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three‑dimensional speckle‑tracking echocardiography data
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repair of CoA. Mean blood pressure, but not age at correc-
tion seems to determine LV deformation.
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Introduction

Coarctation of the aorta (CoA) is not a localized lesion of 
the vessel, but a diffused cardiovascular disease. Despite 
successful surgical or catheter interventional treatment, 
CoA is known to be associated with high long-term mor-
bidity and shortened life expectancy [1, 2]. In patients 
treated due to CoA some unfavorable changes in the left 
ventricular (LV) myocardial function are observed. Data 
on LV regional function in patients with optimal CoA 
repair are scarce and limited to two-dimensional imaging 
[3, 4]. Three-dimensional speckle-tracking echocardiogra-
phy (3D-STE) is a novel method that enables quantitative 
analysis of regional myocardial function of all LV seg-
ments in all dimensions simultaneously. The latter tech-
nique can also offer a new deformation parameter, area 
strain, that quantifies endocardial area change and inte-
grates both longitudinal and circumferential deformation 
[5]. Global area strain (GAS) has been proved to detect 
early LV systolic dysfunction in athletes, in patients after 
heart transplantation or after anthracycline therapy, as well 
as in patients with diabetes and autoimmune disorders [6–
10]. Of note, 3D-STE turned out to be less time consuming 
than 2D in respect to the acquisition and analysis time [11, 
12], thus the former has a greater chance to be routinely 
used in the clinical practice. The aim of our study was to 
assess whether 3D-STE provides any new information on 
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with controls (−28.8 vs. −31.7 %; p = 0.007). No differ-
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myocardial deformation in subjects with optimal repair of 
CoA.

Methods

Study population

We studied 26 consecutive adult patients after surgical or 
percutaneous CoA correction who were referred to our out-
patient clinic for a routine check-up. All patients had pre-
served LV ejection fraction (EF). The exclusion criteria for 
the study were: (1) age >50 years, (2) CoA repair <6 months 
before the study, (3) recurring or residual CoA that require 
intervention, (4) significant concomitant congenital cardiac 
defects (patients with bicuspid aortic valve were included 
unless they presented aortic stenosis of any degree and/or 
more than mild aortic regurgitation), (5) poorly controlled 
systemic arterial hypertension in follow-up at our center 
(systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg), 
(6) any evidence of coronary heart disease, (7) arrhythmia at 
the echocardiographic study, (8) asymptomatic left ventricu-
lar dysfunction (LV EF < 55 %) or congestive heart failure. 
Echocardiographic data obtained in CoA patients were com-
pared with those of a control group of 18 healthy volunteers 
who did not have any structural or functional cardiovascular 
abnormalities, nor did they take any medications. The study 
was approved by the local ethics committee and each patient 
signed informed written consent.

Standard echocardiographic imaging and aortic elastic 
parameters

Standard transthoracic echocardiographic examinations were 
performed using commercially available equipment (Vivid 
9, GE Vingmed Ultrasound, Horten, Norway) with a matrix 
probe M3S. Left ventricular end-diastolic (LVEDD) and end-
systolic diameters, as well as intraventricular septum (IVS) 
and posterior wall (PW) thickness were obtained according 
to ASE guidelines [13]. Relative wall thickness (RWT) was 
calculated by the formula (2xPW)/LVEDD [14]. Left ventric-
ular ejection fraction (EF) was calculated using the biplane 
Simpson’s method. Left ventricular mass (LVM) was meas-
ured according to the Devereux formula [15] and indexed 
for body surface area. Systolic and diastolic aortic diameters 
were measured 3  cm above the aortic valve by 2-D guided 
M-mode echocardiography at the left parasternal long-axis 
view: aortic systolic diameter (AoS) at the time of opening of 
the aortic valve and diastolic diameter (AoD) at the R wave 
of electrocardiogram. The aortic arch and descending aorta 
diameters were measured in the suprasternal view. Maximal 
and mean pressure gradients across the coarctation site were 
assessed using continuous wave Doppler recordings in the 

same view. Blood pressure (BP) measurements at the right 
arm were obtained using a cuff sphygmomanometer (Omron 
M1, Omron Healthcare Co, Kyoto, Japan). The average of 
three successive readings was taken into account. Central aor-
tic pulse pressure (PP) was defined as a difference between 
systolic (SBP) and diastolic blood pressure. Subsequently, we 
calculated three indices of aortic elastic properties [16]:

