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Abstract 
 
Transcriptional regulation, critical for cellular differentiation and adaptation to environmental changes, 
involves coordinated interactions among DNA sequences, regulatory proteins, and chromatin architecture. 
Despite extensive data from consortia like ENCODE, understanding the dynamics of cis-regulatory 
elements (CREs) in gene expression remains challenging. Deep learning is a powerful tool for learning 
gene expression and epigenomic signals from DNA sequences, exhibiting superior performance compared 
to conventional machine learning approaches. However, even the most advanced deep learning-based 
methods may fall short in capturing the regulatory effects of distal elements such as enhancers, limiting 
their predictive accuracy. In addition, these methods may require significant resources to train or to adapt to 
newly generated data. To address these challenges, we present EPInformer, a scalable deep-learning 
framework for predicting gene expression by integrating promoter-enhancer interactions with their 
sequences, epigenomic signals, and chromatin contacts. Our model outperforms existing gene expression 
prediction models in rigorous cross-chromosome validation, accurately recapitulates enhancer-gene 
interactions validated by CRISPR perturbation experiments, and identifies crucial transcription factor motifs 
within regulatory sequences. EPInformer is available as open-source software at 
https://github.com/pinellolab/EPInformer.
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Introduction 
 
Transcriptional regulation is intricately governed by the complex interplay of DNA sequences, epigenomic 
signals, and three-dimensional (3D) chromatin contacts1–3. This process shapes gene expression and plays 
a crucial role in cell differentiation and environmental response. The DNA sequence interacts with various 
epigenetic modifications and chromatin structures to fine-tune gene expression4. Epigenomic signals, 
including DNA methylation and histone modifications, add a dynamic layer to gene regulation, influencing 
transcriptional activity without altering the underlying DNA sequence. Additionally, the spatial organization 
of chromatin, evidenced by chromatin contacts and looping, further orchestrates transcriptional regulation, 
bringing distant regulatory elements into proximity with gene promoters. Together, these factors constitute 
a multifaceted system that drives the precise and context-dependent expression of genes in living 
organisms.  
 
The collaborative work and data generation efforts of consortia like ENCODE5,6, FANTOM7,8, and 4D 
Nucleome9,10 have significantly enhanced our understanding of gene regulation through epigenomics and 
chromatin interactions. The rich and large dataset generated by these consortia has been crucial for 
training powerful deep-learning methods11, furthering our ability to dissect and understand gene regulatory 
mechanisms12–15. These models excel by learning to predict genomic and epigenomic signals—such as 
transcription factor binding, chromatin contacts and accessibility, DNA methylation, and histone 
modifications—to improve gene expression predictions and identify regulatory elements16–19. This 
underscores deep learning's transformative impact on computational biology and genomics13,20,21. However, 
fully understanding the complexity of cis-regulatory elements (CREs), such as enhancers and repressors, 
remains a significant challenge.  
 
Transformer-based deep learning models have shown remarkable proficiency in predicting gene 
expression22–24. Their architecture effectively captures interactions across genomic elements, with the 
attention mechanism offering an advantage over traditional convolutional neural networks (CNNs) by better 
handling long-range genomic interactions. At the forefront of these advancements is Enformer22, a model 
excelling in predicting gene expression, protein binding, and chromatin states from DNA sequences alone. 
Nevertheless, Enformer's extensive training demands limit its adaptability to unseen data from new cell 
types, and its efficacy in recognizing the influence of very distant enhancers remains limited (over 10 kb 
away from the TSS of a target gene) 25,26. It also does not account for three-dimensional chromatin 
interactions. GraphReg27 offers an alternative by integrating chromatin contact data to predict gene 
expression via a graph attention network. However, its effectiveness is constrained by the scarce 
availability of this data across different cell lines. Hence, there's a pressing need for a more flexible 
framework for combining DNA sequences, epigenomic states, and chromatin contact data to refine 
predictive accuracy in cell-type-specific gene expression modeling. 
 
To achieve this, we introduce EPInformer (a portmanteau of Enhancer-Promoter Interaction and 
Transformer), a scalable and efficient deep-learning framework based on the transformer architecture. 
Unlike other sequence-based models, EPInformer uses multi-head attention modules to directly model 
interactions between promoters and the potential enhancers. It integrates epigenomic signals (e.g., 
H3K27ac and DNase) with DNA sequences and, if available, chromatin contact data such as HiC to 
significantly enhance prediction accuracy. Notably, EPInformer's streamlined architecture models gene 
expression in a single cell type with just 0.2% (447,149 total parameters) of Enformer's requirements, 
facilitating rapid training and deployment for new cell types and reducing computational demands, a point 
especially important for researchers with modest computing resources. Our study rigorously tested 
EPInformer through a 12-fold cross-chromosome validation, confirming its superiority over existing models 
in predicting CAGE-seq and RNA-seq gene expression. EPInformer excels in its adaptability to various 
multimodal inputs. It can be trained on DNase-seq data alone or integrating DNase-seq, H3K27ac ChIP-
seq, and HiC contacts for a more comprehensive analysis. Its interaction encoder effectively identifies 
crucial distal enhancer information, validated through CRISPR perturbation experiments. Additionally, to 
explore and provide interpretability of the sequence features learned by the model, we utilized TF-
MoDISco-lite29 and TangerMEME29 to uncovered important transcription factor motifs within cell-type-
specific enhancer sequences. 
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Results 
 
Overview of EPInformer framework 
 
EPInformer is a transformer-based framework for predicting gene expression by explicitly modeling 
promoter and enhancer interactions. The model integrates genomic sequences, epigenomic signals (e.g., 
DNase-seq, H3K27ac ChIP-seq), and chromatin contacts through a flexible architecture to capture their 
interactions. EPInformer consists of four key modules (Fig. 1a and Supplementary Fig. S1): a sequence 
encoder, a feature fusion layer, a promoter-enhancer interaction encoder, and a predictor module. Given a 
gene locus, the sequence encoder learns DNA sequence embeddings of the promoter region (1-kb 
sequence around the Transcription Start Site) and potential enhancers in open chromatin regions within 
100kb of the TSS. Sequences shorter than 2 kb are padded with 'N' to reach a uniform length. Residual 
convolutional layers learn DNA motifs in promoter and enhancer sequences, whereas dilated convolutional 
layers learn motif cooperation by extracting distal sequence patterns, facilitated by the dilated convolution 
operator12. Convolutional and pooling operations in the sequence encoder work together to learn a 
comprehensive sequence embedding, preserving key features of the DNA sequence as shown by several 
past approaches30–33. The sequence encoder can also be pre-trained with fully connected layers to predict 
epigenomic signals (e.g., H3K27ac ChIP-seq) from potential enhancer regions (Methods and 
Supplementary Fig. 1S). This pre-training process accelerates the optimization of EPInformer and 
provides the model with a compositional understanding of enhancer sequence patterns before it is fully 
trained to predict gene expression data. Moreover, this pretrained sequence encoder enhances 
interpretability and helps to uncover the key motifs at the putative enhancer of the target gene. 
 
