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Abstract

Crowd-powered telemedicine has the potential to revolutionize healthcare, especially during times 

that require remote access to care. However, sharing private health data with strangers from around 

the world is not compatible with data privacy standards, requiring a stringent filtration process to 

recruit reliable and trustworthy workers who can go through the proper training and security steps. 

The key challenge, then, is to identify capable, trustworthy, and reliable workers through high-

fidelity evaluation tasks without exposing any sensitive patient data during the evaluation process. 

We contribute a set of experimentally validated metrics for assessing the trustworthiness and 

reliability of crowd workers tasked with providing behavioral feature tags to unstructured videos 

of children with autism and matched neurotypical controls. The workers are blinded to diagnosis 

and blinded to the goal of using the features to diagnose autism. These behavioral labels are fed as 

input to a previously validated binary logistic regression classifier for detecting autism cases using 

categorical feature vectors. While the metrics do not incorporate any ground truth labels of child 

diagnosis, linear regression using the 3 correlative metrics as input can predict the mean 

probability of the correct class of each worker with a mean average error of 7.51% for 

performance on the same set of videos and 10.93% for performance on a distinct balanced video 

set with different children. These results indicate that crowd workers can be recruited for 

performance based largely on behavioral metrics on a crowdsourced task, enabling an affordable 

way to filter crowd workforces into a trustworthy and reliable diagnostic workforce.
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1. Introduction

Autism spectrum disorder (ASD, or autism) is a pediatric developmental condition affecting 

1 in 40 children in the United States [1], with prevalence continuing to rise [2]. While access 

to care relies on a formal diagnosis from a clinician, an uneven distribution of diagnostic 

resources across the United States contributes to increasingly long waitlists. Some evidence 

suggests that 80% of counties lack sufficient diagnostic resources [3], with underserved 

communities disproportionately affected by this shortage [4]. Telemedicine has the potential 

to minimize this gap by capitalizing on the increasing pervasiveness and affordability of 

digital devices. Such diagnostic solutions are especially pertinent during times of pandemic, 

most notably the coronavirus, which further hinders access to diagnosis and care.

Mobile digital autism interventions administered on smartphones [5-12] and on ubiquitous 

devices [13-27] passively collect structured home videos of children with neuropsychiatric 

conditions for use in subsequent diagnostic data analysis [27-28]. In order for the video data 

collected from digital therapies to become widely used, trustworthy data sharing 

methodologies must be incorporated into the diagnostic pipeline [29]. One possible 

approach, which we realize in the present study, is to carefully recruit a trustworthy set of 

workers to transform the video streams into a secure, quantitative, and structured format. 

While modern computer vision algorithms could handle this task in several domains, 

extracting complex behavioral features from video is currently beyond the scope of state-of-

the-art machine learning methods and therefore requires human labor. However, the 

collected videos naturally contain highly sensitive data, requiring careful selection of 

trustworthy and reliable labelers who are allowed access to protected health information 

(PHI) after completion of Health Insurance Portability and Accountability Act (HIPAA) 

training, Collaborative Institutional Training Initiative (CITI) human subjects training, and 

whole disk encryption.

In the present study, we examine strategies for quantitatively determining the credibility and 

reliability of crowd workers whose labels can be trusted by researchers. It is important that 

the metrics for evaluating workers are speedy and simple, as formally credentialing recruited 

crowd workers through institutional channels is laborious and slow. We crowdsource the task 

of providing categorical feature labels to videos of children with autism and matched 

controls. For each crowdsourced worker, we evaluate correlations of their mean classifier 

probability of the correct class (PCC) using their answers as input with (1) the mean L1 

distance between their responses to the same video spaced one month apart, (2) the mean L1 

distance between their answer vector to each video and all other videos they rated, (3) the 

mean time spent rating videos, and (4) the mean time and L1 distance of answers when the 

worker is explicitly warned about not spending enough time rating a video and provided 

with a chance to revise their response. We then feed the metrics which are correlated with 

PCC into a linear regression model predicting the PCC.
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2. Methods

2.1. Clinically representative videos

We used a set of 24 publicly available videos from YouTube of children with autism and 

matched neurotypical controls (6 females with autism, 6 neurotypical females, 6 males with 

autism, and 6 neurotypical males). Criteria for video selection and inclusion were that (1) 

the child’s hand and face must be visible, (2) opportunities for social engagement must be 

present, and (3) an opportunity for using an object such as a toy or utensil must be present. 

