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Abstract

Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much
evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at
cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this
hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing,
dopamine level, and dopamine receptor type. Second, there is a credit assignment problem—action selection signals occur
long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently
opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce
reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict
the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate
to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a
complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this
model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable
convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory.
Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning
and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and
reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single
synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface.
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Introduction

Learning from reinforcement requires a neural interface

between reinforcement signals and action representations. Since

the tentative identification of the ventral striatum as this ‘‘limbic-

motor’’ interface by Mogenson and colleagues [1], separate

strands of work have elaborated four key elements centred on

the striatum. First, that phasic activity of midbrain dopamine

neurons signals a prediction error between expected and received

reinforcement, or the stimuli that predict reinforcement [2–5].

Second, that in the primary target for these signals, the striatum,

the plasticity of cortical inputs to striatal medium spiny neurons

(MSNs) is modulated by dopamine [6–8]. Third, that intact

regions of striatum are necessary for the expression and likely

acquisition of goal-directed and habitual actions [9–11]. Fourth,

that the basal ganglia, for which the striatum is the input station,

collectively implement a system for action selection via selective

disinhibition of targets in motor thalamus and brainstem [12–14].

Consequently, a plausible hypothesis for the reinforcement-action

interface is the interaction between cortico-striatal weights and phasic

dopamine. Thus, the adjustment of cortico-striatal weights by value-

conditioned environmental feedback, in the form of the phasic

dopamine signal, changes which actions are prioritised in future [15].

Despite the extent of work on each of these elements, to our

knowledge no model has integrated them all to test this widely held

hypothesis. Such a model is required to tackle three critical

challenges to this hypothesis. First, theories of reinforcement

learning by the basal ganglia are based on simple dichotomies for

cortical-striatal plasticity: that low and high dopamine respectively

promote long-term depression (LTD) and long-term potentiation

(LTP) at cortico-striatal synapses [15]; or in a more nuanced

version that high dopamine promotes LTP at cortical synapses on

D1-receptor expressing MSNs and low dopamine levels promote
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LTP at cortical synapses on D2-receptor expressing MSNs [16].

However, a recent study by Shen and colleagues [17] showed that

whether these synapses express LTP or LTD is dependent on a

three-way interaction between pre- and postsynaptic spike timing,

postsynaptic dopamine receptor type (D1 versus D2 expressing

MSNs) and dopamine level. Moreover, no combination of these

factors maps onto a simple dichotomy. It is thus an open question

whether this complex combination of plasticity rules can be

reconciled with the reinforcement learning hypothesis.

Second, the D1 and D2 MSN populations project through

separate pathways that converge in the output nuclei of basal

ganglia. A broad class of hypotheses propose that these ‘‘direct’’

and ‘‘indirect’’ pathways respectively permit and prevent the

selection of specific actions [16,18–20]. It is unclear whether the

just-described different plasticity rules operating on the cortical

inputs to these pathways can be reconciled with this functional

hypothesis.

Third, the timing of the relevant signals spans many scales. At

short time scales (,10–100 ms) cortical synapses onto the MSNs

have spike-timing dependent plasticity (STDP) [21,22]. At longer

time scales (hundreds of milliseconds to greater than 1 s), there is

the well-known credit assignment problem [23,24]: that cortical-

striatal signals for action selection appear transiently, and long

before the phasic dopamine signal carrying feedback from the

environment arrives in the striatum [4]. How the short-term

STDP and long-term feedback interact is unknown.

We present here a model that provides the basis for integrating

these strands of work on reinforcement learning and answering

these challenges. It bridges the gap between the intricate subtleties

of cortico-striatal plasticity at the synaptic level and the behaviour

of the whole animal, thereby providing strong evidence that the

striatum is indeed the locus of the action-reinforcement interface.

Results

Our goal here is to explain how the complexities of dopamine-

dependent cortico-striatal plasticity can ultimately give rise to the

behavioural learning and suppression of actions driven solely by

environmental feedback. The common point of reference is thus

the MSN: how the combined effects of many cortico-striatal

synapses on one neuron give rise to its changes in activity over

learning, and in turn how the changed activity of a population of

MSNs gives rise to changes in behaviour.

We first derive predictions for changes in D1 and D2 MSN

activity over learning and extinction, by finding the required MSN

activity for successful action selection or suppression in a network

model of the whole basal ganglia that is consistent with recent

electrophysiological studies on the D1 and D2 MSN pathways

[19,20,25]. We then derive a three-factor cortico-striatal plasticity

model for a single synapse from the in vitro data of Shen and

colleagues [17], and extend to incorporate arbitrary levels of

dopamine and an eligibility trace. The action selection and

plasticity models are thus entirely independent of each other. The

key test occurs when we link the two: can our in vitro derived

plasticity rules at single synapses give rise to the predicted changes

in MSN activity in both D1 and D2 pathways necessary for

successful learning by reinforcement and extinction of a single

action?

Figure 1. Stylised behavioural experiment for action discovery,
with associated dynamics of MSN responses and phasic
dopamine. The timeline at the top shows the experiment’s epochs.
Below that we plot target response profiles of D1 and D2 type MSNs
over each epoch of trials. These are based on the analysis in Figure 3
with the key points from that analysis shown by open symbols; grey
lines between them show direction of change over the epoch. Stability
is indicated by horizontal lines, and continuous (but not necessarily
linear) plastic change is shown by lines with arrows between two open
symbols. Bottom plot: trial-by-trial envelope-of-amplitudes of individual
phasic dopamine events within each trial. This amplitude is governed
by a variable g, whose value decays exponentially when describing
positive dopamine signals (bursts) from some maximal value gpeak. For

negative going dopamine signals (dips) g rises exponentially over a
trajectory that can be negative (dotted grey line). However, the phasic
excursions of the level of dopamine itself, d , are always positive or zero,
for when gv0, d~0. The use of g in this way expediently fixes the
interval over which d~0. In both cases the time constant of the
dynamics of g is thab .
doi:10.1371/journal.pbio.1002034.g001

Author Summary

A key component of survival is the ability to learn which
actions, in what contexts, yield useful and rewarding
outcomes. Actions are encoded in the brain in the cortex
but, as many actions are possible at any one time, there
needs to be a mechanism to select which one is to be
performed. This problem of action selection is mediated by
a set of nuclei known as the basal ganglia, which receive
convergent ‘‘action requests’’ from all over the cortex and
select the one that is currently most important. Working
out which is most important is determined by the strength
of the input from each action request: the stronger the
connection, the more important that action. Understand-
ing learning thus requires understanding how that
strength is changed by the outcome of each action. We
built a computational model that demonstrates how the
brain’s internal signal for outcome (carried by the
neurotransmitter dopamine) changes the strength of these
cortical connections to learn the selection of rewarded
actions, and the suppression of unrewarded ones. Our
model shows how several known signals in the brain work
together to shape the influence of cortical inputs to the
basal ganglia at the interface between our actions and
their outcomes.
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Bridging the Gap between Plasticity and Behaviour
To ground this exercise we imagine a stylised instrumental

conditioning experiment with reinforcement learning of an action,

such as a rat lever pressing for food pellet (in the Discussion we

consider how our model of this task and of the inputs to striatum

relate to the well-known distinction between goal-directed and

habitual behaviour in instrumental tasks). We separate the

experiment into epochs, and divide each epoch into notional

trials corresponding to one action and its outcome. The timeline

for the experiment is shown at the top of Figure 1.

Initially, there is a ‘‘baseline’’ epoch of free action choice.

Following this, there is a ‘‘learning’’ epoch in which a key action–

such as a lever press–is reliably paired with reinforcement, and

consequently repeated. In the subsequent ‘‘intermission’’ epoch,

the rat is removed from the arena and again has free action choice.

This is followed by an ‘‘extinction’’ epoch, where the rat is

reintroduced into the arena, but reinforcement is no longer paired

with the previously reinforced action. We assume there ensues a

period of repeated (but unsuccessful) attempts to obtain reinforce-

ment. At some point the animal extinguishes its reinforced action

and engages in a final bout of free-choice action in the ‘‘post-

extinction’’ epoch. The baseline and intermission epochs will serve

as controls for the models, testing that the absence of reinforce-

ment does not lead to aberrant learning through noise (in baseline)

and that the execution of other actions does not interfere with the

learnt representation of the reinforced action (in intermission).

There is considerable in vivo evidence that striatal activity

evolves during the course of operant learning, with both increases

and decreases in activity observed, consistent with the hypothesis

of cortico-striatal plasticity driving changes in activity over

learning [26–31]. However, detailed interpretation of these data

is difficult as there is no distinction made between D1- and D2-

type MSNs. By contrast there are good recent data on the

opposing roles of D1 and D2 MSNs in controlling behaviour, from

which we can establish predictions for the start and end-points of

learning and extinction. Cui and colleagues [25] showed that the

execution of a specific action was immediately preceded by

coincident activation of both D1 and D2 MSNs, showing that both

direct and indirect pathways are active when selecting an action.

Selective optogenetic stimulation has shown that activating D1

MSNs initiates or increases locomotion whereas activating D2

MSNs ceases or prevents locomotion [19,20,32].

Together, these data support the broad hypothesis for the

competing influence of the two pathways on action selection, that

D1 MSN activity is permissive for action and D2 MSN activity is

preventative for action [18]. In the context of learning, this

hypothesis has been interpreted as the D1 and D2 MSNs,

respectively, learning the go and no-go contexts for a given action

[16]. Optogenetic stimulation during learning suggests this

interpretation is correct [33]. We here hypothesise that this

extends beyond active suppression of an action in a specific

context (no-go learning) to also include active suppression of a

learnt action in extinction—we later show this hypothesis is

consistent with renewal and reacquisition phenomena.

Currently missing are data or hypotheses for how the

representation of the same action in corresponding D1 and D2

MSN populations changes over learning and over extinction. A

straightforward extension of the competing pathways hypothesis is

that after learning D1 MSN activity will be high and correspond-

ing D2 MSN activity will be low or zero, thus favouring the

selection of the action; and conversely that after extinction D1

MSN activity will be low or zero and D2 MSN activity high, thus

favouring the suppression of the action. We used our prior model

of action selection in the basal ganglia [34,35] to test this

hypothesis and predict the relative responsiveness of D1 and D2

MSNs that optimises selection performance within a trial after

learning or after subsequent extinction.

Relative Responsiveness of D1 and D2 MSNs for
Optimised Action Selection

Our model of the basal ganglia simulates how their internal

circuitry can resolve competition between salient inputs from

cortex (Figure 2)—see Methods for a full description. Under the

interpretation that basal ganglia mediate action selection [12–14],

cortical signals afferent to striatum associated with a single

potential action comprise an ‘‘action request’’ [36]. The neural

populations throughout basal ganglia that process this request

comprise an action ‘‘channel.’’ In general, an action request is a

complex pattern of signals encoding the action whose overall level

of activity represents the ‘‘salience’’ or urgency of the request.

Selection of an action is then signalled by a sufficient fall in the

level of inhibition (relative to tonic) in the channel encoding the

action in the basal ganglia’s output nuclei. Our model simulates

the mean firing rate of each neural population within the basal

ganglia in response to a given set of action requests.

Figure 2B shows the model’s response to a single phasic input

from cortex. Consistent with the labelled-recording study of [25], a

single action is represented by coincident activity in a small

population of D1 and D2 MSNs. Consistent with the optogenetic

stimulation studies of [19] and [20], activity in the two pathways is

antagonistic: greater activity of the D1 MSN population drives

inhibition of the corresponding basal ganglia output population,

whereas greater activity of the D2 MSN population drives

excitation of the corresponding basal ganglia output population.

The model therefore shows that key to whether an action is

selected or suppressed is the relative weighting of cortical input to

the D1 and D2 MSN populations representing that action.

We thus used our model to find the relative weights of cortical

input to the D1 and D2 MSN populations that optimised selection

of an action (emulating the target situation at the end of the

learning epoch) and, separately, that optimised the suppression of

an action (emulating the target situation at the end of the

extinction epoch). The ability to select a particular action can only

be tested with reference to at least one other possible alternative

action, so we considered two competing signals, one signal

representing a fixed ‘‘control’’ action, available for selection

throughout, and another signal representing the key action learnt

and extinguished over the course of the experiment. We input this

pair of salient signals to two channels in the model. For a given

pair of inputs, we read out the outcome of the competition from

the output of the basal ganglia (SNr/GPi in Figure 2): a sufficient

decrease in inhibition from the output population signalled

selection of the corresponding action. Thus three outcomes were

possible: no action selected, one action selected, or both actions

selected.