3D‑STE analysis

During the same examination 3D full-volume data sets were 
acquired from the apical view using the matrix-array trans-
ducer 4V-D. Four to six ECG-gated beats were recorded dur-
ing end-expiratory breath hold to create LV full volume. The 
volume size and depth were individually adapted and the 
mean temporal resolution was 25.5 vol/s. 3D data were ana-
lyzed offline using EchoPac software (version 113, GE Ving-
med Ultrasound). The software automatically detects the 
LV endocardial border in 3D, and, after manual adjustment, 
calculates the LV volumes, cardiac output, stroke volume, 
EF and LV sphericity index. Next, the definition of the epi-
cardial boundary allows LV mass and 3D global myocardial 
deformation parameters [longitudinal (GLS), circumferential 
(GCS), radial (GRS) and area (GAS) strain] to be measured. 
The area strain is defined as the percentage change in the 
endocardial area at LV end-systole from its original area at 
end-diastole [11]. All global strains are weighted averages of 
regional values from 17 myocardial segments of LV (Fig. 1). 
Rejected segments (determined automatically by the soft-
ware) were not taken into account during the calculations 
of the global strain values and more than three rejected seg-
ments in one patient resulted in exclusion from any further 
analysis. All parameters were compared to those obtained 
from the healthy subjects in the control group.

Reproducibility

Intra-observer and inter-observer reproducibility was 
assessed in 15 randomly chosen subjects. It was expressed 
as percentage of error, derived as the absolute difference 
between 2 sets of measurements divided by the mean of the 
observations and using intraclass correlation coefficients. 
Intra-observer measures were performed at least 1  month 
apart. To calculate inter-observer variability the second 
experienced observer (M.K.), who was blinded to the first 
observer’s findings, analyzed 3D-STE data sets.

Aortic strain (%) = 100× (AoS− AoD)/AoD

Aortic distensibility
(

cm2/dyn/106
)

= 2× (AoS− AoD)/(AoD× PP)

Aortic stiffness index = [ln(SBP/DBP)]/

[(AoS− AoD)/AoD]
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Statistics

Results, unless stated otherwise, are presented as the mean 
value ± SD. Normal distribution of variables was checked 
using the Kolmogorow–Smirnov test. The comparisons 
of mean differences between the groups were made using 
unpaired Student’s t test and the linear Pearson correla-
tion was used to indicate the strength of a relationship 
between GAS and other parameters taken into account. In 
the multivariate regression analysis, the backward elimi-
nation method with t tests was used to select variables. A 
confidence level of p  <  0.05 was considered statistically 
significant.

Results

Clinical data

Twenty-six patients (9 women and 17 men), mean age 
24.4  ±  6.7  years (range 18–41  years) after surgical 
(n  =  21) or percutaneous (n  =  5) CoA correction were 

studied. CoA repair had been performed at a mean age of 
8.6 ±  12.1 years (range 0–40 years). In half of the study 
group bicuspid aortic valve (with no stenosis and only triv-
ial regurgitation) was diagnosed and 58 % of patients were 
on antihypertensive treatment. No significant differences 
were observed between patients and controls with respect 
to age, gender and heart rate. Patients had significantly 
higher systolic and mean blood pressure. Clinical charac-
teristics of the study group are given in Table 1.

2D echocardiographic data

Standard echocardiographic parameters in patients and in 
controls are presented in Table  2. As expected, LV diam-
eters and EF were in normal range and similar between the 
groups. CoA patients presented an increased LV wall thick-
ness and LV mass comparing to controls. Aortic coarctation 
was associated with increased aortic stiffness index values. 
A decrease in aortic distensibility and aortic strain was also 
observed across the CoA group. 2D echocardiographic 
examination also revealed that aortic arch and descend-
ing aorta were narrower in CoA patients. The mean/peak 

Fig. 1   An example of 3D-STE analysis
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gradient across coarctation site assessed in patients was 
11.2/24.4 mmHg.

3D echocardiographic data

Feasibility

Out of all LV segments analyzed 9.1 % were not interpret-
able and excluded from the analysis of global deforma-
tion. The most frequently rejected segments were these 
located in the posterior wall (23.5 % of all nonanalyzable 
segments). An average volume rate for 3D acquisition was 
25.5 ± 9.2 vol/s.