The fusion layer is designed to merge sequence embeddings with information such as distance to the 
target gene, epigenomic signals (e.g., H3K27ac ChIP-seq and DNase-seq), and chromatin contact data 
(e.g., HiC) between a promoter and candidate enhancer regions. It starts by concatenating the epigenomic 
signals of candidate enhancers with their sequence embeddings, followed by a 1 × 1 convolution block to 
refine the combined embedding dimension for the following interaction encoder. The fusion layer can 
integrate any number and type of genomic or epigenomic signals with sequence embedding for subsequent 
interaction modeling. This versatility enhances the model's capability to incorporate diverse data types 
available to the users, boosting its performance and flexibility. 
 
The interaction encoder, comprising transformer layers with multi-head attention, is designed to learn the 
interplay between promoters and potential enhancers. It derives a weighted sum from their embeddings, 
with attention weights based on fused sequence and epigenomic signal embeddings. Notably, the 
interaction encoder focuses solely on enhancer-promoter interactions, ignoring enhancer-enhancer 
interactions through attention masking. In addition, only the promoter representation after the final layer of 
the transformer encoder is passed, directly to the prediction module. This reduces the space of interactions 
to learn, focusing on promoter-enhancer interactions and increasing the computational efficiency of the 
model. This particular promoter representation encapsulates comprehensive relationships between a 
promoter and all candidate enhancers for the final predictor module, analogous to the CLS token 
functionality in BERT34,35. Subsequently, the predictor module, a feed-forward neural network, utilizes the 
promoter representation and genomic features like mRNA half-life36 and H3K27ac signals at the promoter 
region (500-bp around the transcription start site) to predict gene expression levels accurately. Importantly, 
EPInformer trained models can be combined with TF-MoDISco-lite28 and TangerMEME29 to identify 
transcription factor binding motifs at the putative enhancer region, incorporating the attention score of 
promoter-enhancer pairs to elucidate their impact on gene expression prediction. 
 
EPInformer was trained to minimize the discrepancy between predicted and observed gene expression 
levels, as measured by RNA-seq or CAGE-seq using different feature sets. EPInformer excels in three key 
applications: 1) Accurately predicting gene expression levels using promoter-enhancer sequences, 
epigenomic signals, and chromatin contacts (Fig. 1b); 2) Efficiently identifying cell-type-specific enhancer-
gene interactions, validated by CRISPR perturbation experiments (Fig. 1c); 3) Precisely predicting 
enhancer activity and identifying transcription factor binding motifs from sequences (Fig. 1d).  
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EPInformer improves gene expression prediction by explicitly integrating promoter-enhancer 
interactions.  
 
To develop and evaluate EPInformer models for gene expression prediction, we initially used the ABC 
pipeline37 (Supplementary Fig. 2S; Methods) to identify candidate promoter-enhancer pairs for coding 
genes in two well-characterized cell lines, K562 and GM12878. In brief, we extracted promoter sequences 
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Fig 1. | Overview of the EPInformer framework for gene expression prediction by integrating 
multimodal promoter-enhancer data. a, EPInformer is trained on multimodal epigenomic data and 
promoter-enhancer sequences to predict CAGE-seq or RNA-seq gene expression levels in specific cell 
types. It first creates embeddings for the promoter and putative enhancer sequences of a given gene 
using residual and dilated convolutions in the sequence encoder. This sequence encoder can be pre-
trained on cell-type-specific enhancer signals to initialize the convolutional filters. The fusion layer 
optionally merges the sequence embeddings with distance, chromatin contacts, or epigenomic signals 
(e.g., H3K27ac and DNase). The interaction encoder employs a series of transformer encoders with multi-
head attention modules designed to capture promoter-enhancer interactions. Finally, the prediction 
module integrates the resulting embeddings with mRNA half-life features and the promoter signal through 
fully connected layers to predict the gene expression. The EPInformer model is versatile for multiple tasks: 
b, predicting gene expression from promoter and enhancer sequences with multimodal epigenomic 
signals; c, prioritizing enhancers that may drive expression using the attention module of the interaction 
encoder, with scores derived from the average attention weights of the attention heads and layers; and d, 
identifying regulatory sequence features and transcription factor binding motifs at enhancers pinpointed 
by attention score for the target gene through the sequence encoder with downstream interpretation 
tools (e.g., TF-MoDISco-lite29 and TangerMEME30). 
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from the 2-kb region surrounding the transcription start site (TSS) and candidate enhancer sequences from 
DNase I hypersensitive (DHS) sites, prioritizing up to 60 nearby enhancers per gene. This threshold covers 
95% of potential regulatory elements within a 200-kb region centered on the TSS. For pre-training 
EPInformer’s sequence encoder, we collected H3K27ac ChIP-seq peaks from ENCODE for the K562 and 
GM12878 cell lines. We targeted 256 bp regions centered on the H3K27ac peak summits and included two 
additional 256 bp regions flanking each side with a 100 bp overlap. The ABC pipeline was used to calculate 
enhancer activity from DNase-seq and H3K27ac signals for these regions in both cell lines (Methods). To 
further enrich our dataset, we included the reverse complement of each sequence, retaining the same 
activity level, resulting in datasets of 764,888 and 536,890 samples for K562 and GM12878, respectively. 
Additionally, chromatin contacts of promoter and candidate enhancer pairs were obtained from KR-
normalized HiC contact maps using the ABC pipeline. 
 
Two gene expression datasets were curated for model training: protein-coding mRNA RNA-seq and Cap 
Analysis Gene Expression (CAGE) sequencing. For CAGE-seq, expression values were determined by 
aggregating read counts within 384-bp regions centered at each gene's unique TSS, following Enformer's 
protocol22. RNA-seq expression data were sourced from Xpresso36, pre-processed by the Roadmap 
Epigenomics Consortium. To mitigate the extreme dynamic range of gene expression across genes based 
on raw read count, we applied a log transformation. 
 