Given these possible outcomes for each input pair, we defined

ideal outcomes for a range of pairs of salience values, shown at the

top left of Figure 3A and 3B for selection and suppression,

respectively. We expect low salience signals to give no selection as

the unresponsiveness of MSNs to low inputs ensures that these

signals do not change basal ganglia output [34]. Otherwise, for

selection we expect the input with the highest salience to win and

thus a single action to be selected; and for suppression we expect

no selection of the suppressed action, and only selection of the

control action when it is sufficiently salient.

Figure 3A shows that selection of an action was best achieved

when its coding D1 MSN population was more responsive than its

coding D2 MSN population. But, importantly, our results show

A New Framework for Cortico-Striatal Plasticity
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that the best selection was achieved with some activity in the

action’s coding D2 MSN population (Figure 3A, bottom right),

suggesting the novel prediction that D2 MSN activity must also be

present to achieve optimal selection, and so does not only block

selection (in Figure S1 and Text S1, we explain why the model

makes this prediction).

Figure 3B shows that suppression of an action was best achieved

when its coding D2 MSN population was more responsive than its

coding D1 MSN population. Importantly, our results showed that

the action-coding D1 MSN population could remain highly active,

with an lower limit of about 1:1 for its input to output ratio. These

results show that, rather than requiring that the D1 MSN input

weight falls close to zero, the suppression of an action is robust to a

large range of such weights.

Resultant Hypotheses for MSN Activity Changes over
Learning

Our model thus shows that the competing-pathways hypothesis

is broadly true for the D1 and D2 populations coding a single

action, but more nuanced: there is a non-intuitive contribution of

D2 MSN activity to optimal selection; and successful suppression

can tolerate high levels of D1 MSN activity. We capture these non-

intuitive predictions as the hypothesized target activity at end-

points of learning and extinction during the stylised experiment in

Figure 1 (respectively, symbols 2 and 5).

There, we extend these end-points to their changes over the

entire experiment with mild assumptions for MSN activity outside

periods of learning. In the baseline epoch we assume a small, but

non-zero response in both D1- and D2-MSNs, which is sufficient

to initiate learning. In addition we demand that this baseline

response is relatively stable during this period, such that randomly

occurring pre- and postsynaptic spike pairings in this baseline

activity do not cause either LTP or LTD. For similar reasons, we

require stable responses in the intermission and post-extinction

epochs. These profiles form the predicted targets for changes in

MSN activity over learning for the rest of the paper.

The key hypothesis is that these changes in MSN activity are

driven by feedback from changes in the environment that are

carried by dopamine signalling in the striatum. The bottom panel

of Figure 1 plots the corresponding trial-by-trial change in striatal

dopamine during the behavioural task. Throughout the baseline,

intermission, and post-extinction epochs, the absence of any

reinforcing stimuli is reflected in the constant tonic dopamine level

on every trial. At the onset of the learning epoch, the initial

reinforcement, being unexpected, is assumed to elicit a phasic

dopamine burst [2–4,37,38]. As the reinforcement becomes

predictable, the amplitude of elicited phasic dopamine declines

[39]. During the extinction epoch, the omission of the expected

reinforcement is assumed to elicit phasic dopamine ‘‘dips’’

[2,37,38,40], whose magnitude gradually declines, as the omission

too becomes predictable [41].

New Framework for Cortico-Striatal Plasticity
With these target trial-by-trial changes in MSN activity and

corresponding striatal dopamine profile in hand we turn to the

central question of how that dopamine signal drives the

required MSN activity changes. The long-standing answer has

been that dopamine modulates cortico-striatal plasticity [15],

but recent data have shown a partially complete picture of how

nuanced that modulation is. On the one hand, Pawlak and

Kerr [22] showed that cortico-striatal synapses have STDP,

but not how that depends on postsynaptic neuron type (D1 or

D2). On the other hand, Shen and colleagues [17] showed that

the direction of modulation is dependent on the three factors of

postsynaptic neuron type (D1 or D2), dopamine concentration

(high or low), and the sign of pre- and postsynaptic event

timing (positive or negative), but not how it depends on the

delay itself.

Figure 2. Model of basal ganglia dynamics. (A) Schematic of model architecture. It contains all major nuclei: STN, subthalamic nucleus; GPe,
globus pallidus external segment; output nuclei (collectively)— SNr, substantia nigra pars compacta, and GPi, globus pallidus internal segment;
striatum, with MSNs preferentially expressing D1 and D2 type dopamine receptors. Red and blue lines indicate excitatory and inhibitory connections,
respectively. Circles indicate action-representing populations within each nucleus, each population modelled by its normalised mean firing rate, with
relative rates represented by degree of shading (dark is highly active, pale grey is less so). In the interests of clarity, only two of the six channels are
shown, and the diffuse projection from the channel on the right hand side in STN is shown as a single, wide red arrow (but mirrors its left-hand
counterpart in terms of its individual connections to SNr/GPi and GPe). (B) Selection (left) and suppression (right) in the dynamical model. A phasic
signal from cortex is input to a single channel in the model. Left: If the cortico-striatal weight is stronger to the channel’s D1 MSN population, then
selection results: the corresponding SNr/GPi population’s activity is inhibited. Right: if the cortico-striatal weight is stronger to the channel’s D2 MSN
population, then suppression results: via the effect of the enhanced D2 MSN input to the STN-GPe loop, the corresponding SNr/GPi population’s
activity is excited. The model thus shows that a single cortical input drives coincident activity in D1 and D2 MSN populations, and that even within a
single action-representing channel the two pathways are antagonistic.
doi:10.1371/journal.pbio.1002034.g002
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We therefore used these data as the starting-point for a new

framework for cortico-striatal plasticity. This framework extrap-

olates naturally from the data in three ways. First, it extrapolates

from the Shen data to the STDP functions described by Pawlak

and Kerr. Second, it establishes a simple way of defining plasticity

rules over a continuum of dopamine levels, proposing dopamine-

dependent STDP. Third, it incorporates an eligibility trace to

solve the temporal credit assignment problem—that the change in

Figure 3. Linking action selection in basal ganglia to MSN responses. In all plots, neural ‘‘responsiveness’’ is the ratio of the population9s
input value to output response; we abbreviate to ‘‘response’’ in axis labelling for brevity. (A and B) relate to action learning and extinction,
respectively. The pairs of ‘‘bubble plots’’ in the top left of each panel show (i) an idealised selection template for a two-channel competition (left plot
in each pair), with the key action on channel 1 and the control action on channel 2; and (ii) the best match to that template (at the D1 and D2
responsiveness noted above the plot). In each bubble plot, open symbols show an outcome of channel 2 selected, closed symbols show channel 1
selected, dots are no selection, and the crossed-circle shows both channels selected. The 2D colour plots (‘‘heat maps’’) show the template match for
each D1/D2 responsiveness pair. The pairs of line plots show details of the corresponding colour map. The left hand line plots (open symbols) show
the maximum template match for a given D1-MSN responsiveness; results at 1 and 1.25 are highlighted by the dashed lines. The right hand line plots
(closed symbols) show cross sections through the 2D heat map (indicated by dashed grey lines therein) at D1 responsiveness of 1 (circles) and 1.25
(squares).
doi:10.1371/journal.pbio.1002034.g003
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dopamine level is locked to environmental feedback, and so occurs

long after the signals for action are input at cortico-striatal

synapses.

From In Vitro Data to STDP Functions
Figure 4 shows how we interpret the data of Shen and

colleagues [17] in terms of STDP functions, generalising from

the data of [22] by assuming that each combination of MSN type

and sign of pre- and postsynaptic event timing has a standard

exponential function of time [42].

The dopamine level d in the experiment is assigned one of two

values—‘‘high’’ or ‘‘low’’ (depleted)—where the term ‘‘high’’ is

simply used as a contrast with ‘‘low’’ and no implication is made

that this is a biologically high level. To deal with spike timing, let

tpre,tpost be a pair of presynaptic and postsynaptic spike times,

respectively. Letting Dt:tpost{tpre, we refer to the conditions

Dt§0, Dtƒ0 as ‘‘positive’’ and ‘‘negative’’ spike-pair timing,

respectively. For a given pair of pre- and postsynaptic events

separated by Dt, we model the exponential dependency of

plasticity on timing by z~k exp {t=tð Þ, where t sets the time

scale of the exponential decay, and coefficient k sets the scale of

contribution to plasticity: high values of k indicate a larger

contribution. The consequent change in weight is Dw~mz, where

m is a learning rate.

We define separate functions z(Dt) for each combination of

receptor type (D1, D2), dopamine level (low, high), and sign of pre-

post event timing (+, 2) in the Shen and colleagues9 [17] data. As

an example consider the case of low dopamine with D1-MSNs

Figure 4. Deriving STDP functions from the in vitro data in [17]. Each row of the four panels pertains to an MSN type (D1, D2), each column to
a dopamine level (‘‘high’’ or dopamine present, and ‘‘low,’’ or dopamine depleted). Thus, the top left panel shows data for MSNs expressing D1
receptors from slices with dopamine present. In each panel, the top right hand plot shows the EPSP amplitude against time under protocols designed
to induce Hebbian learning, and in which the postsynaptic spikes follow their pre-synaptic counterparts (‘‘positive timing,’’ Dt~tpost{tprew0).
Plasticity induction occurred during the period indicated by the reference line at 10 mins. The top left hand plot in each panel shows corresponding
results for negative timing, Dtv0. The resulting STDP functions (zz(Dt) for Dtw0 and z{(Dt) for Dtv0) are shown in the cartoon diagrams, and the
relation between data and function is indicated by the shaded arrows. Note that some of the vertical axes on the data plots show normalised EPSP
amplitude as a percentage.
doi:10.1371/journal.pbio.1002034.g004

A New Framework for Cortico-Striatal Plasticity
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shown in the top right panel of Figure 4. For positive spike timing,

the data show clear LTD and so we assign a negative function

zz
lo (Dt) describing the relation between plasticity change and

Dtw0, with amplitude kz
lo v0 to capture the LTD in the data

(note the ‘‘+’’ superscript refers to the positivity of Dt, not the sign

of the function value; ‘‘lo’’ indicates ‘‘low dopamine’’). Duplicating

this whole procedure for all other combinations results in a set of

four plasticity coefficients for each of D1 and D2 type MSNs:

fkz
hi , k{

hi , kz
lo , k{

lo g.
Even at this qualitative stage of the model, our distillation of the

complex dataset of Shen and colleagues [17] shows that their data

imply ‘‘standard’’ STDP (LTP and LTD in positive and negative

timing, respectively) applies only for D2 MSNs under high

dopamine levels; all other combinations of MSN type and

dopamine level imply non-standard combinations of LTP and

LTD with pre- and postsynaptic spike timing.

Extending the Model to Arbitrary Levels of Dopamine
In order to extend these results to arbitrary levels of dopamine

d , we define functions z+(d,Dt) for any d by smoothly mixing or

‘‘blending’’ the functions at the extremes of the range, z+lo (Dt) and

z+hi (Dt), according to d: Figure 5D plots the particular mixing

functions used here (see Methods). For a given level of dopamine,

the mixing function determines the consequent amplitude K(d) of

the STDP functions, thus setting the change in weight—we plot

these ‘‘plasticity factors’’ K(d) for each spike-timing (+, 2) and

receptor type (D1, D2) in Figure 5C (D1) and 5D (D2).