3D analysis

3D echocardiographic examination showed that LV vol-
umes and EF were similar in both groups (Table  3). 
Similarly to the 2D echocardiography, LV mass was sig-
nificantly higher in patients. Moreover, the 3D LV mass 
values were higher than the 2D-derived ones, which is 
consistent with the results of previous studies compar-
ing 2D and 3D echocardiographic parameters [17]. All 
parameters of 3D LV deformation tended to be lower in 
CoA group, however, only GAS differed significantly in 
the CoA group. No differences in LV deformation data 
were found between patients with bicuspid aortic valves 

compared with tricuspid ones. Nor did the method of CoA 
correction influenced the LV deformation values. Simi-
larly, there were no differences in 3D deformation values 
between patients with hypertensive treatment and patients 
with no medications, although higher LV mass and lower 
diastolic RR in individuals on antihypertensive medica-
tions were observed (Table 4). Both subgroups of patients 
differ significantly from the control group in terms of GAS 
values (p < 0.05).

Among clinical and echocardiographic parameters char-
acterizing patients with CoA only mean blood pressure 
correlated significantly with global area strain (R =  0.39; 
p < 0.05), Fig. 2. Neither age at correction nor LV mass nor 
aortic elasticity indices correlated with the degree of LV 
deformation assessed by 3D-STE. Similarly, the multivari-
ate regression showed that mean BP was the only param-
eter independently associated with LV GAS (cumulative 
R2 = 0.62; p = 0.002). 

Reproducibility

Intra- and inter-observer variability for global area strain 
was 5.4 % (ICCs 0.884) and 9 % (ICCs 0.641). The values 
are comparable to those reported for GAS in normal adults 
[11] and patients with other heart diseases [18]. Bland–Alt-
man plots of the GAS intra- and inter-observer differences 
are presented in Figs. 3, 4.

Table 1   Demographics of the 
study population

BMI body mass index, ACEI angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, 
CBB calcium channel blocker, BB beta blocker

Coarctation patients Healthy controls p value

Mean age (year) 24.4 ± 6.7 27.2 ± 6.7 NS

Men [n (%)] 17 (65) 8 (44) NS

BMI 23.8 ± 3.5 23.5 ± 2.9 NS

Heart rate (beats/min) 59 ± 10 63 ± 9 NS

Systolic blood pressure (mmHg) 129 ± 12 119 ± 9 0.003

Diastolic blood pressure (mmHg) 80 ± 10 76 ± 6 NS

Mean blood pressure (mmHg) 96 ± 10 90 ± 6 0.016

Bicuspid aortic valve [n (%)] 13 (50)

Mean age at time of intervention (year) 8.6 ± 12.1

Mean time from repair (year) 15.8 ± 8.7

Treatment history

Endovascular stenting [n (%)] 5 (19)

Prosthetic patch [n (%)] 4 (15)

End-to-end repair [n (%)] 7 (27)

Waldhausen operation [n (%)] 10 (38)

Antihypertensive treatment [n (%)] 15 (58)

ACEI/ARB [n (%)] 9 (35)

CBB [n (%)] 11 (42)

BB [n (%)] 2 (8)

Diuretics [n (%)] 3 (12)
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Discussion

It was the first study that examined 3D LV deformation 
from echocardiography in adults after optimal CoA repair. 
The important new finding is the subtle LV myocardial 
dysfunction as assessed by global area strain. Area strain 

reflects the change in the endocardial surface from its origi-
nal dimensions at end-diastole and it integrates both lon-
gitudinal and circumferential deformations of the LV. We 
speculate that reduced GAS values can reflect subclinical 
microvascular abnormalities in the population analyzed. 
In the present study the remaining deformation parameters 
(longitudinal, circumferential and radial strain) did not dif-
fer significantly, which corresponds with optimal clinical 
outcome of CoA repair. Our results are in agreement with 
those by Cook et al. who studied a similar group of adults 
with repaired CoA. Using non-invasive angiography in 
combination with CMR the authors demonstrated subendo-
cardial perfusion abnormalities despite a lack of LV hyper-
trophy, epicardial coronary artery disease or recoarctation 
[19]. Thus, it seems that the novel 3D deformation param-
eter, global area strain, might become an early non-invasive 
indicator of subclinical endocardial dysfunction. In con-
trast, Kutty et  al. [20] using CMR based feature-tracking 
showed no differences between the COA group with nor-
mal LV mass and normal controls in terms of GLS and 
GCS. However, lower GRS values were observed in the 
patients group. In our opinion these results should be inter-
preted with caution due to the significant difference in the 
mean age of compared groups (37.1  years in controls vs. 
23.3 years in CoA patients with normal LV mass, p value 
not given) as the LV deformation values proved to be age-
related [21, 22].