To evaluate model performance under varying data availability scenarios, we evaluated several EPInformer 
models in predicting gene expression: EPInformer-PE takes in input promoter-enhancer sequences and the 
distance between the candidate enhancer and its target gene (TSS). EPInformer-PE-Activity extended this 
by incorporating H3K27ac and DNase signals of each enhancer element. The most comprehensive model, 
EPInformer-PE-Activity-HiC, in addition to including promoter-enhancer sequences and enhancer signals, 
can also leverage HiC contacts. To improve interpretability, the sequence encoders of EPInformer-PE-
Activity and EPInformer-PE-Activity-HiC were pre-trained on a cell-type-specific enhancer activity dataset. 
Importantly, we also introduced a baseline model, EPInformer-promoter, which relies solely on promoter 
sequences. 
 
To rigorously evaluate EPInformer models, we conducted 12-fold cross-chromosome validation across all 
chromosomes. In each fold, two chromosomes were designated for testing, two for validation, and the 
remainder for training, as proposed in previous studies19,27 (Methods). For benchmarking EPInformer 
against established models, including Enformer22, Xpresso36, and Seq-GraphReg27, we used the Pearson 
Correlation Coefficient (PearsonR) to compare predicted and observed gene expression levels.  
 
Due to the substantial retraining demands of Enformer, we did not incorporate it into our 12-fold cross-
validation framework. Instead, we conducted a separate hold-out test involving 1,639 genes for both 
Enformer and EPInformer models, using the original datasets from the Enformer study22. For Seq-
GraphReg, which specializes in predicting gene expression on autosomal chromosomes, we referenced 
performance metrics from its original 10-fold cross-validation study8. Xpresso was evaluated alongside 
EPInformer within our 12-fold cross-validation. 
 
As Seq-GraphReg and Enformer are trained to predict CAGE-seq expression, while Xpresso is developed 
for predicting steady-state RNA-seq expression, we trained and tested EPInformer models separately on 
both CAGE-seq and RNA-seq datasets to facilitate comparative analysis with these state-of-the-art models. 
Additionally, since the sequence encoder of EPInformer-PE-Activity(-HiC) was pre-trained on an enhancer 
activity dataset, we conducted the same 12-fold cross-chromosome validation covering all H3K27ac peak 
regions to evaluate the pre-trained sequence encoder's efficacy in predicting enhancer activity. 
 
In the CAGE-seq expression prediction experiments, EPInformer-PE-Activity-HiC consistently outperformed 
other EPInformer models and competing methods by a significant margin (Fig. 2b). It exceeded Enformer's 
performance by 7.3% and 9.1% in Pearson correlation coefficient for K562 and GM12878, respectively, on 
the hold-out test set (Fig. 2c). EPInformer-PE-Activity, even without HiC data, achieved higher Pearson 
correlation coefficients of 0.841 for K562 and 0.847 for GM12878, compared to Enformer's 0.775 for K562 
and 0.774 for GM12878. In the rigorous 12-fold cross-chromosome validation on CAGE data, EPInformer-
PE-Activity-HiC maintained high predictive accuracy, achieving Pearson correlations of 0.875 for K562 and 
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0.891 for GM12878, which are 13% and 17% higher than Seq-GraphReg, which also uses HiC to predict 
gene expression. 
 
In RNA-seq expression prediction experiments, three EPInformer models (EPInformer-PE, EPInformer-PE-
Activity, and EPInformer-PE-Activity-HiC) outperformed Xpresso in 12-fold cross-chromosome validation for 
K562 and GM12878 (Fig. 2a). EPInformer-promoter showed lower predictive power compared to Xpresso. 
However, it is worth noting that this model considers a larger 20 kb region around the TSS, capturing 
proximal enhancer signals. In contrast, our baseline EPInformer-promoter uses only a 2 kb sequence 
around the TSS. EPInformer-PE, incorporating open chromatin sequences spanning 100 kb around the 
TSS as potential enhancers for a given gene, significantly outperformed both Xpresso and EPInformer-
promoter, achieving Pearson correlations of 0.723 for K562 and 0.746 for GM12878. These findings 
underscore the importance of distal enhancer information for accurate gene expression prediction. 
Furthermore, EPInformer's precision improved by including enhancer activity and chromatin interaction 
data. EPInformer-PE-Activity-HiC achieved the best performance, with Pearson correlations of 0.863 for 
K562 and 0.849 for GM12878. 
 
Additionally, we conducted a 12-fold cross-chromosome validation on EPInformer’s pretrained sequence 
encoder, assessing its ability to predict enhancer activities (Fig. 2g). The strong correlation between 
predicted and actual enhancer activities in K562 (PearsonR = 0.71) and GM12878 (PearsonR = 0.627) 
cells confirms the model's proficiency in capturing key regulatory information encoded within DNA 
sequences. 
 
In summary, our EPInformer framework has demonstrated effectiveness and scalability in accurately 
modeling gene expression and enhancer activity. Our most sophisticated model, EPInformer-PE-Activity-
HiC, significantly outperforms existing methods in predicting CAGE-seq and RNA-seq expression levels for 
two cell lines, providing a robust tool for predicting gene expression from sequence and multi-modal 
epigenomic data. 
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EPInformer attention prioritizes cell-type-specific enhancers supported by long-range interaction 
assays. 
 
Linking candidate enhancers to their target genes through biochemical annotations remains a critical 
challenge in genomic research. To evaluate EPInformer's accuracy in capturing true promoter-enhancer 
interactions, we focused on genes with experimentally validated enhancers. We extracted attention weights 
from EPInformer's interaction encoder for these genes and compared them to known enhancer-promoter 
relationships. This analysis allowed us to assess whether the enhancers prioritized by EPInformer in its 
gene expression predictions align with experimentally confirmed regulatory interactions. The attention 
mechanism allows the interaction encoder to prioritize the most relevant enhancers by assigning higher 
weights to their sequence embeddings (Fig. 3a). We applied sum scaling normalization to the attention 
weights to obtain attention scores, thereby identifying and prioritizing relevant enhancers for each target 
gene.  
 
To validate our predictions, we used data from recent CRISPRi-FlowFISH based large-scale enhancer 
screens37. CRISPRi-FlowFISH is a powerful enhancer screening assay that integrates KRAB-dCas9 
interference to target putative enhancers within a locus, coupled with RNA FISH to assess the activity of 
these perturbations on proximal genes. This method facilitates pooled screening and high-throughput 
measurement of the effects of enhancer perturbation on gene expression. Additionally, this study 
introduces the ABC (Activity-by-Contact) score, a computational approach designed to prioritize relevant 
enhancers to the target genes, which is currently recognized as one of the leading methods for this task. 
Despite chromatin contact data providing a strong experimental basis for enhancer-promoter interactions, 
this assay is not available for many cell types. Therefore, we derived two attention scores from EPInformer-
PE-Activity and EPInformer-PE-Activity-HiC: the former requires only DNase-seq and H3K27ac ChIP-Seq 
data, while the latter requires additional HiC data. Additionally, inspired by the ABC score formulation, we 
developed a new score called the attention-ABC score, which is the product of the attention score of 
EPInformer-PE-Activity and the original ABC score. 
 
