occur in the liver ‘and’ pancreas or a network composed of
interactions that occur in the liver ‘or’ pancreas. While per-
forming horizontal integration, VerTIoN takes advantage
of the high degree of overlap between the networks on dif-
ferent branches of the version tree. In order to horizontally
integrate networks on b branches of the version tree (i.e.
compose a network that represents b tissues), VerTIoN first
makes a pass over the IA array to partition the set of vertices
into two disjoint sets, Sp and Sn. The set Sp contains the set
of vertices whose IA arrays are identical over the b branches
and Sn = V \ Sp. Thus, when there is a large degree of
overlap in the tissue-specific networks, we have |Sp| � |Sn|.
For all vertices in Sp, the edges in the composed version are
gathered by a single pass over the JA and A arrays. For the
vertices in Sn, the intersection and/or union of edges across
versions can be computed by making b passes over the JA
and A arrays. Thus horizontal integration of b branches
requires O(bE) time.

Proximity and diffusion queries on integrated

networks

A useful set of tools that has been central to many network
analysis algorithms takes the form of network diffusion
algorithms and proximity queries [7]. They commonly uti-
lized to diffuse molecular data across a network to obtain
a smooth representation of molecular activity profiles [16,

37]. Similarly, network proximity queries are frequently
used to rank/prioritize a set of ‘candidate’ biological entities
(e.g. genes in a certain genomic region) in terms of their
functional association with a given ‘query’ (or ‘seed’) entity
(or a set of query entities, e.g. a disease of interest or a set of
proteins that are differentially phosphorylated in a certain
condition) [11, 20, 38].

Owing to the common use of proximity and diffusion
algorithms, there have been efforts in improving the effi-
ciency of their computation. These efforts are motivated by
multiple factors: (i) repeated computation is often needed
to assess statistical significance [29] and (ii) querying of
networks in an online multi-user context as opposed to
bulk data downloads followed by in-house computational
analyses. However, these improvements have not yet trans-
lated into efficient querying of versioned networks. For
a network proximity query service, utilizing a versioned
query structure over a full database solution can drasti-
cally reduce the amount of space required to store tissue-
specific network versions and vastly increase the query
throughput and reduce resource utilization. Motivated by
these considerations, we assess the performance of Ver-
TIoN in the context of processing proximity queries on
integrated tissue-specific networks. The framework we con-
sider here enables a highly flexible query interface by effi-
ciently tackling two key challenges: (i) the user can choose
any composition of network versions (e.g. any subset of
tissues) and (ii) the queries are processed in a multi-user
context.

A proximity query for set of vertices Q on a given
network GC(VC, EC) seeks the computation of a array xQ

where xQ(v) quantifies the proximity of vertex v ∈ VC

to Q in GC. Network proximity can be quantified using
a variety of methods, including random walk with restarts
[18, 41] and network propagation [39], among others. A
majority of these network proximity measures require the
solution to a linear system that involves iterative matrix-
array multiplications. As a representative for this type of
computation, we here focus on random walk with restarts
(RWR)-based proximity queries. It should be noted that
the proposed framework either directly applies or can be
extended to other types of network proximity measures
as well.

RWR-based proximity to a given set of query verticess
Q on network GC is defined as

xQ = (1 − α)WCxQ + αrQ, (6)

where WC is the stochastic matrix derived from the adja-
cency matrix of GC by normalizing all columns by their
column sum, rQ is a |VC| × 1 array withe rQ(v) = 1 if
v ∈ Q and 0 otherwise, and α is the damping factor (or
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restart probability) that is used to tune the locality of the
proximity measure (a larger α corresponding to a more
localized search).

Standard computation of xQ involves power iterations,
where x(0)

Q is set to rQ and x(t+1)

Q is computed using x(t)
Q on

the right-hand side of Equation 6, until ||x(t+1)

Q − x(t)
Q || <

ε, where ε is a pre-defined stopping criterion to indicate
convergence. The rate of convergence of this computation
is determined by α, i.e. it can be shown that ||x(t)

Q − x(∗)

Q || <

(1 − α)t||x(0)

Q − x(∗)

Q ||, where x(∗)

Q denotes the desired solu-
tion. The number of iterations for this standard iterative
computation can be quite large for very large networks,
prohibiting real-time processing of proximity queries on
networks that are of practical interest.