Figure 5A and 5B plots the resultant two-dimensional STDP

functions over the full range of dopamine level d for D1

(Figure 5A) and D2 (Figure 5B) MSNs, showing that various

combinations of LTP and LTD emerge naturally from the mixing

scheme. In particular, the smooth morphing of the STDP

functions predicts that, at some intermediate levels of dopamine,

Figure 5. The ‘‘function mixing’’ model of dopamine-dependent cortico-striatal plasticity. The 3D plots in (A and B) are for D1 and D2
MSNs, respectively. In these plots, for constant levels of dopamine d , the thick, light-blue lines show the STDP functions z+hi (Dt),z+lo (Dt) at high and
low dopamine levels corresponding to those in Figure 4. For other (constant) values of d , the STDP function z(d,Dt) is obtained by smoothly
‘‘blending’’ together zz

hi (Dt),zz
lo (Dt) for positive timing, and z{

hi (Dt),z{
lo (Dt) for negative timing. Thinner black lines show some examples of this, and

the tonic dopamine level in our model gives functions shown in dark blue. With time-dependent levels of dopamine and eligibility, the generalised
plasticity function z(d(t),Dt) can change dynamically with time for a given Dt. The green line in (A) shows a typical such trajectory as a phasic
dopamine burst is received, starting at tonic level, moving to the peak of phasic amplitude and back again. (D) The mixing function a(d) that

determines how much of each of the functions, z+hi (Dt),z+lo (Dt) are blended together across the range of dopamine d . (C and E) The resultant
plasticity factors for D1 (C) and D2 (E) MSNs, respectively, giving the amplitude of the STDP functions at Dt~0 in (A) and (B).
doi:10.1371/journal.pbio.1002034.g005
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both D1 and D2 MSNs would express ‘‘standard’’ STDP; this case

is highlighted by the dark blue lines in Figure 5A and 5B.

The parameters of the mixing function were chosen so that this

standard STDP in both MSN types occurred at our nominal level

of tonic dopamine. We expect such tonic dopamine to be present

outside of the learning and extinction epochs (Figure 1), yet for

there to be no change in synaptic strength despite the ongoing pre-

and postsynaptic spike-pairings in background spiking activity. We

show below that using these standard STDP functions at tonic

dopamine levels indeed results in no overall change in synaptic

strength outside learning and extinction.

Extension to Longer Time Scales: Spike Timing
Dependent Eligibility

In operant conditioning experiments schematised in Figure 1, at

some time during or immediately after the action request, the

action is executed, and any environmental consequences made

apparent. If unpredicted, these will cause a phasic dopamine

signal. The delay between action request and consequence is

largely regulated by the physics of the world and can be as much

as 1–2 s, or even longer, while still allowing action discovery [43].

There is therefore a temporal credit assignment problem [23,24]:

for if cortico-striatal plasticity is the proposed locus of reinforce-

ment learning and is dopamine-dependent, how can the transient

cortico-striatal action request lead to correct changes in cortico-

striatal weights by dopamine signals arriving long afterwards?

Solutions often involve some kind of ‘‘eligibility trace’’ in which

pre- and postsynaptic activity at a neuron establishes the potential

for plasticity, which is later converted into permanent change with

dopamine. Here we adopt the dopamine and STDP-dependent

eligibility trace model introduced by Izhikevich [44], and extend

by incorporating the non-standard forms of STDP and the

plasticity-function mixing framework described above (see Meth-

ods for a formal description).

In this model, plasticity is not governed directly by the STDP

functions; rather, these are used to establish an eligibility trace,

which subsequently decays over time in the order of seconds. It is

this trace, together with its interaction with dopamine, that

governs synaptic weight change. We therefore refer to this

plasticity framework as ‘‘spike timing dependent eligibility’’

(STDE).

The process is illustrated for positive spike timing in Figure 6,

which also shows our model of an action request—see below. Each

pre- and postsynaptic spike pair for which Dtw0 creates a step-

change contribution sz to an eligibility trace gz(t), where

sz~ exp ({Dt=t) is the time dependent STDP function used

previously. The eligibility decays exponentially with time constant

tg, where tg&t, so the eligibility gz(t), due to a single spike pair,

is therefore sz exp ({t=tg).

In contrast to learning under STDP, STDE introduces time-

dependence within a single trial of both dopamine level d(t)—
describing the phasic dopamine response to environmental events

(Figure 6, green trace)—and the eligibility trace gz(t). Thus each

synaptic weight w is updated continuously in STDE, with the

change at time t proportional to both the current state of the

eligibility trace gz and the current dopamine level d(t), as shown

in Figure 6. The magnitude of the change is still given by the

dopamine-dependent plasticity factor Kz(d), but now d depends

on time. Put together, the change in weight for positive spike-

timing is thus proportional to m|Kz½d(t)�|gz(t).

The plasticity rule may be extended to spike pairs with negative

timing by introducing an eligibility g{(t)~s{(Dt) exp ({t=tg).

Overall plastic change at a single synapse is then the sum of

contributions from both gz and g{. Multiple spike pairs are

accommodated by assuming their contributions combine linearly.

The learning rule was chosen so that, under constant dopamine,

STDE reduces to STDP; that is, the overall change in synaptic

strength for a spike pair is the same as that in STDP.

Later, we show that this STDE model of cortico-striatal

plasticity is able to account for the original experimental data of

Shen and colleagues [17]. Here, we continue with our programme

relating plasticity to operant learning.

STDE Plasticity Rules Produce Changes in Single MSN
Activity Required for Operant Learning and Extinction

We now have on the one hand predicted D1 and D2 MSN

activity changes over trials of an operant learning task, and on the

other an in vitro-derived model for cortico-striatal synaptic

plasticity as a function of given pre- and postsynaptic spike timing,

MSN type, and dopamine level. Together these allowed us to test

Figure 6. Cartoons of signals during a single trial of action
learning. The top panel shows the firing rate of cortical neurons
afferent to a particular MSN, and taking part in an action request.
Afferent subset S, is distinguished by a higher firing rate fsal (solid black
line) during the request, and its set complement, �SS, has afferents with
rates at background levels fbac (grey line). The action request lasts for
some period, Tsal , and outside this period, all afferents receive spikes at
rate fbac. Typical cortical spikes are shown in blue with one highlighted
in a darker hue. Just below these are shown a typical MSN response,
(spikes in red, one highlighted in darker hue). The highlighted spike pair
has an ISI of Dt and elicits an contribution sz(Dt) to the eligibility trace
gz (promoting LTP in this case). The eligibility interacts with the
dopamine signal to produce a contribution to the change Dw in
synaptic strength. Notice that the phasic dopamine signal occurs at a
time DTDA after the spike pair which is much longer than the time
constant for the STDP function.
doi:10.1371/journal.pbio.1002034.g006
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the basic hypothesis of reinforcement learning: that adjustment of

cortico-striatal weights by value-conditioned environmental feed-

back, in the form of the phasic dopamine signal, changes which

actions are prioritised in future.

To do so, we simulated the stylised experiment described above

(Figure 1; see Methods for a formal description) using our

previously developed spiking models of the D1 and D2-type

MSNs [45] as representatives of the action-coding populations of

D1 and D2 MSNs. The spiking model simulates background

synaptic input from cortical (via AMPA and NMDA receptors)

and intra-striatal (via GABA receptors) sources, and incorporates

tonic dopamine modulation of the MSN’s excitability.

The top panel of Figure 6 shows the model of spiking input and

dopamine feedback signals occurring around a single MSN during

a single trial of the simulated experiment, comprising a single

action and its possible reinforcement. Within each trial we

simulate a phasic action request by a subset, S, of cortical

afferents to the MSN that generate a short burst of spikes with a

higher firing rate than background levels, with the remaining

afferent subset �SS at background rate. Random action choice in the

baseline and intermission epochs are modelled by randomly

choosing the active subset of cortical signals, S, on each trial.

During learning and extinction epochs, the same set S of cortical

signals representing the reinforced action is transiently active in

each trial of the epoch. Where reinforcement was presented (in

learning) or expected (in extinction) the phasic dopamine signal on

that trial was delayed by 150 ms. Across trials the magnitude of

the dopamine signal changed according to the envelope shown in

the bottom panel of Figure 1.

Each AMPA synapse of the model was updated using the STDE

rules. Our only free parameters were thus the key plasticity

coefficients fkz
hi , k{

hi , kz
lo , k{

lo g, but these were constrained to

have the correct sign for LTP or for LTD as shown in Figure 4

(that is, for D1 MSNs, kz
hi w0, k{

hi &0, kz
lo v0, k{

lo v0 and for D2

MSNs kz
hi w0, k{

hi v0, kz
lo w0, k{

lo w0).

Within these constraints, we easily found coefficients that

produced the target changes in activity for both D1 MSNs and D2

MSNs across all epochs of the simulated operant experiment.

Figure 7A and 7D shows the resulting change in D1 and D2 MSN

activity over the simulated experiment for an example well-

performing set of coefficients. Thus, we see that dopamine-

modulated STDE synapses can indeed drive the required activity

changes in D1 and D2 MSNs despite reinforcement or its omission

being delayed beyond the end of the STDP time-window.

We particularly note that the two unintuitive properties of the

MSN responses derived from the network model arise naturally

from the in vitro-derived STDE rules: first, that the reduction in

D1-MSN activity over extinction need not drive this activity to

zero, or even to the average activity of the preceding intermission

epoch; second, that D2-MSN activity does increase during the

learning epoch as a consequence of the STDE rules. In Figure S2

and Text S2 we further show that the resultant cortical input

weights to the D1 and D2 MSN models from each epoch of the

operant task do, in turn, produce the required action selection

performance for the whole basal ganglia network model.

In both D1 and D2 MSN profiles, we also note there was no

change in activity across trials in the baseline, intermission, or

post-extinction epochs, showing that our choice of using the

‘‘standard’’ STDP functions at tonic dopamine levels (Figure 5) is

indeed sufficient to suppress plastic change overall despite many

pairs of pre- and postsynaptic spikes and the presence of

dopamine.

These activity changes over the course of the experiment were

driven by the dopamine-dependent changes in cortical input

weights. We plot the evolution of the mean synaptic strengths

(AMPA conductances) in the fixed afferent set S for D1-MSNs and

D2-MSNs in Figure 7C and 7F, respectively; illustrative snapshots

at trials 1 and 55 of the full synaptic sets are shown alongside in

Figure 7B and 7E. There is clear evidence of the development of

matching between the patterns of cortical signals and synaptic

conductances in the fixed afferent set S. Note how, in both MSN

types, conductances increase during the learning phase (compare

outcome at key trials 1 and 55), and are preserved during free

action choice of the intermission epoch (compare trials 55 and 85).

For D1-MSNs the conductances in S decrease during extinction,

while for D2-MSNs they increase (compare across trials 55 and

125).

Explaining Context-Dependent Renewal and
Reacquisition

In constructing our target changes in MSN activity over

learning we advanced the hypothesis that increased D2 MSN

activity in extinction causes active suppression of a previously

reinforced action. That this increased activity in extinction

emerged from our STDE plasticity model (Figure 7D) is partial

evidence in support of the hypothesis. To further test this

hypothesis, we sought to determine whether the active suppression

hypothesis could be reconciled with the post-extinction behav-

ioural phenomenon of renewal (context-switch evoking immediate

display of the previously acquired behaviour) and reacquisition of

the key action (after a subsequent bout of reinforcement) [46].

Given that the action-representing weights for D1 MSNs returned

to baseline after extinction (Figure 7C), while those for D2 MSNs

reached their highest value (Figure 7F), it was not clear that the

plasticity model could account for these post-extinction phenom-

ena.

In renewal and reacquisition protocols, learning and extinction

are carried out in two environments with differing contextual cues

that may be visual, structural, or olfactory [47]. Typically an

operant task is learned in a context A, extinguished in context A,

or another B, and behaviour then tested for renewal or

reacquisition in a context different from that used during

extinction. This leads to protocols ABA,AAB, but results are also

sometimes reported for control sequences ABB,AAA, in which,

unsurprisingly, the ‘‘renewal’’ performance is close to that

observed at the end of extinction [48].

Our goal was to test whether synaptic changes due to the STDE

plasticity model could both allow renewal and cause reacquisition.