To systematically evaluate the efficacy of attention scores to prioritize relevant enhancers for a particular 
gene, we collected 774 tested enhancer–gene pairs (within 100-kb to the TSS) from 45 genes in the 
CRISPRi-FlowFISH study performed on the K562 cell line. Note that chromosomes containing the test 
genes were excluded from the training process when deriving the attention scores.  

Fig 2. | Performance of EPInformer models and baseline methods on the benchmark experiment. a, 
Comparison of four EPInformer models with Xpresso regarding their regression performance for 
predicting steady-state mRNA abundance, as measured by RNA-seq, in GM12878 and K562 cell lines. 
This evaluation was conducted using 12-fold cross-chromosome validation. b, Comparison of EPInformer 
models with Seq-GraphReg in terms of their regression performance for gene expression measured by 
CAGE-seq in GM12878 and K562 cell lines, utilizing 12-fold cross-chromosome validation. c, Comparison 
of multiple EPInformer models with Enformer in predicting gene expression as measured by CAGE-seq in 
hold-out genes within GM12878 and K562 cells. d, Relationship between predicted and actual RNA-seq 
expression levels in GM12878 (top) and K562 (bottom) cells, evaluated using 12-fold cross-chromosome 
validation. e, Relationship between predicted and actual CAGE-seq expression levels in GM12878 (top) 
and K562 (bottom) cells, assessed through 12-fold cross-chromosome validation. Each data point 
represents an individual gene. Representative cell-type-specific or housekeeping genes, activated by 
enhancers in K562 and GM12878 cells, are highlighted in red. f, The pre-trained sequence encoder 
quantitatively predicts enhancer activity (geometric mean of H3K27ac and DNase signals). The scatter 
plots show observed versus predicted enhancer activity across all DNA sequences in 12-fold cross-
chromosome validation for GM12878 (top) and K562 (bottom) cells, with point density indicated by 
color. 
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As measured by the area under the precision-recall curve (AUPRC), all three attention-based scores 
demonstrated higher accuracy in prioritizing CRISPRi-validated enhancer-gene pairs compared to the ABC 
score, relative distances, Hi-C contacts, and enhancer activities (Fig. 3b). This is noteworthy because the 
ABC score relies on HiC, H3K27ac, and DNase as inputs, whereas the attention score derived from 
EPInformer-PE-Activity does not require HiC data. The attention score of EPInformer-PE-Activity thus can 
be used to prioritize enhancer-gene pairs in a broader range of cell lines that lack HiC data. As expected, 
we observed that the performance of the attention score could be enhanced by incorporating HiC contacts 
as input, achieving a higher AUPRC of 0.724 compared to the attention score of EPInformer-PE-Activity. 
Notably, the performance of the attention score can be significantly improved by multiplying it with the 
original ABC score (AUPRC = 0.756 versus 0.71). 
 
Moreover, we compared attention scores with ABC scores in prioritizing validated enhancers at three 
different distances. All three attention-based scores demonstrated a higher Area Under the Precision-
Recall Curve (AUPRC) than the ABC score for identifying validated enhancers within 25 kb of the target 
gene, with 70% located within this distance. The attention-ABC score consistently outperformed the original 
ABC score across all relative distances and additional metrics. Notably, even without HiC data, the 
attention score of EPInformer-PE-Activity surpassed both distance and enhancer activity scores in 
prioritizing validated enhancers across all relative distances. Our results indicate that the attention 
mechanism in the EPInformer interaction encoder can effectively help identify relevant and validated 
promoter-enhancer interactions. 
 
To illustrate attention score capability in detecting distal enhancers for a given locus, we focused on the 
KLF1 gene. We considered all its candidate enhancers within 100 kb, excluding those within 1 kb of the 
TSS, to ignore promoter perturbations. These enhancers (grey boxes in Fig. 3d) underwent evaluation via 
CRISPRi-FlowFISH experiments  and only four enhancers were found to significantly impact KLF1 gene 
expression (black boxes in Fig. 3d). To classify candidate enhancers as active or inactive, we selected a 
threshold for each score corresponding to 85% recall. The attention score of EPInformer-PE-Activity 
achieved the highest True Positive Rate (TPR) of 80%. Both the attention-ABC score and the attention 
score of EPInformer-PE-Activity-HiC achieved the second-highest TPR of 50%, significantly outperforming 
the ABC score, which had a TPR of 29%. Despite the attention-ABC and attention score with HiC achieving 
higher AUPRCs than attention score without HiC in the CRISPRi-FlowFISH dataset, they failed to identify 
an active enhancer with low HiC contact to the target gene. In contrast, the attention score without HiC was 
still able to recover this nearby enhancer with high H3K27ac signals. Overall, the attention-ABC score is the 
most effective strategy for prioritizing candidate enhancers in cell types used for model training. Without 
HiC data, the attention score of EPInformer-PE-Activity emerges as the second-best strategy for predicting 
active enhancers. 
 
Furthermore, to investigate whether EPInformer-PE-Activity-HiC can also accurately predict changes in 
gene expression resulting from enhancer knockout, we conducted an additional in-silico perturbation study 
for the KLF1 locus. We systematically masked 37 candidate regulatory elements within 100 kb of the KLF1 
transcription start site (TSS), each previously tested by CRISPRi-FlowFISH. By comparing gene expression 
predictions before and after masking each element, we simulated the effects of enhancer knockouts. The 
predicted changes in expression showed strong agreement with the experimental CRISPRi-FlowFISH 
results, yielding a Pearson correlation coefficient of 0.88 (Fig. 3e-f and Supplementary Fig. 3S). 
Consistent with expectations, masking each of the five CRISPRi-validated enhancers led to decreased 
predicted KLF1 expression. Notably, our model also correctly identified a distal CRISPRi-validated 
repressor 21,538 bp downstream of the KLF1 TSS, predicting increased KLF1 expression upon its 
masking. These results underscore EPInformer's capacity to accurately model complex regulatory 
interactions and its potential as a powerful tool for predicting the impact of genomic perturbations on gene 
expression
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EPInformer recapitulates TF motifs required for enhancer activity 
 
Having established that the attention score of the interaction encoder effectively prioritizes relevant 
enhancers for a target gene, we aimed to evaluate the sequence patterns that may contribute to the 
functionality of these predicted enhancers. To this end, we used TF-MoDISco-lite28 and TangerMEME29 to 
examine the TF motifs within enhancers, based on EPInformer-PE-Activity's sequence encoder pre-trained 
to predict enhancer activity from sequence. 
 