Child diagnosis was determined through the video title and description. The videos were 

short, with a mean duration of 47.75 seconds (SD = 30.71 seconds). The mean age of 

children in the video was 3.65 years (SD = 1.82 years).

2.2. Crowdsourcing task for Microworkers

Prior work has validated the capability of subsets of the crowd recruited from the Amazon 

Mechanical Turk crowdsourcing platform [30] to provide feature tags of children with 

autism comparable to clinical coordinators working with children with autism on a daily 

basis [31-32]. We instead recruited workers from Microworkers.com, as Microworkers 

consists of a diverse representation of worker nationalities [33] compared to Mechanical 

Turk, which contains workers mostly from the United States and India [34]. Furthermore, 

Microworkers provides built in functionality for allowing workers to revise their answers if a 

requester is unsatisfied but believes the worker can redeem their response. This functionality 

was crucial for our trustworthiness metric.

The task consisted of a series of 13 multiple choice questions identified, in prior work which 

employed feature selection algorithms on electronic health records [35-44], as salient 

categorical ordinal features for autism prediction. Workers were asked to watch a short video 

and answer the multiple-choice questions using the interface depicted in Fig. 1. 

Microworkers automatically records the time spent on each task.

Through a pilot study of internal lab raters providing 9,374 video ratings for which we 

logged labeling times, we observed that the mean time per video was 557.7 seconds (9 

minutes 18 seconds), with a standard deviation of 929.7 seconds (15 minutes 30 seconds). 

The pilot task consisted of answering 31 multiple choice questions, while the Microworkers 

task only contained 13 questions; the proportional mean time is 233.9 seconds (3 minutes 54 

seconds). We therefore required workers to spend at least 2 minutes per video, a time 

threshold significantly below the 233.9 second mean proportional time. If any crowd worker 

spent less than 2 minutes rating a video, we leveraged the built-in functionality on 

Microworkers to prompt these users to revise their answers and sent them a warning 

message disclosing that we know the “Impossibly short time spent on task.” We measured 

the additional time spent by the worker, if any, as well as the changes in the answer vector 

(L1 distance) after receiving this message.

We posted all tasks for all 24 videos exactly 30 days after the original task, allowing workers 

who completed the first task to complete the task again while minimizing the chance that 

they could use the memory of their prior responses to bias the test. Previous studies which 

evaluate test-retest reliability consider 2 weeks to be sufficient time to prevent memorization 
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of prior administrations of the questionnaire [45-48], and we increased this time frame to 30 

days to minimize the likelihood that any memory of the workers’ previous answers 

remained. The same video of the child was provided for both administrations of the task. 

Workers were not provided with their original answers for reference. The difference between 

the worker’s original answers and their revised answers on the same video served as 

quantitative information about the reliability of the worker.

2.3. Classifier to evaluate performance

For a gold standard, we use a previously published and validated [49-54] logistic regression 

classifier (Fig. 2), trained on electronic health record databases of autism diagnostic 

scoresheets filled out by expert clinicians, which emits a probability score of autism using 

the crowd workers’ multiple-choice responses as categorical ordinal feature vectors. Because 

logistic regression classifiers produce a probability, we treat the probability as a confidence 

score of the crowdsourced workers’ responses. We analyze the probability of the correct 

class (referred to as PCC), which is p when the true class is autism and 1-p when the true 

class is neurotypical. When assessing classifier predictions, we use a threshold of 0.5. We 

use a worker’s average PCC for videos the worker has rated as a metric of the worker’s 

video tagging capability, with a higher mean PCC corresponding to greater mean 

performance by the worker.

2.4. Metrics evaluated

We strive to develop metrics which only take input parameters that do not depend on a priori 
knowledge about the correct classification score of the videos. We test the following metrics 

for correlation with the PCC, where N is the number of videos rated by a worker, M is the 

number of questions per video rating task (inputs to the diagnostic classifier), and Ai,j,k is 

the answer for video i and question j for the kth time.