To do so, we simulated these protocols using the spiking MSN

model with STDE to find the changes in the cortico-striatal

synaptic weights; to assess performance at the different stages of

the protocols, we took the weights found at these stages and

constructed equivalent rate-coded D1 and D2 MSNs, tested the

resultant basal ganglia network model’s response behaviour, and

compared it to experimental results. We did this for sequences

ABA (test for renewal and reacquisition), AAA (control for the

same context in learning and renewal/reacquisition), and ABB

(control for the same context in extinction and renewal/

reacquisition). Figure 8A shows a summary of relevant data from

experiments by Nakajima and colleagues [49] (from their Figure 3)

on extinction and renewal. We plot there the results of testing

response behaviour in the context used for renewal both before

extinction (point labelled ‘acquis.’—acquisition) as a control for the

effect of changing the context alone, and after extinction (point

labelled ‘renewal’). Figure 8B is a summary of relevant data from

experiments in [50] on extinction and reacquisition (see Figure 2

therein)—see Methods for details of our interpretation.

A New Framework for Cortico-Striatal Plasticity

PLOS Biology | www.plosbiology.org 9 January 2015 | Volume 13 | Issue 1 | e1002034



In order to simulate the use of different contexts with the

STDE-equipped MSN spiking model we manipulated the strongly

active afferent synapse set S. We assumed that 50% of the original

set SA, used to obtain the previous results, is responsible for

sensory components common across contexts A and B, as well as

any pre-motor components of the action request for the key action.

We then established a new set SB, which included this 50% of SA,

with the remaining half of its synapses drawn randomly from the

set complement �SSA. The cortical input under context A or B then

takes the salient input value fsal (see Figure 6) at synapses in SA

and SB, respectively. Using these input sets, we simulated the three

sequences for the renewal protocol, and then tested for reacqui-

sition in context A or B (reinstating the phasic dopamine signal in

each trial to simulate the reintroduction of reinforcement).

The behavioural performance at each stage of the simulated

sequences was determined by testing the response of the spiking

D1 and D2 MSN models to cortical input at that stage (given their

learnt weights), and using their responses to parameterise an

Figure 7. Behaviour of MSNs obtained with the STDE plasticity rules (we plot here means obtained over ten experiments with
different random initialisation of AMPA conductances). (A) and (D) are the response profiles, for D1-MSNs and D2-MSNs, repectively, plotted
as spike count per trial against trial number; key trials delimit epochs defined in Figure 1. Coefficients for D1-MSNs were:
kz

hi ~1:3, k{
hi ~0, kz

lo ~{0:4, k{
lo ~{0:5; and for D2-MSNs were: kz

hi ~0:35, k{
hi ~{0:85, kz

lo ~0:3, k{
lo ~0:3. (B) and (E) the mean AMPA

conductances for D1-, D2-MSNs of each synapse at trials 1 and 55. Synapses in the set, S, (50 synapses consistently subject to stronger input during
the learning and extinction epochs), are collected at the left hand side of each plot, and delimited by the vertical dotted line. The horizontal dotted line
shows the initial mean AMPA conductance of 0.458 nS. (C) and (F) The mean conductance of the set S against trial number (D1-, D2-MSNs, respectively).
doi:10.1371/journal.pbio.1002034.g007
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equivalent rate-coded neuron that captures their learnt respon-

siveness at that stage of the sequence (see Methods). Embedding

these in one channel representing the key action, the resultant

basal ganglia network model was then tested with the paired-input

protocol used to assess selection (Figure 3); the performance metric

was the number of selections of the key action channel (channel 1),

corresponding to the numbers of responses in the in vivo

experiments.

Figure 8C shows that the model’s behavioural performance

both before and after extinction is consistent with the data in

Figure 8A: there is reduced selection of the key action under

context B after initial acquisition, selection under renewal is always

diminished with respect to corresponding acquisition performance,

and selection under renewal in the ABA protocol is greater than

that in the ABB and AAA protocols. Figure 8C also shows that

the model’s behavioural performance following the subsequent

reintroduction of reinforcement is consistent with the data in

Figure 8B: requisition allows increased selection, and the ordering

under both contexts is preserved.

The relative cortico-striatal weight changes in contexts A and B

underpinned these performance changes. Figure 8D shows the

trajectory of the mean AMPA conductance �ggA, �ggB of each of the

synaptic sets SA, SB, under learning with the protocols described

above. As we might expect, at the start of extinction (Trial 1),

�ggAw�ggB, since learning has been carried out with respect to SA.

This accounts for the ‘‘acquisition’’ selection results in Figure 8C.

In all cases, extinction causes a reduction/increase in mean

conductance for D1/D2-MSNs, with both features promoting

diminution of selection under ‘‘renewal.’’ However, the changes

with extinction under context A for synaptic set A are most

Figure 8. Extinction, renewal, and reacquisition. (A) Summary of relevant data from Figure 3 in [49], (see Methods for interpretation of that
data) showing renewal effects after sequence ABA, but not after control sequences AAA and ABB. The points labelled ‘‘acquis.’’ are the performance
before extinction in the same context as the renewal test, giving a baseline for the performance change caused only by any switch in context after
extinction. In all of (A–C), the blue/black symbols correspond to testing with contexts A=B. (B) Summary of relevant data from [50] (see Figure 2
therein), showing reacquisition of responding in two contexts A,B, after original acquisition in A and extinction in B. The symbols show endpoints of
linear regressions through the original data, which include outcomes at several intermediate time points. (C) Behavioural responses of the basal
ganglia model with MSNs initially trained with context A. The acquisition (‘‘acquis.’’) is tested near the end of the intermission period for two contexts,
A,B, derived using different strong-afferent synaptic sets SA,SB (see text for details). The renewal is tested at the end of 40 trials of extinction under
both contexts, leading to the renewal sequences ABA, ABB, and AAA. Reacquisition is measured after 40 learning trials, under each context. (D)
Shows (for both D1- and D2-MSNs) the mean AMPA conductance of synaptic sets SA,SB against trial number, during extinction (trials 1–40), and
reacquisition (trials 41–80) under the behavioural protocols in (C). Trials are numbered from trial 80 near the end of the intermission period in the
simulated experiment (Figure 7). The trajectory for SA under extinction with A (pale blue line, dark blue symbols) is identical to the extinction shown
in Figure 7.
doi:10.1371/journal.pbio.1002034.g008

A New Framework for Cortico-Striatal Plasticity

PLOS Biology | www.plosbiology.org 11 January 2015 | Volume 13 | Issue 1 | e1002034



marked, which explains the correspondingly larger decrease in

renewal selection under extinction with A. New learning under

reacquisition causes increased/reduced conductances for D1/D2-

MSNs resulting in the increased selection observed.

We thus found that active suppression of the key action by D2

MSNs during extinction could nonetheless give rise to its renewal

and reacquisition.

General Cortico-Striatal Plasticity Rules for Operant
Learning

Thus far we have shown that in vitro data-derived dopamine-

modulated STDP functions are sufficient to generate putative D1

and D2 MSN responses over the course of an operant-learning

task. We now ask to what extent this complex set of non-standard

STDP functions (Figure 4) are necessary to generate such

responses: that is, could the complexity of the three-factor

dependency (on receptor type, dopamine concentration, and

spike-timing) be explained by the need to generate a particular set

of MSN responses?

To address this, we performed an exhaustive, ‘‘brute-force’’

search in the 4D parameter space of plasticity coefficients for each

MSN type. Full details are supplied in the Methods but, briefly,

each search was divided into two stages: a first stage with an

extensive parameter range, followed by a more focused search

around the best-fitting responses. For each set of plasticity

coefficients encountered, we ran a set of the simulated learning

experiments to obtain spike count profiles. We then used a feature-

based method to define a score to determine how well the profiles

matched the targets in Figure 1.

Figure 9 illustrates the search process, and the diversity of

activity profiles encountered for D1 MSNs. Figure 10 shows the

range of satisfactory plasticity coefficients discovered by the search

for both MSN types. Figure 11 shows the range of STDP functions

resulting from the distribution of values for each plasticity

coefficient that gave good matches to the MSN response profiles.

Across the three factors of spike-timing (negative, positive), MSN

type (D1, D2), and dopamine level (low, high), six of the eight

functions were always restricted to the same sign (LTP or LTD) as

the data of Shen and colleagues [17]. Thus, our model predicts

that the dependencies on timing, dopamine-level, and dopamine-

receptor for these STDP functions are necessary for the putative

MSN response profiles under operant conditioning.

However, we also predict some diversity in the necessary

learning rules for two functions with negative spike-timing (Dtv0).

For D1 MSNs at high dopamine levels (Figure 11A, top left panel)

our model predicts the possibility of either LTP or LTD for Dtv0.

The overall sign of plasticity, averaged over randomly chosen pre-

post spike timings, is determined by the sum kz
hi zk{

hi , shown in

the plot inset. For D1 MSNs at high dopamine, we therefore

predict an overall LTP-like outcome. For D2 MSNs at low

dopamine levels (Figure 11A, lower right), our model also predicts

the possibility of either LTP or LTD for Dtv0. However, once

again, the overall direction of plasticity is almost always (with one

outlier) LTP-like with kz
lo zk{

lo w0.

STDE Plasticity Model Replicates Experimental Results on
Cortico-Striatal Plasticity

We derived our cortico-striatal plasticity model by extrapolating

and combining Pawlak and Kerr’s [22] report of STDP at cortico-

striatal synapses and Shen and colleagues9 [17] data on that

plasticity’s dependence on dopamine receptor type, concentration,

and the sign of spike-timing, and extending to include arbitrary

levels of dopamine and an eligibility trace. Here we answer the

question of whether this extrapolated and extended model can

capture these underlying data.

In Figure 11B we plot the range of STDP kernels predicted by

the sets of successful plasticity coefficients from our exhaustive

search if, as in the study of Pawlak and Kerr [22], D1 and D2

MSNs were indistinguishable. We find that the mean kernels give

the classic STDP profile and some evidence of LTP at negative

spike timings, exactly replicating Pawlak and Kerr’s [22] result.

To check that our models could replicate the results of Shen and

colleagues [17]—shown in the insets in Figure 4—we simulated

their plasticity induction protocols at a single AMPA synapse of

the spiking MSN model using the full STDE model. Each

condition of D1 or D2-type MSN, ‘‘high’’ or ‘‘low’’ dopamine, and

positive or negative spike-pair timing was simulated; details are

given in the Methods. The outcomes of the experiment were a set

of EPSP-ratios, one per condition, comparing the EPSPs before

and after the period of plasticity induction.

We simulated such a complete experiment using different sets of

successful plasticity coefficients found by the exhaustive search.

Figure 12 plots the EPSP-ratios for the data against those obtained

using a typical set of coefficients, showing that the sign of plasticity

is preserved in all cases and several of the rank-order relations

between pairs of experimental conditions are preserved. Thus, the

plasticity model parameters necessary for successful action

selection and suppression in an operant task are consistent with

in vitro data on plasticity at a single cortico-striatal synapse.

Discussion

A central hypothesis in reinforcement learning is that cortico-

striatal synapses are the neural substrate for the interface between

action and reinforcement. While a commonly held idea, a

comprehensive quantitative model is necessary to test this

hypothesis by showing that the properties of cortico-striatal

plasticity can successfully bridge the levels from plasticity at

individual synapses, to the changed activity of the whole neuron,

the effects on its neuronal network, and the consequences for

behaviour. Bridging these levels requires solving the challenges of

understanding: (i) the roles of the complex dependence of cortico-

striatal plasticity on dopamine level, postsynaptic receptor type

and spike-timing; (ii) how to integrate the different time scales of

plasticity (10–100 ms) and environmental feedback (1 s); and (iii)

how both the plasticity rules and time scales fit with the functional

dichotomy of the D1 and D2 MSN pathways in action selection.

We proposed here a comprehensive modelling framework for

testing this hypothesis, which links dopamine-modulated cortico-

striatal plasticity [6,8,15,17], phasic dopamine signals carrying

environmental feedback [2,4,37,38], and the striatum’s role in

reinforcement conditioned action selection [12–14].