Following TF-MoDISco-lite standard pipeline, we first applied DeepLIFT38 to calculate attribution scores on 
all 256-bp sequences centered at the H3K27ac summits of prioritize enhancer by our model. We then used 
TF-MoDISco-lite with default settings to identify the most relevant motifs associated with H3K27ac signals. 
Matching these motifs against the JASPAR 2024 CORE vertebrate non-redundant database39, we 
discovered shared TF motifs such as JUN, ELF1, ELK1, BACH1, and NYFA; K562-specific motifs including 
GATA1, GATA2, and GATA1-TAL1; and GM12878-specific motifs including SPI1 and FOSL1 (Fig. 4a-b). 
These results suggest that the pre-trained sequence encoder can help with model interpretation and to 
discover cell-type specific motifs important for enhancer activity. 

Additionally, we aimed to uncover transcription motifs that may be required for KLF1 enhancers in K562 
cells. Focusing on the most distal predicted enhancer at chr19:12,977,587-12,979,123, located 19,662 bp 
from KLF1, we first identified the window (256-bp resolution) with the highest predicted enhancer activity. 
Subsequently, we used TangerMEME within this window to obtain attribution scores at base resolution 
using the ISM approach. We observed four seqlets with high attribution scores (Fig. 4c), which were 

Fig. 3. | EPInformer attention prioritizes cell-type-specific enhancers corroborated by long-range 
interaction assays. a, Calculation of the attention score and attention-ABC score from EPInformer-PE-
Activity-(HiC). The red and blue boxes represent three candidate enhancers (E1, E2, and E3) located near 
the promoter (P) of the gene (grey box). The simplified calculation of the attention weight for the 
promoter-enhancer pair from EPInformer-PE-Activity-(HiC) is shown in the dotted box, with red and blue 
boxes representing the embeddings of the promoter and candidate enhancers, respectively. The 
calculation of the attention-ABC score is depicted at the bottom. The values for the attention scores, 
DNase, H3K27ac, and HiC are expressed in arbitrary units and are not shown to scale. b, Precision-recall 
plot for classifiers of enhancer-gene (E-G) pairs. Positive E-G pairs are those for which perturbation of the 
candidate enhancer significantly decreases expression of the gene. The Precision-recall curves represent 
the performance of the attention score of EPInformer-PE-Activity-(HiC), Attention-ABC score, and other 
assays on classifying 737 E-G pairs of 43 genes screened by CRISPRi-FlowFISH. c, Area under the 
precision-recall curve (auPRC) represent the performance of the E-G classifiers shown in b on classifying 
enhancer-gene pairs at three different distance ranges. d, the nominated enhancers of all classifiers at an 
85% recall threshold in b for KLF1. The locus is displayed from top to bottom as follows: candidate 
enhancers (light grey) defined as DNase peaks within 100 kb of the KLF1 TSS; normalized HiC contacts 
between the KLF1 TSS and the candidate enhancers. The subsequent loci present the nominated 
enhancers from various E-G classifiers: Attention-ABC score, the attention score of EPInformer-PE-
Activity-HiC, the attention score of EPInformer-EP-Activity, ABC score, enhancer activity, HiC contact, and 
distance between the enhancer and KLF1 TSS. Further down are depicted the five CRISPRi-FlowFISH 
validated enhancers (black box and red arc) that upon perturbation significantly decrease  KLF1 
expression. The bottom red track displays the CAGE signals across the 200-kb region centered at the KLF1 
TSS. The orange dotted line marks the TSS of KLF1. The tick icons indicate true positive enhancers 
nominated by a given E-G classifier. e, Bar plot illustrating the fractional change in gene expression 
resulting from CRISPRi-FlowFISH perturbation on candidate regulator of KLF1 within 100 kb of the TSS. 
The red bar indicates the element that caused a significant change in expression during the CRISPRi 
perturbation. f, Bar plot showing the fraction changes in predicted gene expression resulting from in-
silico perturbations of each candidate regulator of KLF1 using EPInformer-PE-Activity-HiC. 
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matched against the JASPAR 2024 CORE vertebrate non-redundant database using FIMO40. We found 
three matching motifs: GATA1, SP4, and ETV6. In K562 cells, GATA1 is a well-known master regulator 
necessary for erythroid differentiation, playing a crucial role in the activation and repression of various 
genes involved in hematopoiesis 41,42; ETV6 is known for its involvement in hematopoiesis and 
oncogenesis, contributing to the regulation of genes essential for blood cell development and 
differentiation43,44; The SP4 transcription factor (TF) is a member of the SP/KLF family of zinc finger 
transcription factors, and is known to bind to GC-rich promoter elements and influence the transcription of 
target genes41,45. While these insights are derived from predictive analysis, they lay the groundwork for 
empirical validation. Future experiments, such as motif perturbations using CRISPR deletion, base editing, 
or prime editing, could directly assess these motifs' influence on gene expression. 
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DISCUSSION 
 
Identifying promoter-enhancer interactions and decoding the cis-regulatory code remains a significant 
challenge in gene regulation. EPInformer, a novel transformer-based framework, significantly improves 
gene expression prediction by modeling promoter and enhancer sequences alongside multimodal 
epigenomic data. EPInformer excels by holistically integrating DNA sequence, epigenomic features and 
chromatin contact data, offering a refined understanding of gene regulatory patterns. The CNN-based 
sequence encoder learns sequence patterns of promoters and enhancers, providing insight into the cis-
regulatory code. The feature fusion layer integrates epigenomic signals and chromatin contacts with 
sequence embeddings, enhancing the prediction power and the model's flexibility to include additional data 
types. The interaction encoder explicitly models promoter-enhancer interactions, while the predictor, a feed-
forward neural network, harmonizes multimodal data representations to predict gene expression levels. 
This approach resulted in a substantial performance increase as compared to state-of-the-art tools like 
Enformer, GraphReg, and Xpresso and achieving Pearson correlation coefficients of 0.875 in K562 cells 
and 0.891 in GM12878 cells for predicting CAGE-seq expression in a 12-fold cross-chromosome validation. 
 