Table 2   Standard 
echocardiographic parameters

IVS interventricular septum, PW posterior wall, LVED left ventricular end-diastolic diameter, LVSD left 
ventricular systolic diameter, EF ejection fraction, RWT relative wall thickness, LVM left ventricular mass

Coarctation patients Healthy controls p value

IVS (mm) 9.8 ± 1.6 8.7 ± 1.6 0.02

PW (mm) 9.9 ± 1.2 8.2 ± 0.9 <0.001

LVED (mm) 50.2 ± 5.1 50.5 ± 3.6 NS

LVSD (mm) 29.9 ± 4.3 31.4 ± 3.4 NS

EF (%) 66 ± 4.7 66.9 ± 5.2 NS

RWT 0.4 ± 0.06 0.33 ± 0.04 <0.001

LVM (g) 183.1 ± 52.1 151.8 ± 35.7 0.02

LVM index 98.4 ± 23.2 81.1 ± 13.3 0.003

MAPSE (mm) 14.5 ± 1.6 16.1 ± 1.9 0.01

E/A ratio 1.86 ± 0.73 1.85 ± 0.73 NS

Aortic elastic properties

Aortic systolic diameter (mm) 30.4 ± 7.5 27.6 ± 3.0 NS

Aortic diastolic diameter (mm) 27.8 ± 7.6 24.4 ± 3.2 0.03

Aortic strain (%) 10.2 ± 5.7 14.3 ± 6.7 0.04

Aortic distensibility 3.2 ± 1.6 6.4 ± 3.6 0.003

Aortic stiffness index 7.1 ± 5.4 4.0 ± 2.8 0.02

Aortic arch (mm) 21.0 ± 3.8 23.0 ± 2.1 0.04

Descending aorta (mm) 14.4 ± 2.4 17.3 ± 2.1 <0.001

Mean gradient across coarctation site (mmHg) 11.2 ± 8

Peak gradient across coarctation site (mmHg) 28.4 ± 14

Table 3   Real-time three-dimensional echocardiographic assessment

EDV end-diastolic volume, ESV end-systolic volume, SV stroke vol-
ume, CO cardiac output, LVM left ventricular mass, GLS global lon-
gitudinal strain, GCS global circumferential strain, GAS global area 
strain, GRS global radial strain

Coarctation patients Healthy controls p value

LV EDV (mL) 107.8 ± 33.6 113.5 ± 23.3 NS

LV ESV (mL) 41.3 ± 17.6 44.2 ± 12.0 NS

SV (mL) 65.8 ± 17.4 69.4 ± 13.6 NS

CO (L/min) 4.13 ± 1.4 4.68 ± 1.3 NS

LV EF (%) 61.8 ± 6.9 61.4 ± 4.8 NS

Sphericity index 0.45 ± 0.09 0.44 ± 0.09 NS

LVM (g) 137.6 ± 22.4 124.3 ± 16.5 0.02

LVM index 75.423 ± 11.9 67.944 ± 8.6 0.01

GLS (%) −16.6 ± 3.8 −18.4 ± 2.5 NS

GCS (%) −16.7 ± 2.8 −17.5 ± 2.4 NS

GAS (%) −28.8 ± 4.1 −31.7 ± 2.7 0.007

GRS (%) 47.1 ± 10.1 51.3 ± 6.5 NS
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The subendocardial layer of the myocardial fib-
ers is more vulnerable to functional impairment due to 
direct impact of intraventricular blood pressure and the 

unfavorable coronary flow in this area. Our analysis 
showed that the reduction of GAS was associated with an 
increased pressure overload. The results are consistent in 
this field with our previous observation that a higher degree 
of narrowing across the coarctation site leads to greater 
reductions in local 2D deformation indices for the midseg-
ment of the LV anterior wall [4]. Similar findings regard-
ing the association between GAS and mean BP have also 
been reported previously in subjects with high-normal 
blood pressure [12] and native hypertensive patients [23]. 
However, we observed decreased global area strain values 
in patients after CoA repair on hypertensive treatment as 
well as in patients with no hypertension. Thus, the changes 
found in GAS cannot be explained only by the presence of 
hypertension.