To tackle the first challenge, we have proposed a cortico-striatal

plasticity model that can accommodate the most extensive in vitro

data currently available for this phenomenon [17,22]. From the

data we inferred that the rules governing cortico-striatal STDP

vary independently along two dimensions: neuron type (D1/D2

MSNs) and the level of dopamine. The resulting plasticity rules

show continuously varying STDP functions obtained by mixing

those at the extremes of high and low dopamine levels. To tackle

the second challenge, we extended this model to incorporate

STDE, using an eligibility trace to bridge the delay between the

action-representing signals from cortex and the subsequent change

in dopamine level caused by the action’s outcome. To tackle the

third challenge, we used a full model of the basal ganglia network

to find the relative balance of D1 and D2 MSN responsiveness

required for optimal selection and for optimal suppression of an
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action. From this we predicted how the activity of D1 and D2

MSNs should change over an operant learning task in order to

optimise selection after learning and suppression after extinction of

a single action. While these predictions are consistent with the

broad hypothesis that the direct pathway from D1 MSNs promote

selections and the indirect pathway from D2 MSNs suppresses

selection [18–20], our network model revealed the new hypothesis

that D1 and D2 MSNs coding the same action co-operate to

produce optimal selection. This hypothesis is, of course, predicated

on there being single populations of both D1 and D2 MSNs

representing single actions. Though this is a widely held

assumption [13,20,25,51], it is an open question as to whether it

is the case, or whether D1 MSN populations represent specific

actions and D2 MSNs are recruited more generally to contribute

to the inhibition of a set of actions [52].

We found that the profiles of D1 and D2 MSN activity changes

can be generated in full by the in vitro derived plasticity rules using

only a delayed phasic dopamine signal as feedback, a remarkable

convergence of a high level theory of learning and in vitro data

that, at first glance, have no clear functional implication.

Unexpectedly, the data-derived plasticity rules caused a small

increase in the action-coding D2 MSN activity over learning,

supporting the new hypothesis of D1-D2 co-operation for optimal

selection. Also remarkable was that most of the complex

dependencies of cortico-striatal plasticity on spike-timing, dopa-

mine level, and MSN-type were not only sufficient but necessary to

generate the D1 and D2 MSN activity profiles over learning and

extinction (Figures 10 and 11).

Limitations on Interpreting In Vitro Plasticity Data
In going from in vitro data to learning rules, some interpretation of

that data was clearly necessary. For example, we adopted the naturally

occurring level of dopamine in the in vitro experiments as the

nominally ‘‘high’’ value in setting function parameters. The precise

levels of dopamine here may not correspond with the highest values

accessible in vivo but this is not critical. Rather, we assume that the

trend in parameters is monotonic with dopamine level so that the data

determine these trends rather than the values per se. The

Figure 9. Exhaustive search of plasticity coefficients for the STDE model, seeking D1-MSN spike count profiles for operant learning
(see Figure 1). (A) The best scoring 300 (out of 625) D1-MSN activity profiles from a broad search across the entire parameter range. (B) The top 50
ranked profiles from (A); note the much smaller range of spike counts on the vertical axis compared with (A). (C) The top five profiles from this coarse-
grained search (heavy lines in (B)) used to define a more focused, fine-grained search. (D) The top-scoring 60 D1 MSNs from the focused search. The
best 26 were deemed good matches by visual inspection (shown in heavy lines) and their coefficients constituted the discovered set.
doi:10.1371/journal.pbio.1002034.g009

A New Framework for Cortico-Striatal Plasticity

PLOS Biology | www.plosbiology.org 13 January 2015 | Volume 13 | Issue 1 | e1002034



monotonicity assumption is a key aspect of our framework and more

experimental work is required to establish if this is the case.

While the data of Shen and colleagues [17] form the most

complete picture of the factors controlling cortico-striatal plastic-

ity, our extrapolation to the set of STDP kernels (Figure 4) is based

on a particular interpretation of their experimental protocol. They

used an asymmetric stimulation protocol with three postsynaptic

spikes preceding each pre-synaptic spike in the negative timing

condition, but three pairs of pre- then postsynaptic spikes in the

positive timing condition, each pair spaced by 15 ms. Thus their

positive-timing protocol contains both positive and negative

delays, implying that it contains contributions from both positive

and negative STDP kernels. In our interpretation, we simplified

this by assuming the positive-timing protocol was predominantly

receiving contributions from the positive STDP kernel (Figure 4).

Nonetheless, it was encouraging that our unconstrained search

returned kernel coefficients with the signs we extrapolated from

the Shen and colleagues’ data, and recovered the generic MSN

STDP kernel reported by [22].

A further common limitation for any extrapolation from in vitro

work to in vivo application is that many of the in vivo-like

conditions are intentionally removed during in vitro studies to

provide close control over the experimental question at hand. For

the Shen and colleagues’ [17] data, these include the injection of

current to hold the membrane potential close to 270 mV, thus

minimising the impact of NMDA receptors, and the use of

GABAa antagonists to prevent any effect of inhibition (which may

play a key role in STDP [53]). Despite these limitations, we

showed that the single spiking MSN models with our plasticity

rules could produce the required activity profiles over an operant

task even though they incorporated input to both NMDA and

GABAa synapses.

Also missing in vitro are the dynamics of the intra-striatal signals

in vivo that may directly or indirectly affect plasticity at cortical

synapses on MSNs, particularly those originating from the

interneurons. As well as GABAergic signals from the fast-spiking

interneurons, cholinergic interneurons may play a dual role

through both postsynaptic modulation of plasticity [54] and the

shaping of dopamine release in the striatum [55]. Thus, a

complete systems model of cortico-striatal plasticity will require the

integration of synaptic and network level contributions.

Finally, STDP is a phenomenological description at the level of

spikes of a set of intra-cellular signalling processes, and more

detailed modelling of those processes (e.g., [56–59]) will be

essential to shed light on the effects of spiking history, of

dopamine’s triggering of intra-cellular signalling cascades, and

particularly on the discontinuity at Dt~0.

Interpreting the Phasic Dopamine Signal in Ethological
Action Learning

The plasticity rules developed here are consistent with a range

of interpretations of the origin of the phasic dopamine signal. They

are consistent with the dominant hypothesis that phasic firing

of dopamine neurons encodes a reward prediction error

[2,3,5,37,38]. However, we note that they are also consistent with

our recent proposal that phasic dopamine is, in part, associated

with a sensory prediction error that can enable intrinsically

motivated action discovery [4,60]. Here, serendipitous interaction

with the environment to effect some predictable outcome therein,

can cause learning of the contingency between action and

outcome. Recently [61] we have tested the ability of the plasticity

rules developed here to effect action discovery by embedding a

model of the basal ganglia, equipped with these rules, in a

simulated behaving agent that can learn simple action outcome

associations. The agent was able to successfully learn the

associations and, moreover, the specific plasticity rules described

here demonstrated superior performance to a range of plausible

alternatives.

Relation to Models of Learning in Basal Ganglia
There have been numerous attempts to model the learning

taking place in basal ganglia and that identify the locus of plasticity

as the cortico-striatal connections. Many of these models use a

temporal difference (TD) learning rule or variants therein; for a

recent review see [62]. The learning signal in TD algorithms is an

‘‘error’’ or discrepancy between a predicted reward and the actual

Figure 10. Results of exhaustive search of plasticity coefficients
for the STDE model. The plot layout corresponds to that in Figure 4.
In each plot, the red crosses show the coefficient value, the area of the
bubble is proportional to the number of times that value was found,
and the blue squares are the hand-chosen values used to create the
activity profiles in Figure 7. The discovered set for D1-MSNs comprised
the 26 best profiles from Figure 9D and are reported in the top row. For
D2 MSNs, there were 32 candidates with satisfactory profiles at the end
of both coarse and focused searches; they yield the plots in the bottom
row.
doi:10.1371/journal.pbio.1002034.g010
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Figure 11. The plasticity rules obtained under the exhaustive search with the plasticity coefficients of Figure 10. In (A), each plot
shows the range of the resulting plasticity functions for positive and negative spike-pair timing in pale red and blue, respectively, with the mean
shown by solid lines. The plot layout is the same as that used in Figures 4 and 10. The box-and-whisker inset plots show the quartiles, medians,
extrema, and means (black dots) of the sum kzzk{, for each function pair in Figure 10; this gives a measure of the overall direction of plasticity,
given a random sampling of pre-post spike pair timings. (B) The extent and mean of the plasticity functions at high dopamine levels across D1 and D2
type MSNs combined (from left column of plots in (A)).
doi:10.1371/journal.pbio.1002034.g011

Figure 12. STDE model’s replication of Shen and colleagues’ plasticity results (plotted in the insets of Figure 4). Each bar is the log of
the ratio of final-to-initial EPSP amplitude after a period of plasticity induction. Solid/open bars are for the model/data respectively and each
condition refers to a level of dopamine concentration (‘‘hi’’ or ‘‘lo’’) and spike pair timing (+/2 for positive/negative pre-post timing). For each of D1-
and D2-MSNs, plasticity coefficients were drawn from the sets deemed successful in the exhaustive search. In each case (D1 or D2) the four outcomes
were uniformly scaled (under linearity of learning) to the best least-squares fit.
doi:10.1371/journal.pbio.1002034.g012
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value received. The error is derived from algorithms grounded in

machine learning [63], but, in biological terms, it is often identified

with phasic dopamine [2,64]. In contrast, we have no algorithmic

origin for phasic dopamine because our account does not address

this level of description (the dynamics of dopamine are described

phenomenologically).

Nevertheless, we might, in principle, attempt to map compo-

nents of the TD ‘‘rule’’ onto mechanisms we have described here.

This exercise would probably fail however, as the the TD rule is

not inherently of the three-factor kind in which our framework sits;

that is, it does not explicitly include pre- and postsynaptic firing,

and an error/dopamine modulatory term. The difficulties

encountered with mapping TD in this way have been discussed

at length by Worgotter and Porr [65]. However, this does not

preclude our plasticity framework from supporting operant

learning in which phasic dopamine is obtained algorithmically

from internal models of prediction. Indeed, we have recently

demonstrated such a model in complete cortico-basal ganglia-

thalamic loops, embodied in a behaving agent [61]. This model

showed how our plasticity rules have rate-coded (non-spiking)

equivalents that are part of the well-known BCM family of

learning rules [66,67]. This was made possible because of the

intimate relation between BCM rules and STDP [68].

Cortico-Striatal Plasticity in Goal-Directed and Habit
Learning

A key distinction in instrumental learning tasks is made between

goal-directed and habitual behaviour. An animal expressing goal-

directed behaviour modifies that behaviour in response to a

change in the value of its outcome or in the contingency between

the action and the outcome; one expressing habit behaviour does

not [9,69,70]. The inference is then drawn that goal-directed

animals have access to explicit representations of outcomes linked

to actions to guide behavioural choice, which are updated after

changes to the outcome irrespective of performing the action. By

contrast, habitual animals make behavioural choices on the basis

of stimulus-response pairings and can only update this association

after repeatedly performing the action cued by the stimulus

[69,71].

Habitual and goal-directed behaviour have been respectively

linked to the dorsolateral and dorsomedial striatum [9–11,72].

Lesioning the dorsolateral striatum [73–75] or disrupting dopa-

mine signalling within it [76] prevent habit formation. Corre-

spondingly, there is a re-organisation of single neuron activity in

the dorsolateral striatum during habit formation [26,27,29,75].

Lesioning the dorsomedial striatum [74,75,77] prevents sensitivity

to devaluation or contingency changes. Recent studies of

comparative plasticity have shown that only the dorsomedial

striatum has evidence of synaptic plasticity unique to goal-directed

learning [78,79]. Together, these data raise the key question of

what differs between circuits containing the dorsomedial striatum

and dorsolateral striatum that ultimately results in goal-directed

and habitual behaviour [71].

Our model framework here has three separate components: (1)

models of the signals from cortex and of dopamine release, both

per trial and their changes over trials; (2) a synaptic-level plasticity

model (dopamine-dependent STDP); and (3) a circuit-level action

selection model. Any or all of these could be a source of difference

between dorsomedial and dorsolateral striatum, and hence

candidates for the difference between goal-directed and habitual

behaviour. We consider the first two here, as basal ganglia

circuitry is well-conserved between regions [80] (but see [81]) and

it is not immediately clear how differences in the action selection

mechanism could differentiate between outcome-driven and

stimulus-driven behaviour.