EPInformer stands out from other gene expression prediction methods due to its lightweight design and 
versatility. Its architecture, requiring only 0.4 million parameters compared to Enformer's 250 million, allows 
for faster training speeds without sacrificing efficacy. The model completes training in just one hour on a 
A100 GPU (Supplementary Table 2S), making sophisticated gene expression modeling more accessible 
and user-friendly for the scientific community. Importantly, the model can be trained using only DNase-seq 
data if necessary. However, EPInformer's structure can easily integrate DNA sequences with multiple types 
of epigenomic information and chromatin interactions, enhancing its ability to predict gene expression from 
diverse assays like CAGE-seq and RNA-seq. This versatility ensures broad applicability and superior 
performance compared to models like Enformer, GraphReg, and Xpresso.  
 
We demonstrated that EPInformer attention scores can effectively identify relevant enhancer-promoter 
interactions. Importantly, this approach demonstrates higher accuracy in predicting CRISPRi-validated 
enhancers than state-of-the-art ABC scores. Additionally, applying downstream model interpretation tools 
to attention score-predicted enhancers can uncover key transcription factor motifs important for cell identity.   
 
Future enhancements to EPInformer will focus on several key areas to further improve its performance and 
applicability. We plan to develop more sophisticated methods for identifying and defining candidate 
enhancer regions, potentially incorporating additional epigenomic markers and evolutionary conservation 
data. Extending the model to train on and predict gene expression across multiple cell types simultaneously 
will improve its generalizability and ability to capture cell-type-specific regulatory mechanisms. Given the 

Fig 4. | EPInformer reveals transcription factor motifs at cell-type-specific enhancers. a, set of three 
motifs enriched in K562 (left) and GM12878 (right) discovered by TF-MoDISco-lite by summarizing 
recurring EPInformer-PE-Activity predictive sequence patterns at all H3K27ac peaks. b, bar plot showing 
the enrichment of motifs discovered by TF-MoDISco-lite that match JASPAR 2024 CORE vertebrate non-
redundant database (q-value < 0.02) in K562 (left) and GM12878 (right). c, EPInformer-PE-Activity 
predicted enhancers of KLF1 using the Attention Score, revealing several important TF motifs with its 
pre-trained sequence encoder on a distal enhancer (in the dotted box). The orange dotted line indicates 
the transcription start site (TSS) of KLF1. The black box with a red arc represents the CRISPRi-validated 
enhancer, while the grey box denotes the EPInformer-PE-Activity predicted enhancer. The bar plot 
displays the predicted enhancer activities, defined as the geometric mean of the H3K27ac and DNase 
signals, of 256-bp sequences tiling the putative enhancer locus (chr19:12,977,587-12,979,123). The in-
silico mutagenesis (ISM) attribution score at the regions (chr19:12,978,099-12,978,355) with top 
predicted enhancer activity shown at the bottom. Sequences with high scores are highlighted in the 
dotted boxes, with labels and arrows indicating the ID and names of the resembling known TF motifs in 
the JASPAR 2024 CORE vertebrate non-redundant database. 
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importance of CTCF in chromatin organization, we aim to integrate CTCF binding site information to better 
model long-range interactions and chromatin domain boundaries. Implementing relative positional encoding 
schemes may improve the model's ability to capture spatial relationships between regulatory elements. 
Incorporating reverse complement sequences of enhancers in the model architecture could capture 
additional regulatory information and improve prediction accuracy. Integrating pre-trained DNA foundation 
models as sequence embeddings may enhance EPInformer's performance by leveraging large-scale 
genomic knowledge. Additionally, developing more comprehensive in-silico element perturbation analyses 
will further validate the model's predictions and provide insights into the functional impact of specific 
regulatory elements. These advancements, combined with EPInformer's current flexibility and efficiency, 
aim to deepen our understanding of regulatory mechanisms and their impact on gene expression and cell 
type identity. By leveraging CRISPR perturbation datasets and adopting a multi-task learning approach, we 
expect to refine EPInformer's predictive capabilities further. Ultimately, these improvements will contribute 
to a more comprehensive and accurate model of gene regulation, with broad implications for both basic 
research and potential clinical applications.  
 
Despite these ambitious future directions, the current iteration of EPInformer already represents a 
significant leap forward in gene expression prediction and enhancer-promoter interaction modeling, 
providing a powerful and accessible tool for researchers to unravel the complexities of gene regulation. 
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Methods 
 
Collection and pre-processing of gene expression and epigenomic data  
 
Our study curated three types of datasets for model training and testing: enhancer-related epigenomic data, 
chromatin contacts, and gene expression (Supplementary Table 3S). For the epigenomic data, we 
acquired DNase and H3K27ac bam files for all replicates of K562 and GM12878 cell lines from the 
ENCODE project. Following the ABC model protocol37 (Supplementary Fig. 2S), we utilized MACS2 to call 
peaks from the DNase-seq bam file for each cell line, considering peaks with p<0.1. We refined these to the 
top 150,000 regions based on read count, extended from their summits to form 500 bp candidate 
enhancers, and merging overlapping regions. These extended and merged peaks were defined as 
candidate elements in our experiments. For promoter elements, we obtained 18,377 protein-coding genes 
from Xpresso, excluding histone and chromosome Y genes. Following the Xpresso study, each gene's 
transcription start site (TSS) was re-centered to the CAGE peak coordinates.  
 
Promoter and putative enhancer sequences were retrieved from the hg38 reference genome. Enhancer 
sequences exceeding 2 kb were truncated and realigned to center on the DNase-seq peak summit. The 2 
kb region surrounding the TSS was designated as the promoter, and candidate enhancers within 100 kb of 
the TSS, excluding the promoter region, were assigned to the target gene. This process resulted in 305,746 
promoter-enhancer pairs for K562 and 325,999 pairs for GM12878. 
 
To estimate candidate enhancer activity, we first used the ABC pipeline to compute DNase-seq and 
H3K27ac ChIP-seq signals from bam files by summing read counts at the candidate enhancer region. 
Signals from replicate experiments were averaged and quantile normalized. Based on these normalized 
signals, the final enhancer activity was then calculated as the geometric mean of DNase and H3K27ac 
signals. 
 
We compiled a HiC dataset to estimate contacts between promoters and candidate enhancers. HiC 
contacts for K562 (4DNFITUOMFUQ) and GM12878 (4DNFI1UEG1HD) were obtained from the 4DN 
Nucleome database. Using FANC46, we converted the HiC data to bedpe format and applied vanilla 
coverage normalization at a 5 kb resolution. The ABC pipeline then computed promoter-enhancer contacts 
by identifying the HiC bedpe row containing the gene's TSS and assigning contact values to enhancer-
promoter pairs based on signals at the bin corresponding to the enhancer's midpoint. 
 