Mean same-child L1 distance (MSCL1): We asked crowd workers to rate the same 

child at least one month apart. Workers did not have access to their originally recorded 

answers and were unaware that they would be asked to rate the same video a second time 

when providing the first set of ratings. We observe the mean deviation for all videos between 

a worker’s original ratings for the video and their subsequent ratings one month later. We 

call this metric the mean same-child L1 distance (MSCL1), which we consider as a metric of 

the worker’s test-retest reliability. Higher values for the MSCL1 correspond to greater 

variation in worker responses when re-rating the same video one month apart. Formally, 

MSCL1 is calculated as:

MSCL1 =
∑i = 1

N ∑j = 1
M ∣ Ai, j, 2 − Ai, j, 1 ∣

N

Mean pairwise internal L1 distance (MPIL1): To analyze the reliability of the worker’s 

answers across videos, we look at the mean L1 distance between a worker’s answer to each 

video and all other videos they rated. We call this metric the mean pairwise internal L1 
distance (MPIL1). MPIL1 is high when workers provide a wide variety of answer patterns 
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across videos. If the worker answers all questions the same way per video, the MPIL1 will 

be 0. Formally, MPIL1 is calculated as:

MPIL1 =
∑i1 = 1

N ∑i2 = 1
N ∑j = 1

M ∣ Ai2, j − Ai1, j ∣
0.5 N (N − 1) , i1 < i2

Penalized time (PT): We aimed to build a metric that prioritizes rewarding workers who 

spent sufficient time rating the first time while rewarding, to a lesser extent, workers who 

spend sufficient time rating after receiving a warning. We also aimed to penalize workers 

who either do not spend more time rating after receiving a warning or who do not 

sufficiently update their answers. We create a metric of worker trustworthiness taking both 

of these factors into account which we call the penalized time (PT). If workers spend longer 

than a time threshold T rating, then they are not asked to revise their answers and receive a 

baseline score M. If they do not spend a sufficient time (T) rating, then they are asked to 

spend more time and to revise their answers. In this case, the metric consists of two terms, 

balanced by a weighting constant c. The first term is the “revision” mean same-child L1 

distance (RMSCL1) between initial and revised answers only for videos that the worker was 

explicitly asked to revise. The second term is the mean of the total time spent rating, which 

is the time spent initially (t1) and the time spent revising the answers (t2). Formally, PT is 

calculated as:

PT =
M, t1 ≥ T
t1 + t2

N + c RMSCL1, t1 < T

Time spent: Finally, we record the mean amount of time spent rating per video, in 

seconds. We hypothesized that workers who spend more time on the rating task will tend 

towards achieving higher performance.

We hypothesized that all four metrics are correlated with PCC. We only calculate metrics for 

workers who rated at least 10 videos. Because 13 questions were asked, an MSCL1 or 

MPIL1 of 13 means that, on average, the worker’s answer differed by 1 categorical ordinal 

answer choice per question (e.g., the difference between “Mixed: some regular echoing of 
words and phrases, but also some language” and “Mostly echoed speech” in Fig. 1).

2.5. Prediction of crowd worker performance from metrics

We train and test a linear regression model to predict the mean PCC of the workers using 5-

fold cross validation. We evaluate all non-empty subsets of the correlative metrics described 

in section 2.4 as inputs to the model. Since not all workers reopened the task after receiving 

a warning and not all workers conducted the second task in the series, we evaluated our 

model both using all available workers with complete data for all metrics as well as using 

the subset of 55 workers with data for all metrics.
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3. Results

3.1. Correlation between metrics and probability of the correct class

Correlations of each of the worker metrics with their mean PCC are displayed in Fig. 4. 