Together, model components 1 and 2 reinforce an action by

increasing the probability of its selection on a subsequent trial, and

do this by increasing the influence of a fixed salience signal from

cortex over the basal ganglia selection process. In this respect, the

model mechanisms are neutral as to whether the action request

from cortex is primed by a representation of the outcome to follow

(goal-directed) or a representation of the preceding stimulus

(habitual). However, for simplicity we assumed throughout that the

input from cortex had the same salience on every trial whether the

outcome was delivered or not, and so did not reflect changes in

value. Thus, our model of inputs is currently consistent only

with stimulus-response behaviour, and therefore our model

framework as a whole is most consistent with the dorsolateral

striatum. Nevertheless, within this framework, component 2 (the

synaptic-level plasticity model) remains neutral to the goal/habit

distinction.

Extending our model framework to account for goal-directed

behaviour would require identifying where information about

value or contingency become encoded. Dorsolateral and dorso-

medial striatum receive inputs from different cortical regions [82]

and so one possibility is that only the action-request inputs to

dorsomedial striatum encode value and contingency information.

One candidate here is orbitofrontal cortex: it projects to the

dorsomedial striatum [83], its neurons’ activity represents the

expected value of an action [84,85], and optogenetic stimulation of

its projection neurons promotes the maintenance of action during

extinction [75] consistent with their encoding of value. In this

view, changes to value or contingency update their representations

in cortex and are reflected in the changed salience of the action

request to striatum, allowing for more rapid changes to behaviour

than could occur solely via synaptic plasticity.

A particular challenge for this view are non-contingent

reinstatement phenomena where an action is immediately re-

energised after extinction by a single non-contingent presentation

of its pre-extinction outcome [86]. For if goal-directed behaviour is

driven by the rapidly diminishing salience of an action during

extinction, then reinstatement forces us to assume that a single

outcome presentation is sufficient to restore that salience.

Another possibility is that the dopamine signal is not the same in

dorsomedial and dorsolateral striatum, as we have assumed here.

Separate midbrain dopamine systems project to these regions

[81,87,88]. Reflecting this, intact dopamine signalling in dorso-

lateral striatum is necessary for the formation of habitual

behaviour [76], and blunting dopamine signalling prevents the

formation of habitual behaviour but does not prevent goal-

directed behaviour [89]. In this view, changes to value and

contingency would be reflected by the evoked dopamine signal in

dorsomedial striatum and not in dorsolateral striatum, and thus

appropriately modulate cortico-striatal plasticity only in dorsome-

dial striatum. Particular challenges for this view are that dopamine

signals to the striatum seem to encode the same information

everywhere [90] (but see [91]) and the speed of change—if

behavioural change depends solely on synaptic plasticity, then

behaviour is likely altered slowly but the goal-directed system

seems to rapidly adapt [71].

A further possibility (which challenges our synaptic-level

neutrality) is that dopamine-dependent STDP is different between

the dorsolateral and dorsomedial striatum, so that even with the

same input signals (cortical and dopaminergic), the cortico-striatal

weights are updated differently between the two regions. There is

good evidence that synaptic weight change differs between the two

regions in both skill-learning [92] and goal-directed learning [79],
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though these data cannot distinguish between whether the

inputs differed, thus differentially recruiting the same plasticity

mechanism, or the mechanism of plasticity itself differed.

Consistent with the latter, in vitro work has suggested differences

in high-frequency stimulation induced LTP between medial and

lateral striatum [93]. In this view, for the synaptic plasticity rules

themselves to reflect changes to outcome in dorsomedial and not

dorsolateral striatum, it follows that the outcome-related signals

(cortical and/or dopaminergic) must be input to both areas, but

that the plasticity mechanisms are sensitive to changes in these

inputs only in dorsomedial and not dorsolateral striatum. Again a

particular challenge for this view is the speed of behavioural

change for goal-directed behaviours if they are solely dependent

on synaptic plasticity and not on computations performed

elsewhere [71].

The above ideas are naturally speculative, reflecting the current

lack of data on the precise relationship between different forms of

behaviour and the details of cortico-striatal plasticity in different

striatal regions [70]. A contribution of our model framework is

that by bridging the levels from a single synapse to overt behaviour

it provides a basis for framing the alternative hypothesises and

their implications.

Implications for Cortico-Striatal Plasticity
Our search for the necessary plasticity coefficients to generate

the D1 and D2 MSN activity profiles predicts that two of the eight

coefficients could be positive or negative (Figure 11). Thus, for D1-

MSNs at high levels of dopamine and for D2-MSNs at low

dopamine levels, there is a possibility of LTD or LTP for negative

spike-pair timing. This apparent ambiguity may be resolved in two

ways: (i) that there is a corresponding variation of plasticity rules

across individual MSNs (or even individual synapses) in an

individual animal brain; or (ii) that these rules are subject to

constraints that lie outside our framework, and thus in vivo all

combinations of LTP and LTD are those we inferred from the

Shen and colleagues9 [17] data (Figure 4). Such constraints could

include that the specific dopamine-activated intracellular signaling

pathways that ultimately give rise to changes in plasticity can allow

only a single direction of change for a given combination of

dopamine receptor and level, and consequently can only express

one of LTD or LTP at a single synapse for that combination.

We hypothesised that extinction in operant learning involves

active suppression of the action by D2 MSNs, not (solely)

unlearning of the action at cortico-striatal synapses onto D1

MSNs. While this is compatible with modern theories of behaviour

that posit that extinction is not a simple unlearning of previous

competence [46], it leaves open the question of how post-

extinction phenomena of spontaneous recovery of action can

occur if the action is actively suppressed. We showed our model

nonetheless could account for both phenomena of contextual

renewal (immediate recovery of extinguished action in new

context) and reacquisition (rapid re-learning of extinguished

action). This occurred because, in extinction, we predict that

D1-MSN synaptic conductances would regress to their original

untrained state only when extinction and post-extinction testing

were in the same context, and so a change of context allows rapid

recovery of action. Thus in our model spontaneous post-extinction

recovery arises solely from the plasticity rules without recourse to

additional hypotheses such as state-space splitting proposed by the

model of Redish and colleagues [94].

The complexities of cortico-striatal plasticity’s dependence on

dopamine receptor-type, dopamine level and spike-timing mean

that inferring the effect of changes in these factors is fraught with

difficulty, and models are necessary to guide us. Simplifying such

models in turn provides us with useful heuristic guides. On the

basis of the data available at the time, Reynolds and Wickens [15]

sketched a widely used and valuable heuristic guide to the overall

direction of weight change at cortico-striatal synapses as a function

of dopamine concentration (see Figure 4 in [15]). Our data-

derived cortico-striatal plasticity model predicts a smooth morph-

ing of STDP kernels with changing levels of dopamine, switching

gradually from LTP to LTD. We can thus use our model to

update the heuristic guide to the dopamine-dependence of plastic

change, and importantly separate the effects on D1 and D2 MSNs.

In Figure 13 we plot the sum of the STDP kernel amplitudes as a

function of dopamine concentration, which approximates the

expected overall weight change for random trains of input and

output spikes, for every successful coefficient set from the exhaustive

search. The range of weight changes shown are hence consistent

with successful action selection and suppression of the key action.

We see that, if we plot the equivalent curve to that in [15] by not

distinguishing D1 and D2 MSNs, then our model predicts that the

average total measured weight change approximates the curve in

[15]. However, the range of total weight change we observed,

consistent with successful selection of the key action, covers both

LTD and LTP at many dopamine levels. This is accounted for in

the model by its prediction that increasing dopamine switches D1

MSN synapses from LTD to LTP and D2 MSN synapses from LTP

to LTD. Our results thus suggest that the dependence on both

dopamine receptor and dopamine concentration forms the minimal

model of cortico-striatal plasticity.

Methods

Rate-Coding Model of the Basal Ganglia Network
Figure 2A shows the basal ganglia network implemented by the

model (see [34,80,95] for a detailed discussion of assumptions

behind this architecture). Each action is encoded in a discrete

‘‘channel’’ throughout the model. Within each nucleus, each

channel is represented by a single, rate-coded leaky-integrator unit

whose output stands for the mean activity of a population of

neurons that might instantiate the channel in vivo.

The assumption of a channel architecture is based on the long-

standing concept of parallel anatomical loops running throughout

the basal ganglia nuclei [96,97]. Both anatomical and electro-

physiological evidence points to the existence of channels

representing discrete actions. For example, the somatotopic map

found within the striatal motor territory is maintained throughout

the basal ganglia circuit, such that there are separate channels for

arm, leg, and face representations [18,98]. Similar topographic

maps have been proposed for the other macroscopic channels

[18]. Moreover, within these limb representations, there are

discrete channels corresponding to particular movements, dem-

onstrated in striatum by microstimulation [99] and markers for

metabolic activity during behavior [100]. Recently, Fan and

colleagues [101] provided a compelling demonstration that basal

ganglia output neurons coding for selection of the same action are

physically clustered, just as predicted by the channel architecture.

Cortical input to each channel represents the ‘‘salience’’ of that

action. In general, the salience of an action at any given moment

will depend on the integration of diverse information on current

motor commands, sensory information, and context by convergent

inputs to individual MSNs [13,80,102]. For the rate-coding model

of the basal ganglia network, we collapse this into a single scalar

value for the salience of the represented action, as we are

interested in the ability of the network model to perform selection

or suppression on the basis of this salience signal, not in how that

signal is computed. Consistent with this assumption, a recent
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optogenetic study has shown that selecting an action is controlled

by the activity of cortico-striatal neurons in sensory cortex [103].

For the spiking MSN model, we explicitly represent changes in

context by altering the sub-set of active cortical inputs (detailed

below), and thus simulate how salience is dependent on context.

Competition between channels for behavioural expression is

provided in a ‘‘selection pathway’’ comprising D1-MSNs, STN,

and the output nuclei that form a feedforward, off-centre, on-

surround network. The circuit with STN, D2-MSNs, and GPe acts

to moderate the overall levels of excitation and inhibition in the

selection pathway and also perform action suppression for

individual channels (Figure 2B).

The average activity a of all neurons comprising a channel’s

population changes according to

t _aa~{a(t)zI(t) ð1Þ

where t is a time constant and I is summed, weighted input. We

used t~10 ms throughout. The normalised firing rate y of the

unit is given by a piecewise linear output function

y(t)~F (a(t),h)~

0 a(t)ƒh

a(t){h hva(t)v1{h

1 a(t)§1{h

8><
>:

ð2Þ

with threshold h. Negative thresholds thus ensure spontaneous

output, which we use to ensure STN, GPe, and GPi/SNr have

tonic output (see below).

The following describes net input Ii and output yi for the ith

channel of each structure, with n channels in total. The full model

is given by [35]:

Striatum D1: Id1
i ~wd1

i ci(1zl1),

yd1
i ~F (ad1

i ,0:25),

Striatum D2: Id2
i ~wd2

i ci(1{l2),

yd2
i ~F (ad2

i ,0:25),

Subthalamic nucleus: Istn
i ~yctx

i {y
gpe
i ,

ystn
i ~F (astn

i ,{0:25),

Globus pallidus external segment: I
gpe
i ~0:9

Pn
j~1

ystn
j {yd2

i

y
gpe
i ~F(a

gpe
i ,{0:2),

GPi/SNr: I
gpi
i ~0:9

Pn
j~1

ystn
j {yd1

i {0:3y
gpe
i ,

y
gpi
i ~F(a

gpi
i ,{0:2),

Each cortical signal ci simulating an action request was input to

channel i in the D1-MSN, D2-MSN, and STN populations. The

network model included opposite effects of activating D1 and D2

receptors on MSN activity: D1 activation facilitated cortical

efficacy at the input, while D2 activation attenuated this efficacy

[45,104,105]. Thus, if the relative activation of D1 and D2

receptors by tonic dopamine are l1,l2[½0,1�, then the increase in

efficacy due to D1 receptor activation was given by (1zl1); the

decrease in efficacy due to D2 receptor activation was given by

(1{l2).

In the implementation used here, the model had six channels

but only two were actively driven by cortical input. The other

channels are required, however, as they have quiescent firing rates

in STN and GPe that contribute to overall activity.