Additionally, we incorporated mRNA half-life features from Xpresso into our model, including G/C content, 
lengths of functional regions (5' UTRs, ORFs, and 3' UTRs), intron length, and exon junction density within 
the open reading frame. 
 
To train and evaluate EPInformer on gene expression prediction, we curated two gene expression 
datasets, as measured by RNA-seq and CAGE-seq. For CAGE, expression values were determined by 
aggregating read counts within 384-bp regions centered at each gene's unique TSS, as per Enformer's 
protocol. RNA-Seq expression data were sourced from Xpresso's training set, quantified by the Roadmap 
Epigenomics Consortium. To mitigate the right-skewed distribution of gene expression based on raw read 
count, we applied log-transformation. 
 
Model architecture 
 

Figure 1a illustrates the model architecture, organized into four key sections: (1) a sequence encoder with 5 
residual and 4 dilated convolutional layers plus a linear layer; (2) a fusion layer featuring channel-wise 
concatenation and 1×1 convolution blocks; (3) an interaction encoder with 3 transformer encoders, each 
having a 4-head self-attention module and a feed-forward layer; (4) a predictor with three dense layers for 
the gene expression prediction. EPInformer processes input as a one-hot encoded matrix (A = [0,0,0,1], C 
= [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1], N = [0,0,0,0]), sized (61, 2000, 4), comprising a promoter sequence 
and 60 candidate enhancer sequences for predicting gene expression. Genes with fewer than 60 candidate 
enhancers receive padding via zero vectors to ensure uniform dimensions. The sequence encoder first 
learns sequence embeddings of size (61, 64) for the promoter and its candidate enhancers. The fusion 
layer concatenates the distances of enhancers to the TSS, enhancer activities, and promoter-enhancer 
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chromatin contacts with sequence embeddings on a channel-wise basis. It then reshapes the concatenated 
matrix to a size of (61, 64) using a convolution operator. The interaction encoder then captures the 
interactions between promoter and the candidate enhancers using self-attention. The attention calculation 
is based on the matrix operation: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉,𝑀) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾!

6𝑑"
𝑀)𝑉 

In the attention mechanism, the softmax function generates a probability distribution for promoter-enhancer 
interactions. A mask vector 𝑀 is set to a value near negative infinity for padding enhancers, ensuring the 
interaction encoder disregards these padding embeddings. Interaction encoder learns parameter matrices 
𝑊#𝜖	𝑹$!×$", 𝑊&𝜖	𝑹$!×$# and 𝑊'𝜖	𝑹$!×$$ 	for each head, it transforms promoter-enhancer embedding 𝑋 ∈
𝑹()×$! into queries 𝑄* = 𝑋* ×𝑊&, keys 𝐾+ = 𝑋+ ×𝑊" and values 𝑉+ = 𝑋+ ×𝑊'. The interaction of promoter 
𝑋, and the 𝑖-. enhancer 𝑋/% can be computed as 𝑎,0/% = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄,𝐾/% ∕ 6𝑑"), it represents the amount 
of weight query at promoter puts on the key at the 𝑖-. enhancer. Each single attention head computes its 
output as a weighted sum across all promoter-enhancer pairs: 𝑎,0/ × 𝑉. The multiple heads compute with 
independent parameters, and we concatenate the outputs from each head to form the final layer output, 
followed by a linear layer to combine them. The last transformer encoder outputs the promoter embedding 
with a size of 64, which embeds all promoter-enhancer pairs. Finally, the predictor concatenates the 
promoter embedding with 8-bit mRNA half-life features and predicts the gene expression through three 
dense layers. 
 
In our enhancer activity prediction task, we engineered a model leveraging four pre-trained residual 
convolutional layers with filter configurations of 128, 64, 64, 128 and kernel sizes 8, 3, 3, 3. Each layer is 
succeeded by batch normalization, ELU nonlinearity, max pooling (size=2, stride=2), and a 1x1 convolution 
step. Beyond the convolutional base, the model employs two fully connected layers, each with 256 
neurons, batch normalization, ReLU nonlinearity, and dropout (d=0.1). The input is a one-hot-encoded 256-
bp DNA sequence aimed at predicting enhancer activities.  
 
Model training and evaluation 
 
As previously proposed by Karbalayghareh et al.27, we implemented a 12-fold cross-chromosome validation 
strategy. For fold 1 to 10, chromosomes 𝑖 and 𝑖 + 10 were reserved for validation, while chromosomes 𝑖 + 1 
and 𝑖 + 11 were set aside for testing. In fold 11, chromosomes 3 and 21 were used for validation, with 
chromosomes 22 and X allocated for testing. Fold 12 involved using chromosomes 2 and 22 for validation 
and chromosomes 1 and Y for testing. The remaining chromosomes were utilized for training in each fold. 
This evaluation procedure ensures the model is independently assessed across all human chromosomes. 
 
All EPInformer models were implemented in PyTorch (v2.2.0)47 and trained on one A100 GPU with batch 
size of 64 using AdamW48 optimizer with a learning rate of 5 × 1001,	a weight decay of 1 × 100(	and default 
setting for other hyperparameters: 𝛽) = 0.9, 𝛽2 = 0.99, 𝜀 = 1 × 1003. The models were trained using 
smooth L1 loss49 to align predictive and actual expression levels. To enhance EPInformer's generalization 
and mitigate overfitting, we applied early stopping, monitoring the model's mean square error (MSE) on the 
validation set and stopping training if there was no MSE improvement for six consecutive epochs. The best-
performing model, marked by the lowest MSE on validation set, was retained for testing on an independent 
chromosome set, assessing performance through the Pearson Correlation Coefficient. For pre-training and 
evaluating the EPInformer’s sequence encoder, we adopted the same experimental settings as those used 
for EPInformer models, with the exception that this model aimed to minimize the loss between predicted 
and actual enhancer activity, as determined by H3K27ac ChIP-seq and DNase-seq signals (Reads per 
millions, RPM). 
 
Baseline methods 
 
Three baseline models—Xpresso, Enformer, and Seq-GraphReg—serve as references for gene expression 
prediction. Enformer, a deep neural network, combines convolutional neural networks (CNNs) with 
transformer technology, using DNA sequences as input. It processes 196-kbp sequences to predict 5,313 
genomic tracks for the human genome and 1,643 tracks for the mouse genome at 128-bp resolution. 
However, Enformer's significant training requirements limit its adaptability across new cell lines, and despite 
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its context spans around 200 kb, it can detect reliably only the impact of proximal enhancers (less than 
around 10 kb from the TSS)25. Xpresso, a deep learning model, employs CNNs to predict mRNA 
abundance directly from genomic sequences, focusing on promoter regions and features linked to mRNA 
stability within a 20 kb range of the TSS. Its reliance on proximal sequences restricts its ability to utilize 
information from distal enhancers. Seq-GraphReg uses graph attention networks to integrate DNA 
sequences and HiChIP data, predicting gene expression levels by exploiting chromatin contact signals 
between distal elements and promoters. 
 