In contrast to previous data on patients with aortic val-
vular disease [24] or hypertension [23], no association 

Table 4   Selected clinical parameters and echocardiographic indices in coarctation patients with no hypertension and in coarctation patients on 
antihypertensive medications

CoA aortic coarctation, LVM left ventricular mass, GLS global longitudinal strain, GCS global circumferential strain, GAS global area strain, 
GRS global radial strain

CoA pts with no hypertension (n = 11) CoA pts on antihypertensive medications (n = 15) p value

Mean age (year) 25.5 ± 6.4 23.5 ± 7.0 NS

Systolic blood pressure (mmHg) 129.7 ± 11.4 128.3. ± 12.3 NS

Diastolic blood pressure (mmHg) 84.8 ± 7.5 76.3 ± 10.1 0.01

LVM index 87.5 ± 14.5 106.4 ± 43.8 0.01

GLS (%) −16.0 ± 4.4 −17.0 ± 3.4 NS

GCS (%) −16.0 ± 1.6 −17.2 ± 3.4 NS

GAS (%) −27.9 ± 4.0 −29.4 ± 4.1 NS

GRS (%) 44.9 ± 8.8 48.7 ± 11.0 NS

Fig. 3   Bland–Altman plot for intra-observer difference of the global 
area strain

Fig. 4   Bland–Altman plot for inter-observer difference of the global 
area strain

Fig. 2   The correlation between mean BP and GAS in CoA patients 
(r = 0.39; p < 0.05)
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between global deformation parameters and the degree of 
LV hypertrophy (LVM or RWT) were found in the present 
study. However, the analyzed population included patients 
with only slightly increased LV mass and no clear-cut LV 
hypertrophy.

The age at correction did not have an impact on the val-
ues of 3D deformation indices in patients with optimal CoA 
repair, neither was such a relationship found in our previ-
ous study in adults where 2D deformation indices were 
used [4]. On the other hand, Di Salvo et al. [3] showed a 
significant correlation between 2D strain rate and age at 
correction in children after successful CoA correction. This 
difference might result from a much younger population 
analyzed earlier after repair in their study.

Our findings regarding aortic elastic properties are 
consistent with those reported in previous studies, which 
showed that aortic strain, distensibility and stiffness index 
of the ascending aorta remained abnormal despite success-
ful CoA repair [16, 25]. However, the aortopathy did not go 
along with a significant correlation between these parame-
ters and indices of 3D LV deformation. It is noteworthy that 
Di Salvo et al. [3] confirmed the relationship between 2D 
deformation (strain rate) and aortic stiffness index in chil-
dren after CoA repair. The possible explanation might be a 
different study population as mentioned above. In addition, 
the method of deformation analysis (2D longitudinal strain 
rate derived from septum and LV lateral wall) could impact 
the results.

Summarizing, our study provides new insights into the 
LV regional function in patients after optimal CoA repair 
and the potential explanation of higher rate of cardiac 
events and reduced life expectancy in this population. The 
decreased GAS might be an early indicator of late cardio-
vascular complications and 3D-STE seems to be useful in 
risk stratification. Thus, further studies will help to define 
the clinical benefit of 3D deformation analysis.

Limitations

The major limitation of our study relates to the small sam-
ple size mainly due to restrictive inclusion criteria as we 
decided to assess patients after optimal CoA repair with 
no significant comorbidities. Different techniques of CoA 
correction should also be pointed out. Another issue corre-
sponds to the influence of LV imaging quality on deforma-
tion analysis. The feasibility of 3D-STE was high in the pre-
sent study, however, our patients were relatively young and 
they presented no substantial myocardial hypertrophy. In 
the study we analyzed only global deformation parameters. 
The analysis of regional function of 17 LV segments might 
provide more information, however, such an approach is 
much more time consuming and hard to apply in every day 

practice. Finally, the limitations of the 3D-STE analyses are 
different vendor’s algorithms with poor inter-vendor repro-
ducibility [26] that makes the results of the studies difficult 
to compare.

Conclusions

Global area strain derived from three-dimensional speckle-
tracking echocardiography detects LV myocardial dam-
age in a subclinical stage in patients after optimal repair of 
CoA. Mean blood pressure, but not the age at correction or 
techniques of CoA repair impacts LV deformation.
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