As we have shown recently [6], the computation of
RWR-based proximity can be drastically accelerated using
Chebyshev polynomials, where the iterates in the computa-
tion are revised as:

y(t+1)

Q = 2ζ

(1 − α)ζt+1

(
Wy(t)

Q + αrQ

)
− ζt − 1

ζt + 1
y(t−1)

Q , (7)

where y(0)

Q = 0, y(1)

Q = rQ and ζt denotes a series derived
from Chebysev polynomials. It can be shown that this
iterate converges to x(∗)

Q faster than the standard power

iteration, i.e. ||y(t)
Q − x(∗)

Q || < 2μt||y(0)

Q − x(∗)

Q ||, where

μ = 2(1 − α)

2 +
√

2α − α2
< 1 − α. (8)

Thus the iterate y converges much faster than the iterate
x since an exponential function of μ decays at an expo-
nentially faster rate than an exponential function of 1 − α.
We utilize these optimizations in our implementation of
VerTIoN.

Results

In this section, we first present our experimental set-up by
describing the data sets we use, how tissue-specific networks
are represented as different versions and the metrics used
to evaluate algorithm performance. We then present our
results on the storage requirements for different approaches
to handling the outlined versioned networks. Finally, we
compare the runtime of network proximity queries for
VerTIoN and Neo4j and comprehensively characterize the
effect of different types of queries and compositions of
versions on query processing time.

Experimental setup

Data sources. The inter-phenotype connections and vertices,
obtained from the Human Phenotype Ontology, are

rooted at a single vertex with deeper vertices representing
more specific disease phenotypes [21] (releases/2018-
07-25). We connect these phenotype vertices to the
protein vertices using associations obtained from Dis-
GeNET [32] (curated_gene_disease_associations 2018-
07-20), using Unified Medical Language entries [4] to
match appropriate phenotype names between the two
databases. The tissue-specific protein interaction sub-
networks are obtained from the Integrated Interactions
Database [22] (iid.human 2018-05) after filtering out the
predicted interactions. Tissue-specific eQTL interactions
are obtained from the Genotype-Tissue Expression Project
[26] (GTEx_Analysis_v7_eQTL). For each eQTL, a vertex
is added to the network representing its locus and an edge
is added between that vertex and the protein vertex for the
gene it acts on.

Network versions. We construct the network version tree
shown in Figure 1, consisting of 41 different biological
networks, using vertical integration. The initial version
consists of only the disease ontology connections (GD).
We create the second version by adding the associations
between disease vertices and proteins (GA). The next 20
versions are constructed by adding 19 tissue-specific PPI
networks and the generic PPI (GP). The last 19 versions
add the tissue-specific eQTL associations (GL) to their
respective protein versions. The number of vertices and
edges in each version is shown in Table 1.

Performance metrics. We assess VerTIoN’s performance sys-
tematically from three different perspectives: comparison
of storage effectiveness against state-of-the-art network
database Neo4j, comparison of query processing time
against Neo4j and processing time on composed tissue-
specific networks (i.e. for queries that involve selection
of multiple versions by the user). Since both VerTIoN
and Neo4j are intended for multi-user applications, we
compare the query processing time of VerTIoN against
Neo4j in the context of a server application hosting multiple
tissue-specific PPI networks serving parallel requests for
RWR queries from different clients. In these experiments,
each query is based on a randomly chosen version and a
randomly chosen query vertex. To assess the performance
of VerTIoN in a multi-user context, we implement a simple
TCP socket server hosting the versioned PPI network,
accepting RWR queries in which the user can select a
version and vertex. To reduce noise from network effects,
we run the server and client applications on the same
machine for both Neo4j and VerTIoN. Using this set-
up, we assess the query processing time of VerTIoN and
Neo4j as a function of the number of parallel queries that



