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Abstract

Infectious diseases are a threat to elderly individuals, whose immune systems weaken with

age. Among the various infectious diseases, Clostridium difficile infection is associated with

a high rate of mortality in elderly individuals and is a serious health problem worldwide,

owing to the increasing infection rates. Probiotic use has been proposed as an effective

countermeasure for C. difficile infection. The aim of this study was to evaluate the effects of

heat-killed Enterococcus faecalis T-110 on intestinal immunity, intestinal flora, and intestinal

infections, especially C. difficile infections, in naturally ageing animals, for extrapolating the

results to elderly human subjects. Twenty female hamsters were randomly distributed into

two groups. Group 1 was fed a basal diet and group 2 was fed a basal diet supplemented

with heat-killed E. faecalis for 7 days. Heat-killed E. faecalis T-110 improved the gut immu-

nity and microflora, especially Clostridium perfringens and C. difficile, in naturally aged ham-

sters. Therefore, heat-killed E. faecalis T-110 use may be a countermeasure against age-

related immune dysfunction and intestinal infections, especially C. difficile infection, in

elderly humans. However, further investigation in this regard is needed in humans.

Introduction

Infectious diseases are a leading cause of mortality and significant morbidity in elderly individ-

uals, who are at a greater risk than younger individuals [1]. With age, the humoral immunity

and cell-mediated immunity are weakened against newly encountered pathogens or vaccines

[2–6], necessitating countermeasures for age-related immune dysfunction.

Among the various infectious diseases, Clostridium difficile infection is a social problem in

elderly individuals. Clostridium difficile produces a toxin that results in symptoms ranging

from mild diarrhoea to inflammation of the bowel (pseudomembranous colitis), which can

cause death. Clostridium difficile-associated diarrhoea is a severe form of diarrhoea in humans.

There are three key risk factors associated with the development of this infection: antibiotic

use [7], ageing [8], and hospitalisation [9]. Clostridium difficile-associated diarrhoea is respon-

sible for approximately 10%–20% of all cases of antibiotic-associated diarrhoea [10], and it can
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occur up to 8 weeks after antibiotic therapy [11]. With the increasing threat of C. difficile infec-

tion, probiotics have been proposed as one of the effective countermeasures for C. difficile
infection [12–14].

Probiotics have been defined as live, microbial, food components that are beneficial for

human health. Recently, they have been shown to exhibit beneficial effects similar to those of

live microbes; genetically engineered microbes and nonviable microbes are regarded as probi-

otics [15, 16]. Lactic acid bacteria, one of the most common types of probiotic bacteria, have

been reported to exhibit beneficial effects on host homeostasis, including the activation of

immune functions [17, 18]. To date, several heat-killed lactic acid bacteria have been shown to

modulate specific and/or non-specific immune responses in animal models and occasionally

in human subjects [19].

Regarding the use of probiotics for infection control, it is important that the probiotics

administered are not infectious. Enterococcus faecalis T-110 (TOA Pharmaceutical Co., Ltd.,

Tokyo, Japan), which belongs to the group of lactic acid bacteria, is unlikely to be a causative

agent of opportunistic infection [20]. Enterococcus faecalis T-110 is approved for medical use

and is widely used in Japan, China, and India for the treatment and prevention of gastrointesti-

nal infections such as Salmonella infection and rotavirus gastroenteritis. In terms of safety, E.

faecalis T-110 is considered suitable for the treatment and prevention of gastrointestinal

infections.

Several studies have shown that ageing affects the gut flora [21–24]. Generally, senescence-

accelerated animals are often used to investigate the effects of ageing. However, a few studies

have shown that the gut flora of senescence-accelerated animals is similar to that of naturally

ageing animals. Stephan et al. [25] reported that the gut microbiota of laboratory mice differs

from that of free-living mammals and humans, making them unsuitable for the study of gut

immunity. Clostridium difficile is a bacterium endemic to the intestine of hamsters. Aged ham-

sters often suffer from diarrhoeal infections, especially C. difficile infections [26]. These factors

suggest that they are the best model of C. difficile infections in aged animals. Challenge tests

are generally conducted in bacterial infection tests, but they are considered unsuitable as infec-

tion models for indigenous intestinal bacteria caused by immunosuppression due to ageing.