Mean values per worker are only plotted and analyzed if at least 5 data points are available 

for the worker. MSCL1, MPIL1, and mean time spent were all significantly correlated with 

PCC (r=0.31, p=0.0212 for MSCL1; r=0.57, p<0.0001 for MPIL1; r=0.16, p=0.0284 for 

time), supporting the predictive power of these metrics. Intuitively, this means that higher 

variability in worker answers for the same video and across videos correlates with increased 

worker performance. We note that only MPIL1 passes Bonferroni correction. Penalized time 

was not significantly correlated with PCC (r=0.17, r=0.1413 for penalized time).

Interestingly, Fig. 4 reveals that the presence of enough data to calculate certain metrics is in 

itself predictive of worker performance. Fig. 4C shows that there are several workers who 

had a mean PCC below 50%. However, none of these workers appear in the plot for MSCL1 

(Fig. 4A), MPIL1 (Fig. 4B), or penalized time (Fig. 4D), indicating that workers with low 

average performance did not rate videos again after one month and did not revise their 

answers when prompted.

We evaluate all values of the weighting constant c for the penalized time metric in the 

interval [0.05, 10.0] using a step size of 0.05. No value resulted in a metric that positively 

correlates with PCC. To investigate, we review the correlation between both terms of 

penalized time: (1) the mean total time spent rating post-warning and (2) the mean L1 

distance between the answer vector before and after the warning (Fig. 5). Neither of these 

metrics are correlated with PCC (r=−0.10, p=0.3414 for revision L1 distance; r=0.11, 

p=0.2908 for total time), explaining the inability of the penalized time metric to predict PCC 

regardless of the parameters chosen.

3.2. Regression prediction of the mean probability of the correct class

Table 1 contains the mean average error (MAE) of a linear regression model predicting the 

probability of the correct class for each worker using metrics on the same set of videos. 

There were 55 workers with data for all 3 metrics used in the regression model. For these 

workers, all metrics predicted the PCC with less than 10% MAE.

The MAE when using all 3 features performs nearly identically, to two decimal places, 

compared to using only MSCL1 and MPIL1. Mean time does not contribute much predictive 

power given the other metrics. Interestingly, the most predictive input configuration when 

using the same 55 workers is MPIL1 together with mean time (6.97% MAE), followed by 

MPIL1 alone as a close second (6.98% MAE). This is a testament to the success of the 

MPIL1 metric.

Table 2 contains the mean average error of a linear regression model predicting the 

probability of the correct class for each worker using metrics from one set of children and 

mean probability of the correct class calculations for a distinct set of children. The most 

predictive input feature configuration (MSCL1 and MPIL1) results in a MAE of 10.41%, 

only 3.44% higher than the best MAE when training and testing on the same set of videos 
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and workers using cross-validation (Table 1). MPIL1 is involved in all of the top-4 input 

metric configurations resulting in the lowest MAE, again verifying the success of the MPIL1 

metric.

4. Discussion and Future Work

We identify three metrics which are individually highly correlated with the mean probability 

of the worker’s categorical behavioral feature tags predicting the correct class. In particular, 

one of our two reliability metrics - the mean pairwise internal L1 distance, which is the 

mean L1 distance between a worker’s answer to each video and all other videos they rated - 

stood out as the most predictive metric. Mean pairwise internal L1 distance alone can predict 

a worker’s PCC within 7% MAE when trained on the same set of workers as in the test set 

but with different videos, and it can predict PCC within 11% MAE when trained on one 

group of workers and tested on an entirely district set of workers and videos. This metric 

alone therefore provides a powerful behavioral predictor of worker performance and is 

therefore likely to be useful for rapidly filtering workers. The positive correlation shown in 

Fig. 4B suggests that unreliable workers will provide the same or similar patterns of answer 

sequences for each task. We see that an increasing diversity of answers between tasks results 

in a higher PCC for the entire spectrum of possible L1 distances. Intuitively, this may be a 

result of the diverse set of features exhibited by the heterogeneous behavioral characteristics 

of the children in our dataset.

Interestingly, the raw time metric is not particularly correlative with PCC, indicating that 

analyzing the answer domain is more informative than the time domain. For workers who 

received a warning for low time spent, neither the time spent revising post-warning nor the 

L1 distance between the original and revised set of answers was predictive of the workers’ 

final performance. It is possible that once workers are aware that their time is tracked, they 

idly keep the rating interface open, accumulating time without accumulating thoughtful 

work. This hypothesis is speculative, and more fine-grained timing information must be 

recorded to evaluate such hypotheses.