Version Control of Context-Specific Networks Page 11 of 14

Table 1. Scale of the networks. For the tissue-specific PPI and

tissue-specific PPI + eQTL versions, the number of vertices

and edges are shown. The number of edges for the union of

the tissue-specific networks is also shown to highlight the

extent of the overlap between the tissue-specific networks

Tissue PPI: G(1...19)
P PPI + eQTL: G(1...19)

L

#Vertexes #Edges #Vertexes #Edges

Disease
ontology

10 843 14 361 - -

Disease
association

15 987 28 706 - -

Adipose 24 164 294 914 36 285 307 126
Adrenal 24 036 286 741 35 975 298 777
Amygdala 24 200 285 681 36 293 297 899
Brain 24 332 291 391 36 593 303 766
Heart 24 203 293 691 35 891 305 450
Liver 23 851 282 631 35 422 294 276
Lung 23 937 287 438 36 016 299 588
Mammary 24 182 295 060 36 447 307 405
Ovary 24 161 296 297 36 235 308 477
Panaceas 24 087 286 588 35 832 298 408
Pituitary 24 587 300 355 37 244 313 106
Prostate 23 989 288 826 36 106 301 090
Salivary 24 242 293 127 36 460 305 437
Skeletal muscle 23 982 284 589 35 424 296 102
Small intestine 24 428 307 137 36 928 319 753
Spleen 23 809 285 660 35 644 297 582
Stomach 24 323 305 383 36 684 317 824
Testes 24 481 300 701 37 391 313 684
Uterus 24 098 288 368 36 080 300 455
All-union 26 396 356 747 268 285

are submitted to the server. All tests are performed on a 64
CPU-E5-4620 @ 2.20 GHz server with 500 GB of memory.

Versioned Neo4j structure. We find that as Neo4j is not struc-
tured to be used efficiently in a multi-network context,
supporting this feature is not straightforward. Indeed, filling
this important gap in network database applications is a
major motivation for this study. Nevertheless, for the pur-
pose of comparing VerTIoN against the existing infrastruc-
ture provided by Neo4j, we consider two main approaches
for implementing multi-network querying: (i) storing each
network version as a separate connected component within
the database and using vertex properties specifying the
version, or (ii) storing all versions as a union network
and adding properties to every vertex and edge detailing
which versions they exist in. The former method trades
space usage for version access speed, while the latter saves
space but incurs a O(D) complexity operation to accessing
data from a version. Since the access time for a network
using VerTIoN does not depend on the number of versions

Fig. 6. Compression performance. Comparison of different methods

in terms of the storage space they require for the tissue-specific PPI

versions alone and the full set of PPI+eQTL+disease networks outlined

in Figure 1. Here CSR refers to the total space required for storing

each version separately with a standard CSR representation, whereas

VerTIoN refers to the total space required by VerTIoN to store all

versions, by exploiting the edge overlap.

stored, we use the former implementation of versioned
networks in Neo4j for comparison, as this provides a more
fair comparison in favor of Neo4j.

Compression

We evaluate the storage efficiency of VerTIoN by com-
paring the space required to store all 41 network versions
using the versioned structure as well as independently with
standard CSR matrices. We do not consider composite ver-
sions while assessing storage effectiveness, since storing all
combinations of horizontally integrated versions is clearly
not a feasible option. These results are shown in Figure 6.
We find that VerTIoN achieves a compression ratio of
almost 4x compared to storing individual CSR matrices.
We also compare to the storage used by representing all
versions as plain-text vertex and edge lists. While storing
all versions in plain text requires about half the storage
required by VerTIoN, plain text is not suited well to
performing network queries and represents an extreme of
the storage-runtime trade off.

Due to the lack of any compression techniques
between versions using the separate connected components
approach on Neo4j, and its database overhead, we find
that VerTIoN requires roughly 2% of the space of Neo4j
to store the tissue specific PPI networks alone.

Query throughput

We evaluate the runtime performance of VerTIoN as com-
pared to Neo4j in a multi-user context. For both methods
we utilize a local server providing access to the tissue-
specific PPI networks. We vary the number of parallel user
connections/queries, measuring the average time a client
waits for a response. The query vertex and tissue network
version is randomized for each RWR query, using ε = 10−12
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Fig. 7. Throughput for random walk-based network proximity queries.