Establishing Relative D1 and D2 MSN Responsiveness for
Selection and Suppression

We used this model to predict the relative responsiveness of D1

and D2 MSNs that optimised selection of an action (emulating the

target situation at the end of the learning epoch) and, separately,

that optimised the suppression of an action (emulating the target

situation at the end of the extinction epoch). The ability to select a

particular action can only by tested with reference to at least one

other possible alternative action, so we considered two competing

signals, one signal representing a fixed ‘‘control’’ action, available

Figure 13. Expected overall weight change as a function of dopamine concentration. Here we plot the mean (line) and range (shading) of
the overall weight change (sum of the plasticity factors Kz(d)zK{(d)) at a given dopamine level d , across every set of plasticity coefficients found
by the search (Figure 10). (A) Separate plots for the found sets of D1 and D2 MSN coefficients, showing the dopamine dependence of each neuron
type. (B) The sum of the individual MSN-type contributions in (A).
doi:10.1371/journal.pbio.1002034.g013
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for selection throughout, and another signal representing the key

action learnt and extinguished over the course of the experiment.

We input this pair of salient signals (s0,se) to two channels in the

model, respectively termed the control (subscript 0) and experi-

mental channel (subscript e). For a given pair of inputs, we read

out the outcome of the competition from the output of the basal

ganglia y
gpi
i (SNr/GPi in Figure 2): y

gpi
i v0:05 signalled a

sufficient fall in GPi’s tonic inhibition for selection of the

corresponding action on channel i.

Each input pair thus had four possible outcomes: no selection,

control channel selected, experimental channel selected, or dual

selection. The ideal selector outcomes were then defined as

follows. For both learning and extinction we demanded that no

action be selected if both inputs (s0,se) were less than the MSN

output threshold h~0:25. After action learning we required that,

if sews0, then the experimental channel is selected, and if sevs0,

the control channel is selected; if se~s0, then no selection is

required. After extinction of a previously learned action repre-

sented by the experimental channel, we required that that channel

is never selected no matter what the value of se—representing

suppression of that action—and that the control channel is selected

if sevs0.

The salience pairs (se,s0) were constructed by allowing each of

se,s0 to range over a set of ten discrete values in the interval ½0,1�.
The set of ideal outcomes (for each of learning and extinction) over

all 100 salience pairings constitutes an ideal selector template for

model comparison, and these are plotted in Figure 3 for learning

(Figure 3A) and extinction (Figure 3B), with experimental and

control channels being identified with channels 1 and 2,

respectively. For each of the 100 input pairs, the input on the

experimental and control channels occurred at t = 1 s, and t = 2 s,

respectively. The GPi output was read out at equilibrium, and the

simulation time-step was 0.01 s. Over all 100 input pairs, the

model performance was then compared to the template, and

summarised as a percentage match.

The ability of the network model to match these two templates

was tested by varying the relative ‘‘responsiveness’’ to input of the

D1 and D2 MSN populations of the experimental channel.

Responsivess is defined here as the ratio of the input to output

value for the population. As both the cortico-striatal input weights

and the level of tonic dopamine affect responsiveness, for this

channel alone we set l1~l2~0 and varied the D1 (wd1
e ) and D2

(wd2
e ) MSN input weights independently over the range ½0:25,2�.

To allow us to investigate a full range of MSN behaviour, we

dropped the saturation requirement on the output (condition (iii)

in Equation 2). For the control channel, we set l1~l2~0:2 and

the input weights to wd1
e = wd2

e = 1, following our prior models

[35].

Formal Description of the Plasticity Framework
Here, we give details of the plasticity framework that

incorporates the three factors of postsynaptic neuron type,

dopamine concentration, and spike-timing at the scale of STDP.

All parameters are collected together in Table 1.

From In Vitro Data to STDP Functions
We start by assuming constant dopamine and STDP (no

eligibility). Let tpre,tpost be a pair of postsynaptic and presynaptic

spike times respectively, and put Dt:tpost{tpre. For each of the

two classes, D1-, D2-MSNs we define STDP functions (kernels) for

the following four cases:

low dopamine, Dtw0, zz
lo (Dt)~kz

lo sz(Dt), where sz(Dt)~ exp ({Dt=t)

low dopamine, Dtv0, z{
lo (Dt)~k{

lo s{(Dt), where s{(Dt)~ exp (Dt=t)

high dopamine, Dtw0, zz
hi (Dt)~kz

hi sz(Dt), where sz(Dt)~ exp ({Dt=t)

high dopamine, Dtv0, z{
hi (Dt)~k{

hi s{(Dt), where s{(Dt)~ exp (Dt=t)

ð3Þ

Extending the Model to Arbitrary Levels of Dopamine
We define functions z+(d,Dt) for any d, by ‘‘mixing’’ the

functions at the extremes of the range, z+lo (Dt) and z+hi (Dt) (see

Figure 5). We use a simple linear blending scheme

z+(d,Dt)~a(d)z+hi (Dt)z½1{a(d)�z+lo (Dt) ð4Þ

where the mixing functions a(d) for each of D1- and D2-MSNS

are shown in Figure 5D. It is conveniently expressed by a

Table 1. Parameters for mixing STDP functions (kernels) and plasticity rules.

Parameter Group Parameter Symbol Value(s)

D1 Mixing function a(d) Naka-Rushton exponent r 1.2

Naka-Rushton threshold h 6.0

maximum value a0 1.2

D2 Mixing function a(d) Naka-Rushton exponent r 1.4

Naka-Rushton threshold h 1.8

maximum value a0 1.0

Timing and learning rates (common
to both D1- D2-MSNs)

kernel sz time constant tz 0.02

kernel s{ time constant t{ 0.02

eligibility time constant: tg 0.3

learn rate m 0.65

doi:10.1371/journal.pbio.1002034.t001
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Naka-Rushton equation

a~
a0dr

(drzhr)
ð5Þ

but no special significance is assigned to this form; all that is

required is a rapidly increasing, then saturating, monotonic

function of d with no point of inflexion.

The parameters a0, r, h were chosen to ensure: (i) aƒ1 over the

range of dopamine level used; (ii) that, for each of D1- and D2-

MSNs, with typical plasticity coefficients consistent with the data

in [17], there is little or no overall plastic change at tonic levels of

dopamine.

In extending the formalism further to incorporate eligibility

(next section), it is useful to rewrite (4) in an alternative form

z+(d,Dt)~K+(d)s+(Dt),

where K+(d)~a(d)k+
hi z½1{a(d)�k+

lo ð6Þ

We refer to the K+(d) as ‘‘plasticity factors,’’ and plot them in

Figure 5C and 5E.

For STDP, the resulting change in synaptic weight Dw due to a

single pre-post spike pair is given by

Dw~mz+(d,Dt) ð7Þ

where m is a learning rate.

Extension to Longer Time Scales: Spike Timing
Dependent Eligibility

We base our eligibility trace model on that of Izhikevich [44],

extending to incorporate arbitrary levels of dopamine, and testing

its application across all forms of non-standard STDP we observe

for cortico-striatal synapses. The basic idea is that each spike pair

creates a step-change contribution s+(Dt) to a corresponding

eligibility trace g+(t), where s+(Dt) are the normalised STDP

functions defined in (3), and the positive/negative sign applies

according to whether Dtw0 or Dtv0. The step change for either

can be positive or negative, corresponding to a potential increase

(LTP) or decrease (LTD) in synaptic weight. The eligibility decays

exponentially with time constant tg, so the eligibility g+(t), due to

a single spike pair, is s+(Dt) exp ({t=tg). The process is

illustrated for positive spike timing in Figure 6. Synaptic weights

are updated according to

dw

dt
~m hz½d(t)�gz(t)zh{½d(t)�g{(t)ð Þ ð8Þ

where h+½d(t)� are functions of the (possibly changing) dopamine

level d(t), and m is a learning rate.

We now put h+:K+, where K+½d(t)� are the plasticity factors

given by (6), but allowing time-dependent dopamine d(t). Then,

using the first relation in (6), the learning rule for a single spike pair

becomes

dw

dt
~m zz½d(t),Dt�zz{½d(t),Dt�ð Þ exp ({t=tg) ð9Þ

Here, the factor zz½d(t),Dt� is given by the same functional

form as (4) but now has a time-dependence with dynamically

changing dopamine. The effects of multiple spike pairs are

assumed to add linearly.

The complete STDE learning rule for a single synapse is thus

given by Equation 9, which uses the STDP kernel zz½d(t),Dt�
from Equation 4 defined by mixing the extreme STDP kernels in

Equation 3 with the mixing function in Equation 5. The dynamic

dopamine level d(t) is specified by the modeller: for our simulated

operant conditioning experiment we specify the within- and

between-trial changes in dopamine below.

The choice of learning rule for STDE was dictated by the

constraint that STDE reduces to STDP for constant levels of

dopamine. Thus, integrating (9) gives the total change in weight

due to the spike pair and, for constant dopamine, this is equal to

the change for STDP in Equation (7) (up to the time constant tg,

which may be absorbed into m).

The Spiking MSN Model
The spiking model MSN is based on that in [45]. Essentially,

this is an Izhikevich model [106] of a MSN, with the addition of

direct dopaminergic modulation of both synaptically induced and

intrinsic membrane currents. In the biophysical form of the

Izhikevich model neuron [107], u is the membrane potential and

the ‘‘recovery variable’’ u is the contribution of the neuron class’s

dominant ion channel:

C _uu~k(u{ur)(u{ut){uzI ð10Þ

_uu~a½b(u{ur){u� ð11Þ

with reset condition

if uwupeak then u/c, u/uzd

where, in the equation for the membrane potential (10), C is

capacitance, ur and ut are the resting and threshold potentials, I is

the current due to synaptic input, and c is the reset potential.

Parameter a is a time constant governing the time scale of the

dominant ion channel. Parameters k and b are arbitrary scaling

constants, with the sign of b controlling whether the neuron is an

integrator (bv0) or a resonator (bw0). Parameter d describes the

after spike reset of recovery variable u, and can be tuned to modify

the rate of spiking output.

The MSN model’s parameter values and their sources are given

in Table 2. In [45] we showed how this model can capture key

dynamical phenomena of the MSN the slow-rise to first spike

following current injection; paired-pulse facilitation lasting hun-

dreds of milliseconds; and bimodal membrane behaviour emulat-

ing up- and down-state activity under anaesthesia and in

stimulated slice preparations.

Synaptic input comprises the source of current I in Equation

10:

I~IampazIgabazB(u)Inmda: ð12Þ
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where Iampa, Igaba, Inmda are current input from AMPA, GABA,

and NMDA receptors, respectively, and B(u) is a term that models

the voltage-dependent magnesium plug in the NMDA receptors.

Each synaptic input type z (where z is one of ampa, nmda, gaba) is

modelled by

Iz~�ggzhz(Ez{u), ð13Þ

where �ggz is the maximum conductance and Ez is the reversal

potential. We use the standard single-exponential model of

postsynaptic currents

_hhz~
{hz

tz

, and hz(t)/hz(t)zSz(t), ð14Þ

where tz is the appropriate synaptic time constant, and Sz(t) is the

number of pre-synaptic spikes arriving at all the neuron’s receptors

of type z at time t.

The term B(u) in Equation (12) is given by [108]

B(u)~
1

1z
½Mg2z�0

3:57
exp {0:062uð Þ

, ð15Þ

where ½Mg2z�0 is the equilibrium concentration of magnesium

ions.

Synaptic conductances were initialised with Gaussian noise so

that they have a coefficient of variation of 0.1. Any synapses with

negative conductance as a result of this initialisation was set to

0:5S�ggzT0. There was a ceiling on the synaptic conductance of

5S�ggzT0.

Dopaminergic Modulation of Ion Channels and Input
The following models of dopamine modulation are detailed in

[45]. Let w1 and w2 be the proportion of activated D1 and D2

receptors. For activation of D1 receptors we used the linear

mappings:

ur/ur(1zKw1) ð16Þ

and

d/d(1{Lw1), ð17Þ

which respectively model the D1-receptor mediated enhancement

of the inward-rectifying potassium current (KIR) (16) and

enhancement of the L-type Ca2+ current (17).

For activation of D2 receptors we used the linear mapping:

k/k(1{aw2) ð18Þ

which models the the small inhibitory effect on the slow A-type

potassium current, increasing the neuron’s rheobase current [105].

We add D1 receptor modulation of NMDA receptor evoked

EPSPs by

ID1
nmda~Inmda(1zb1w1), ð19Þ

and we add D2 receptor modulation of AMPA receptor evoked

EPSPs by

ID2
ampa~Iampa(1{b2w2), ð20Þ

where b1 and b2 are scaling coefficients determining the

relationship between dopamine receptor occupancy and the effect

magnitude.