Future work should evaluate workers on a larger scale, which will validate the preliminary 

findings of the present study. It is possible that predictive time-based trustworthiness metrics 

exist. Evaluation on a larger scale in conjunction with more fine-tuned worker metrics will 

lead to more precise predictions.

5. Conclusion

We demonstrate that behavioral metrics about crowd workers can predict, with a high degree 

of accuracy, the performance of crowd workers on behavioral feature extraction tasks for the 

binary diagnosis of autism. Metrics like these can be used for quickly and efficiently 

identifying crowd workers who are trustworthy and reliable enough for exposure to highly 

sensitive PHI based on a quantification of their reliability.
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Fig. 1. 
Crowd worker feature tagging user interface deployed on Microworkers.com. Each worker 

answered a series of multiple-choice questions corresponding to each input feature of a gold 

standard classifier.
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Fig. 2. 
Process for collecting the data needed to evaluate trust and reliability metrics for crowd 

workers. Each crowd worker watches unstructured videos of children with autism and 

neurotypical controls, answering multiple choice questions about each video. These 

multiple-choice answers serve as categorical ordinal feature vectors for a previously 

validated logistic regression classifier, trained on clinician-filled electronic health records, 

that predicts the probability that a child has autism.
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Fig. 3. 
Process for calculating trust and reliability metrics for crowd workers. The reliability of 

workers is determined by how different their answers are when rating the same video one 

month apart. The trustworthiness of workers is determined by whether they spend the 

minimal amount of time needed to properly answer the questions, whether they spend 

sufficient time when receiving a warning, and whether their original answers change after 

receiving the warning.
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Fig. 4. 
Correlations between metrics and probability of the correct class (PCC). (A) Correlation 

between mean same-child L1 distance and PCC. (B) Correlation between mean pairwise 

internal L1 distance and PCC. (C) Correlation between time spent (s) and PCC. (D) Lack of 

correlation between penalized time and PCC.
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Fig. 5. 
Lack of correlation between PCC and (A) the total time spent rating post-warning and (B) 

the L1 distance between the answer before and after the warning.
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Table 1.

5-fold cross validated mean average error (MAE) of a linear regression model predicting the probability of the 

correct class for each worker using metrics on the same set of videos.

Input Features 5-fold MAE (%)
All data points

5-fold MAE (%)
55 workers with all

metric data

N

MSCL1, MPIL1, mean time 7.51 7.51 55

MSCL1, mean time 8.89 8.89 55

MPIL1, mean time 7.43 6.97 81

MSCL1, MPIL1 7.51 7.51 55

MSCL1 9.24 9.24 55

MPIL1 7.39 6.98 81

Mean time 15.56 9.83 193
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Table 2.

Mean average error (MAE) of the linear regression model predicting the probability of the correct class for 

each worker using the same metric data and resulting classifier weights for the workers and videos used in 
Table 1 and mean probability of the correct class calculations for a distinct set of videos for a distinct set of 
workers.

Input Features MAE (%)
All data points

MSCL1, MPIL1, mean time 10.93

MSCL1, mean time 13.03

MPIL1, mean time 11.50

MSCL1, MPIL1 10.41

MSCL1 11.87

MPIL1 10.91

Mean time* 12.10

*
Mean time as the only feature is the only configuration of input features that requires a different set of data points: N=102 instead of a subset of 

size N=62 for all other configurations.

Pac Symp Biocomput. Author manuscript; available in PMC 2021 March 15.


	Abstract
	Introduction
	Methods
	Clinically representative videos
	Crowdsourcing task for Microworkers
	Classifier to evaluate performance
	Metrics evaluated
	Mean same-child L1 distance (MSCL1):
	Mean pairwise internal L1 distance (MPIL1):
	Penalized time (PT):
	Time spent:

	Prediction of crowd worker performance from metrics

	Results
	Correlation between metrics and probability of the correct class
	Regression prediction of the mean probability of the correct class

	Discussion and Future Work
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1.
	Table 2.