Only a few studies have investigated the effects of safety-guaranteed, heat-killed bacteria on

intestinal immunity, gut flora, or intestinal infections in naturally aged animals. Therefore, the

aim of this study was to evaluate the effects of heat-killed E. faecalis T-110 on intestinal immu-

nity, flora, and infections in naturally ageing animals, for prospective extrapolation of such

information to studies on elderly humans.

Materials and methods

Ethical approval

This study was conducted at Inatomi Animal Clinic in Tokyo Prefecture, Japan. It complied

with the fundamental guidelines for the proper conduct of animal experiments and related

activities in academic research institutions under the jurisdiction of the Ministry of Education,

Culture, Sports, Science and Technology. It was approved by the Ethics Committee of the Ina-

tomi Animal Clinic (Tokyo, Japan; approval number 2020–001).

Animals, diets, and management

Twenty healthy, 547-day-old female hamsters (Phodopus sungorus) were purchased from

Japan SLC, Inc., Hamamatsu, Japan, and acclimatised for 10 days before use in the experi-

ments. These animals were healthy and did not receive any treatments before the study. They

were randomly divided into two treatment groups (groups 1 and 2) of 10 hamsters each and
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housed individually in a cage (27 × 15 × 10 cm) under a 24 h light/dark cycle for 14 days. Tem-

perature was maintained at 26 ± 1˚C, and a basic diet (Rodent Diet CE-2, CLEA JAPAN,

Tokyo, Japan) and water were provided to the hamsters ad libitum.

Group 2 hamsters received 0.1 ml of heat-killed E. faecalis T-110 saline suspension

(1.0 × 10⁷ cfu/ml) daily from days 1 to 7. Heat-killed E. faecalis T-110, a commercial heat-killed

and dried cell preparation (TOA Biopharma, Tokyo, Japan), was used. The heat-killed E. faeca-
lis T-110 saline suspension was prepared as previously described [27]. The faeces of individual

hamsters were checked daily during this experiment and was categorised according to a faecal

score (0, normal faeces; 1, loose stool; 2, moderate diarrhoea; 3, severe diarrhoea).

After this experiment, all hamsters used in this study were bred under a normal environ-

ment without being euthanised.

Immunological study

On days 1, 7, and 14, the total immunoglobulin A (IgA) concentration in the faeces of all ham-

sters was measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit

(Hamster Immunoglobulin A ELISA Kit; My BioSource, Inc, California, USA). The ELISA

procedure was conducted according to the protocol of the manufacturer.

Microbiological study

The faeces of hamsters were used for the microbiological study. Bacterial genomic DNA from

the samples was extracted using a commercial extraction system (QuickGene 810 and Quick

Gene DNA tissue kit; KURABO, Osaka, Japan), as previously described [28]. Quantitative

real-time polymerase chain reaction (PCR) analyses of Bifidobacterium sp., C. perfringens, Lac-
tobacillus spp., and C. difficile were performed using the Rotor-Gene system 6200 (Qiagen,

Tokyo, Japan), as previously described [29]. The primer sequences and PCR conditions for

each bacterium are given in Table 1.

Bifidobacterium sp., C. perfringens, Lactobacillus spp., and C. difficile in the faeces were

quantified by real-time PCR, with three replicates for each sample. Amplification was carried

out with a 10-μl reaction mixture containing 5 μl of SYBR_Premix Ex Taq (Takara Bio, Shiga,

Japan), 1 μl of DNA template, and 0.2 μmol/l of each primer. Primers for Bifidobacterium sp.,

C. perfringens, Lactobacillus spp., and C. difficile and the thermal programs are listed in

Table 1. For each reaction described above, the positive control and negative water control

were assayed together with samples. The melting curves of the amplified DNA were generated

to verify the specificity of the reaction. To construct standard curves, 10-fold diluted target

Table 1. Primers and thermal cycling profiles used in this study.