The dopamine dependent factors wD1,wD2 used in the

dopamine-modulated neuron model are related to dopamine

level d by wD1~wD2~wmaxdr=(drzhr), where r~1:8, h~4:5,
wmax~1:2. This ensured that, for most of the phasic dopamine

signal, wD1, wD2 are both almost 1.

Input Spike Trains
The neuron incorporated N excitatory and N inhibitory

(GABAergic) synapses, with N~200. Each excitatory synapse

contained a model of NMDA and AMPA receptors, as described

above. Every synapse received a Poisson train of spikes at some

specified firing rate. For the main experiments with operant

learning, the GABAergic synapses received background input at

three spikes/s; for the replication of the STDP protocols, they

received no input. The firing rates of the excitatory synapses are

detailed below.

Simulating the Behavioural Experiment
Single trials. The structure of a single trial during learning is

shown in components of Figure 6. The duration of each trial (time

between consecutive bouts of high salience) was 2.4 s. The

duration of the salience Tsal, was 0.4 s. Of the 200 excitatory

synapses to the model neuron, 50 were chosen at each trial to

receive highly salient input; we refer to this as subset S, and its set

complement with respect to all the synaptic inputs, �SS. The

background firing rate fbac was three spikes/s and that during the

salient period, fsal was 25 spikes/s. These are plausible figures for

background cortical rates [109] and activity during motor

behaviour [110]. If data were available, then more advanced

models of the cortical input could take into account distributions of

rates over the cortical inputs and their temporal dynamics over a

single trial [111].

The range of dopamine level d occupies a scale 0ƒdƒgpeak,

where gpeak is the maximum amplitude of the phasic burst. The

scale here is arbitrary and simply fixes a corresponding range of

parameters that describe the effects of dopamine via the mixing

function defined above. Thus, gpeak~20 and the tonic dopamine

level was 3. The phasic dopamine signal on a particular trial had

an onset amplitude sampled from a Gaussian with a mean of the

current value of g and standard deviation of 0.55, and decayed

with a time constant of 20 ms [112] after onset. The time of

delivery after the salient period, DTDA, was 150 ms. The spike

pair functions derived from the STDP, s+, were assigned a

plausible time constant of 20 ms, based on similar, STDP

counterparts [113]. The eligibility time constant tg was 300 ms

and was chosen so that the eligibility signal can interact

substantially with phasic dopamine at the typical latencies

encountered with this signal.
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The conductances of all AMPA synapses were continuously

updated over a trial using the STDE rules, with the set of Dts for

each synapse defined by the times between the sets of pre-synaptic

spike input and the set of postsynaptic spikes (when u crosses upeak).

Single experiment. Figure 1 shows the structure of a

complete, multi-trial experiment. The number of trials in each

of the epochs baseline, learning, intermission, extinction, post-

extinction phases were 15, 40, 30, 40, and 30, respectively. During

the learning and extinction phases, the same subset S was chosen

on every trial, representing the action being reinforced or

extinguished. Outside these phases, the subset S was randomly

chosen on each trial.

Phasic dopamine decayed over the entire experiment with a

time constant thab~20s, so that its amplitude g, was just less than

1% of its maximal value gpeak at the end of the learning epoch.

Renewal and Reacquisition Tests
Data interpretation. Nakajima and colleagues [49] reported

response rate data for learning, extinction, and renewal in the

sequences AAA, ABA, and AAB in their Figure 3. To control for

the effect of changing the context alone on renewal performance,

we wanted to compare performance in that context both before

and after extinction (the latter being the ‘‘renewal’’ test). We thus

interpreted the response performance during the first block of

extinction as the before-point, and plot those data as ‘‘acquis.’’ in

Figure 8A (note that Nakajima and colleagues used two sequences

with the same renewal context ABA and AAA—the performance

in the first block of extinction was similar for both, so we plot the

average of the two). The data plotted as ‘‘renewal’’ in Figure 8A

are taken from the first block of renewal trials.

For a further control, and for consistency with the experimental

dataset on reacquisition (see below) we also required data for the

sequence ABB. While, there is no such data point in [49], we

assume renewal in ABB will be similar to that in AAA, as reported

by Crombag and colleagues [48].

To summarise the experimental data on ABA and ABB
reacquisition performance from [50] we performed a linear

regression on the data in their Figure 2 for each reacquisition

context A or B (which was originally reported for ten time-points);

the plotted symbols in Figure 8B are the endpoints of those

regressions at the two extreme times.

Fitting rate-coded units. We took the set of learnt synaptic

weights for D1 and for D2-MSNs at the specified point in the

simulated renewal or reacquisition experiments, and constructed

equivalent rate-coded models that matched their input-output

firing rate curves. First we found the input-output function for

each spiking MSN model using those weights, and converted the

function into its normalised rate-coded equivalent. For outputs, we

assumed that 40 spikes/s corresponded to a normalized output

rate of 1. For inputs, we assumed that a normalized value of 1

corresponding to all 50 highly salient inputs (in set S) firing at 40

spikes/s (note that the rate-coded model input is a scalar,

collapsing across all afferents to the spiking model). To then

obtain the best fit with the target spiking input-output function, we

varied the scalar input weight (wd1 or wd2) and the threshold h. Fits

were determined using a simple least squares method in MATLAB

over a range of input values across the whole, normalized range.

For examples of fitted models see Figure S2 and Text S2.

Exhaustive Search for Plasticity Coefficients
Details are given here of the search for plasticity coefficients

fkz
hi , k{

hi , kz
lo , k{

lo g that give rise to MSN response profiles of the

form in Figure 1. The 4D space of coefficients was divided into a

regular rectangular lattice defined by the intersection of five

regularly spaced points along each of the axes (giving 625 points).

This was augmented by a point corresponding to the coefficients

used in the data-constrained experiments reported in Figure 7. At

each lattice point, three experiments were run using the

experiment defined by Figure 1, but the numbers of trials in

some epochs were reduced to expedite computation. Thus, for D1-

MSNs, the number of trials in each epoch (baseline, learning,

intermission, extinction, post-extinction) was reduced to 15, 30, 30,

20, 15, respectively, and for D2-MSNs, to 15, 40, 30, 20, 15.

Initially, the lattice was rather coarse grained with a liberal

range of values; we were keen not to exclude any non-intuitive

combinations of coefficient values. For D1 MSNs, the lattice was

defined by drawing the coefficients from the five equi-spaced

values across the following intervals: kz
hi [ ½{1:0,1:5�, kz

lo ,

k{
hi , k{

lo [ ½{1:0,1:0�. For D2 MSNs the intervals were

kz
hi , kz

lo , k{
lo [ ½{0:7,0:7�. However, a second search was then

conducted using a smaller lattice, whose domain was restricted by

the more successful experiments from the first pass. For

D1 MSNs this was given by kz
hi [ ½0:25, 1:5�, kz

lo [ ½{0:5,0�, k{
hi [

½{0:5, 0:5�, k{
lo [ ½{1:0,{0:5�, and for D2 MSNs by kz

hi [
½0:35, 0:7�, kz

lo [ ½0,0:7�, k{
hi [ ½{1:2, {0:85�, k{

lo [ ½{0:7,0:35�:
For each group of three experiments at each lattice point, the

spike counts at each trial j were averaged over this group, and

across a window of three trials. These smoothed, ensemble-mean

spike counts N(j) were then characterised with a feature-based

metric in terms of their match to the target profiles in Figure 1.

Table 2. Intrinsic and synaptic parameters for the medium
spiny neuron model.

Parameter Value Source

a 0.01 [107,114]

b 220 [107]

c 255 mV [107]

k 1 [107]

ur 280 mV [107]

upeak 40 mV [107]

C 15.2 pF [45]

ut 229.7 mV [45]

d 91 [45]

K 0.0289 [45]

L 0.331 [45]

a 0.032 [45]

Eampa ,Enmda 0 mV [105]

Egaba 260 mV [105]

tampa 6 ms [105]

tnmda 160 ms [105]

tgaba 4 ms [105]

gampa 0.46 nS rescaled from
[45]

gampa : gnmda 2 [105]

gampa : ggaba 1.4 [105]

½Mg2z�0 1 mM [108]

b1 6.3 [45]

b2 0.215 [45]

doi:10.1371/journal.pbio.1002034.t002
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This metric was used as a guide for selecting MSNs with well-

matched profiles, and fit to the target was ultimately corroborated

by visual inspection (any feature-based method is only as good as

the quality of the features it uses).

Validating the Model against the Shen and
ColleaguesData

We simulated the cortico-striatal plasticity induction protocols

described in Shen and colleagues [17] using the spiking MSN

model with a single AMPA synapse. They used a theta-burst

protocol, with an asymmetric design for the positive (pre-post) and

negative (post-pre) spike timing tests. For the pre-post test, each

burst was three pre-synaptically induced EPSPs spaced by 20 ms,

each EPSP followed by a fictive postsynaptic spike after 5 ms. For

the post-pre test, each burst was three fictive postsynaptic spikes

spaced by 20 ms, the last spike followed by a pre-synaptically

induced EPSP after 10 ms. For both tests, the bursts were

presented in blocks of 5 at 5 Hz (that is, the first event of a burst

occured every 200 ms), and ten blocks were presented at 0.1 Hz

(i.e., every 10 s).

To simulate this protocol we used a single synaptic input

obeying the STDE rules to which we applied afferent spikes, and

generated artificial postsynaptic spikes with the correct timing

relations. The only difference was the extended period of time

between blocks of stimuli was reduced to 2 s to avoid unnecessarily

large simulation times (the neural membrane had returned to rest

over this time, and all time constants in the model are substantially

shorter than 2 s). Ten blocks of stimuli with potential plasticity

were used, sandwiched between blocks with no plasticity (learning

rate of zero), which served to allow measurement of mean EPSPs

before and after learning. In line with the protocol of Shen and

colleagues [17], the membrane potential was set to an initial

holding value of 270 mV (by current injection). At no time were

any spontaneous action potentials generated so that all spike pairs

were synthetically created by the spike-pair timing protocol.

Supporting Information

Figure S1 To accompany Text S1. D2 MSN activity is

necessary for ideal action selection. (A) Dependence of basal

ganglia model selection performance on the weight of cortical

input to the action-coding D2 MSN population. We input a single

pair of high-salience inputs to the model (0.7 to channel 1, and 0.6

to channel 2). For a range of cortical input weights to the D2 MSN

population in channel 1, we plot the resulting equilibrium values of

the basal ganglia output in channels 1 and 2, and their respective

inputs from the STN, D1 MSN, and GPe populations. We see that

there exists an intermediate range of cortical input weights to D2

MSNs for which successful selection of the highest salience input to

channel 1 is achieved; otherwise either selection of both channels

(for lower weights) or neither channel (for higher weights) occurs.

(B) Examples of selecting both, one, and neither channel in the

basal ganglia output with increasing cortical input weight to D2

MSNs. The input is shown in the top panel, and the output in the

subsequent three panels; signals pertaining to channels 1 and 2 are

shown by dashed and solid lines, respectively.

(TIFF)

Figure S2 To accompany Text S2. Exercising the trained

MSNs in the model of basal ganglia. (A) and (B) show the process

of finding rate coded MSNs equivalent to their spiking

counterparts at the end of the intermission epoch. (A) Result of

fitting spiking MSN responses to piecewise linear functions. The

symbols show the normalised input/output firing rates for the

spiking MSNs (triangles/circles are for D1 and D2-MSN,

respectively). The lines show best piecewise linear fits (solid and

dashed are D1 and D2, respectively). (B) The responses of D1 and

D2-MSNs of the control channel in the rate coded model. (C)

Show the outcomes in a two-channel competition in the model

basal ganglia with bubble plots of the form used in Figure 3 (main

text). The left, middle, and right hand panels show, respectively,

the baseline response, trained MSNs at the end of intermission,

and the end of extinction.

(TIFF)

Text S1 Low-level D2 MSN activity is necessary for
ideal action selection.

(PDF)

Text S2 Validating the model: MSN functionality is
consistent with original target behaviour.

(PDF)
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