The average time until server response for a set of parallel connections

using a Neo4j database installation and VerTIoN. After 256 parallel

requests, Neo4j becomes unstable and begins failing to respond to

queries.

and α = 0.05. For each number of connections considered,
we report the average and standard deviation of query
response time for that number of connections. The result
of the throughput analysis is shown in Figure 7. Query
response time for a single client is shown as a function of the
number of parallel queries that are submitted to the server.

As seen in the figure, VerTIoN completes all queries
successfully for up to 2048 parallel queries tested. Ver-
TIoN’s query response time is also highly robust to load,
with response time remaining around a few seconds even
for 2000 queries. In contrast, the response time for Neo4j
increases rapidly. Furthermore, Neo4j starts dropping
queries as the number of parallel requests exceeds 256.
The vast performance difference perfectly illustrates the
trade-off between a generalized and a specialized approach.
However, note that while these approaches are orthogonal
they are not necessarily mutually exclusive. Data-structures
such as VerTIoN can be used in conjunction with graph
databases as a query acceleration layer. Ultimately, these
results clearly show that the data structure and querying
framework implemented in VerTIoN is highly promising
in making real-time processing of multi-user queries on
versioned networks possible.

Composing versions based on tissue

combinations

Network composition queries can indeed be very useful
and relevant in many biological applications as a pipeline
operation for other queries. For example, a researcher may
be interested in evaluating genomic loci for their protein
proximity in tissues known to be relevant to a specific
disease or phenotype such as type II diabetes.

One of the advantages of VerTIoN is its ability to
enhance the real-time composition and querying of arbi-

Fig. 8. Processing time for integrating versions. Shows a run-time

comparison between loading and integrating tissue-specific networks

when stored separately as CSR matrices and the VerTIoN structure.

Each point represents 10 iterations of randomly chosen sets of network

versions.

trary combinations of versions (horizontal integration). We
compute the composition time for varying combinations of
the tissue-specific networks. Here we consider integration
through both edge union and intersection operations. In
Figure 8 extraction time is plotted as a function of the
number of networks in the composite.

We find that when integrating many network versions,
the run-time is dominated by data access either from disk
or memory. This is also true even when VerTIoN specific
processing is taken into account (sorting and merging split
rows). The result of this is that VerTIoN is exceptionally
effective for arbitrary compositions as it efficiently loads all
of the compressed versions at once, regardless of how many
are integrated. This is in contrast to when the versions are
stored separately where more data with worse localization
needs processing. This large overhead can be seen by the
drastic increase in run-time for separate storage as the
number of integrated versions increases.

Conclusion

Here we present VerTIoN, a data structure for efficiently
storing, integrating and querying versioned biological net-
work data. By applying a version tree to the compressed
sparse row data structure, we enable real-time queries on
arbitrary compositions of heterogeneous biological net-
work data. While in this paper we have focused primarily
the additive version tree model for tissue-specific biological
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networks, it is important to note that the presented method
is far more general and is not limited to an additive model.

VerTIoN can be used with many other types of context-
specific networks. For example, functional association
among phosphorylation sites, where each version includes
sites that are identified in a different study [2, 25]. Similarly,
signaling pathways that are specific to different cancers
can be considered as different versions [19] and metabolic
networks of different organisms can be organized as
different versions [14, 23].

We find that for applications focusing on random walk-
based proximity computation, our method provides an
exceptionally efficient query structure both in terms of
memory use and run-time. It is more accurate to think of
VerTIoN as a highly organized way to represent versioned
network data rather than a database itself. By providing a
compressed structure for storing discrete networks versions,
it also enables the ability to quickly compose those versions
on the fly. This allows for far more complex queries on arbi-
trary combinations of stored versions. Ultimately, VerTIoN
is not meant as a competitor to databases such as Neo4j, it
is an orthogonal but complementary approach to querying
versioned network data. We posit that a VerTIoN-like
structure could even be used as a query acceleration middle
layer for more traditional network databases.
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