Primer Sequence Annealing temperature (˚C) Reference

Bifidobacterium sp.-F 50-GATTCTGGCTCAGGATGAACGC-30 60˚C Gueimonde et al. [50]

Bifidobacterium sp.-R 50-CTGATAGGACGCGACCCCAT-30 60˚C Gueimonde et al. [50]

Lactobacillus group-F 50-AGCAGTAGGGAATCTTCCA-30 58˚C Rinttila et al. [51]

Lactobacillus group-R 50-CACCGCTACACATGGAG-30 58˚C Rinttila et al. [51]

Clostridium perfringens-F 50-CGCATAACGTTGAAAGATGG-30 60˚C Wise & Siragusa [52]

Clostridium perfringens-R 50-CCTTGGTAGGCCGTTACCC-30 60˚C Wise & Siragusa [52]

Clostridium difficile-F 50-TTGAGCGATTTACTTCGGTAAAGA-30 58˚C Rinttila et al. [51]

Clostridium difficile-R 50-CCATCCTGTACTGGCTCACCT-30 58˚C Rinttila et al. [51]

F–forward primer, R–reverse primer.

https://doi.org/10.1371/journal.pone.0240773.t001
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species genomic DNA preparations (between 0.1 pg and 10 ng; approximately 30–100 to

3.0 × 10⁶–1.0 × 10⁷ target genomes) were applied by PCR. A mixture of DNA isolated from an

extensive set of non-target test bacteria (100 pg each) was used as the negative control. Stan-

dard curves of individual real-time PCR assays were used to quantify the target bacterial DNA

from faecal DNA preparations. For each assay, the PCR results were converted to the average

estimate of target bacterial genomes present in 1 g of faeces (wet weight).

Statistical analysis

Values are presented as mean ± standard error. Mann–Whitney U-test was applied to analyse

differences between mean values in all parameters. Differences between mean values were con-

sidered significant at P< 0.05 in all statistical analyses. Mann–Whitney U-test was performed

using EZR software (Saitama Medical Center, Jichi Medical University); EZR is a graphical

user interface for R (The R Foundation for Statistical Computing, version 2.13.0) [30]. The sig-

nificance level was set at P< 0.05.

Results

Total number of days of abnormal defaecation

In the first week, the total number of days of abnormal defaecation improved in group 2 com-

pared with that in group 1 (P< 0.05) (Table 2). In the second week, there was no difference in

the total number of days of abnormal defaecation in groups 1 and 2.

Immunological study

The total immunoglobulin A (IgA) concentration in faeces was significantly higher in group 2

than that in group 1 on day 7 (Table 3). On days 1 and 14, no difference in total immunoglobu-

lin A (IgA) concentration was detected between groups 1 and 2.

Microbiological study

On day 1, the counts of Bifidobacterium sp., C. perfringens, Lactobacillus spp., and C. difficile in

faeces were not significantly different between the two groups (Table 4). On day 7, the counts

of C. perfringens and C. difficile in the faeces were lower in group 2 than in group 2. The counts

of Bifidobacterium sp. and Lactobacillus spp. were not significantly different between the two

groups. After day 14, the counts of Bifidobacterium sp., C. perfringens, Lactobacillus spp., and

C. difficile were similar in the faeces between the two groups.

Discussion

Immunoglobulin A is one of the main defence elements that prevent pathogenic microorgan-

isms from crossing the intestinal epithelial cell barrier and is important in protecting the intes-

tinal mucosa [31, 32]. In the present study, heat-killed E. faecalis T-110 increased total

Table 2. Total number of days apparent abnormal defaecation in hamsters fed a basal diet (group 1) and a

1.0 × 10⁷ cfu/ml supplement of heat-killed Enterococcus faecalis (group 2).