To ensure a fair comparison, we aligned the training and testing settings of EPInformer with those of 
Enformer. This involved using identical data splits and extracting promoter and potential enhancer 
sequences from the same regions Enformer was trained on. For EPInformer, gene expression values were 
determined by summing read counts within a 384-bp window (equivalent to three 128-bp Enformer bins) 
surrounding each gene's TSS, using the same data sources (CNhs12333 for GM12878 and CNhs11250 for 
K562). We tested genes located in Enformer's testing regions (1937 sequences, each 196-kbp long, 
covering 1639 genes) for a direct comparison. 
 
For comparison with Xpresso, we retrained and assessed Xpresso using the same 12-fold cross-
chromosome validation as EPInformer, focusing on the steady-state mRNA expression of 18,377 coding 
genes from the Roadmap Epigenomics Consortium. Seq-GraphReg's performance was reported from its 
original study, and we presented EPInformer's performance using an identical train-test split across all 
human chromosomes for direct comparison. 
 
Enhancer prioritization 
 
We obtained enhancer–gene (E-G) pairs tested using the CRISPRi-FlowFISH assay from Fulco et al.37, 
which perturbs enhancers and measures gene expression changes in K562 cells (Supplementary Table 
4S). We selected E-G pairs within 100 kb of the transcription start site (TSS), identifying 737 enhancer-
promoter pairs across 43 genes. Of these, 103 were confirmed as active enhancers, showing a significant 
decrease in expression following CRISPRi-FlowFISH. Specifically, the active enhancers significantly 
reduced gene expression (adjusted p-value < 0.05) with more than 80% power to detect a 25% effect size 
after perturbation. 
 
To prioritize enhancer–gene pairs with EPInformer-PE-Activity and EPInformer-PE-Activity-HiC, we 
extracted candidate sequences from CRISPRi-tested regions and promoter sequences based on each 
gene’s TSS. Enhancer activity and HiC contact data were sourced from the original study. We derived 
average attention weights from all heads and layers of EPInformer-PE-Activity and EPInformer-PE-Activity-
HiC, excluding CRISPRi testing genes from the training set. We matched the query index at the promoter, 
aligning keys with different candidate enhancers. These attention weights quantified the model's focus on 
each enhancer during gene expression predictions. We then normalized the attention weights for each 
promoter-enhancer pair, ensuring their sum equals one. These normalized attention weights were used as 
the attention scores to assess all enhancer-promoter pairs.  
 
The Activity-by-Contact (ABC) score for each E-G pair was recalculated using the original code from 
GitHub (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction), based on the same enhancer 
activity and HiC contacts used for EPInformer-PE-Activity and EPInformer-PE-Activity-HiC. The attention-
ABC score was derived by multiplying the attention score of EPInformer-PE-Activity with the ABC score. 
Additionally, we introduced other assays to score E-G pairs, including HiC contacts, enhancer activity, and 
the negative distance between TSS and enhancer. The three attention-based scores were evaluated 
alongside the ABC score and other assays in classifying E-G pairs with significant expression changes, 
measured using the area under the precision-recall curve (auPRC). 
 
Nucleotide contribution and motif discovery 
 
We employed TF-MoDISco-lite28 and TangerMEME29 to analyze TF motifs at putative enhancers based on 
EPInformer-PE-Activity’s sequence encoder, pre-trained to predict enhancer activity from sequence. TF-
MoDISco-lite is a biological motif discovery algorithm which uses attribution scores from a trained deep 
learning model, in addition to the sequence itself, to guide motif discovery. TangerMEME is a Python 
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package that implements the basic operations necessary to perform sophisticated genomic analyses using 
machine learning models. It provides a function to perform In-silico Saturation Mutagenesis (ISM) on the 
model given a DNA  sequence of interest. ISM functions by sequentially substituting each character in a 
sequence with every other possible character and then assessing the change in the predictive output 
before and after each substitution. This observed difference is interpreted as a measure of importance or 
attribution, where a higher magnitude value indicates that the character change has a significant impact on 
the prediction, thereby suggesting its high importance. Therefore, ISM can be used to uncover block of 
nucleotides corresponding to TF motifs on the putative enhancer sequence. 
 
We utilized via Captum (v0.6.0)50 for calculating nucleotide-specific contribution scores in sequences 
associated with enhancer activity. This process entailed generating 1000 dinucleotide-shuffled variants of 
each sequence to serve as reference points. Subsequently, the importance scores obtained from 
DeepLIFT38 for each sequence were combined with their respective one-hot-encoded matrices, yielding the 
final nucleotide contribution scores. 
 
We utilized TF-MoDISco-lite v2.1.0 (available at https://github.com/jmschrei/tfmodisco-lite) to identify motifs 
in nucleotide contribution scores across enhancer sequences from the testing set, derived from a 12-fold 
cross-chromosome validation process. This tool, an efficient version of TF-MoDISco28, was used with its 
default settings to find seqlet patterns which were then compared against the JASPAR2024 CORE 
vertebrates non-redundant database39 using Tomtom44. To analyze nucleotide contributions to enhancer 
activity predictions accurately, we used In-silico Saturation Mutagenesis (ISM) from TangerMEME29 v0.2.1, 
generating attribution scores for each base within targeted regions. 
 
Data availability 
 
We acquired epigenomic data for GM12878 and K562 cells from the ENCODE portal 
(https://www.encodeproject.org/), including DNase-seq (K562: ENCFF425WDA, ENCFF205FNC; 
GM12878: ENCFF020WZB, ENCFF729UYK), H3K27ac marks (K562: ENCFF600THN, ENCFF232RQF, 
ENCFF704LGA; GM12878: ENCFF269GKF, ENCFF201OHW. Additionally, CAGE data were obtained 
from FANTOM5 (K562: CNhs11250; GM12878: CNhs12333), and RNA-seq datasets were downloaded 
from the Epigenomics Roadmap Consortium 
(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz). We 
downloaded HiC matrices from 4DN Nucleome (https://data.4dnucleome.org/) including K562 
(4DNFITUOMFUQ) and GM12878 (4DNFI1UEG1HD).  
 
Code availability 
 
The code and data for EPInformer is available at https://github.com/pinellolab/EPInformer. The 
preprocessed training data are available at https://doi.org/10.5281/zenodo.12738705.  
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