Days 1–7 Days 8–14

Group 1 1.4 ± 0.3ª 1.2 ± 0.2

Group 2 0.3 ± 0.2b 0.9 ± 0.2

a, b Different letters within columns indicate differences between the treatment groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0240773.t002
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immunoglobulin A (IgA) concentration in the faeces (Table 3). Similar effects have been

reported by other studies [33–38]. Havenaar and Spanhaak [39] demonstrated that probiotics

stimulate the immunity of animals in two ways: i) the probiotic flora migrates throughout the

gut wall and multiplies to a limited extent and ii) antigens released by dead microorganisms

are absorbed and stimulate the immune system. Kaji et al. [40] demonstrated that bacterial cell

components of heat-killed probiotics stimulate the immune system. Their detailed mecha-

nisms of action are unknown and further investigation into the immunostimulatory effect of

cell wall components is needed. However, it has been suggested that heat-killed E. faecalis T-

110 stimulates gut immunity and increases the production of IgA, consistent with the results

of previous studies.

In this study, heat-killed E. faecalis T-110 decreased the number of C. perfringens and C. dif-
ficile in aged hamsters (Table 4). Similar effects have been reported in other studies [41–48].

Considering the increased faecal IgA concentration in the current study, it is likely that heat-

killed E. faecalis T-110 decreased the number of C. perfringens and C. difficile by improving the

gut immunity of ageing animals, consistent with the results of previous studies. Currently,

drug resistance and adverse effects are a problem in the antimicrobial treatment of C. difficile
infection. The results of the present study suggest that the use of antimicrobials in combination

with heat-killed Enterococcus faecalis T-110 for C. difficile infection can reduce the amount of

antimicrobials used. This may overcome the problem of drug resistance and adverse effects

associated with antimicrobial treatment.

In this study, heat-killed E. faecalis T-110 decreased the total number of days of abnormal

defaecation. Clostridium perfringens and C. difficile cause diarrhoea in hamsters [49].

Table 3. Total immunoglobulin A (IgA) concentration (mg/g) in the faeces of hamsters fed a basal diet (group 1) and a 1.0 × 10⁷ cfu/ml supplement of heat-killed

Enterococcus faecalis (group 2).

Day 1 Day 7 Day 14

Group 1 2.12 ± 0.09 1.98 ± 0.08a 2.01 ± 0.12

Group 2 2.08 ± 0.09 2.31 ± 0.08b 1.99 ± 0.11

a, b Different letters within columns indicate differences between the treatment groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0240773.t003

Table 4. Microbiological analyses of faeces (log cells/g) of hamsters fed a basal diet (group 1) and a 1.0 × 10⁷ cfu/ml supplement of heat-killed Enterococcus faecalis
(group 2).

Day Group 1 Group 2

Lactobacillus spp. 1 5.72 ± 0.20 5.62 ± 0.20

7 5.40 ± 0.16 5.45 ± 0.20

14 5.62 ± 0.24 5.85 ± 0.23

Bifidobacterium sp. 1 5.35 ± 0.12 5.53 ± 0.21

7 5.60 ± 0.14 5.82 ± 0.22

14 5.61 ± 0.14 5.88 ± 0.15

Clostridium perfringens 1 5.83 ± 0.07 5.69 ± 0.11

7 5.72 ± 0.13a 4.51 ± 0.13b

14 5.47 ± 0.04 5.40 ± 0.09

Clostridium difficile 1 5.34 ± 0.05 5.14 ± 0.10

7 5.48 ± 0.06a 4.25 ± 0.09b

14 5.62 ± 0.06 5.67 ± 0.06

a, b Different letters within rows indicate differences between the treatment groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0240773.t004
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Considering the decreased number of C. perfringens and C. difficile in the current study, it is

likely that heat-killed E. faecalis T-110 decreased the total number of days of abnormal defaeca-

tion by improving the gut immunity in ageing animals.

Conclusions

The administration of heat-killed E. faecalis T-110 decreased the counts of C. perfringens and

C. difficile in aged hamsters. The suppression of C. perfringens and C. difficile by heat-killed E.

faecalis T-110 administration could be partially associated with intestinal immunostimulation.

Further investigations, including the identification of immunostimulatory cell wall compo-

nents, are needed. However, based on the results of the present study, it can be concluded that

heat-killed E. faecalis T-110 has the potential to improve intestinal environment, particularly

in aged animals with C. difficile infection.
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